磁性流体的制备及其在热疗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe_3O_4磁性纳米粒子及其磁性流体是重要的磁性纳米材料,本论文系统的研究了Fe_3O_4纳米粒子制备及磁性流体的制备,具体工作分为四部分。
     (1)在不需要惰性气体保护的条件下制备了纳米粒子,研究了铁离子比例、反应时间、反应温度、浓度等因素对所制备的Fe_3O_4纳米粒子的影响。为改善粒子的形貌和大小,用超声对共沉淀法进行了改进,研究了超声对Fe_3O_4纳米粒子形貌、粒子大小、晶体结构和磁性能的影响。为调节粒径的大小,对纳米粒子进行了水热处理,研究了反应温度、时间、pH值对纳米粒子形貌的影响。
     (2)利用改进的化学共沉淀法制备了Fe_3O_4磁性纳米粒子,用OL对Fe_3O_4纳米粒子进行了表面改性,制备了高稳定性导热油基磁性流体,研究了不同制备条件如反应温度、时间、OL用量对磁性流体的影响,确定了其最佳制备条件。研究了所制备的Fe_3O_4磁性纳米粒子的形貌、晶体学结构,磁性能等。用磁天平测定了所制备的导热油基磁性流体的磁性能、稳定性等性能。
     (3)以TE和硅油表面活性剂EY为改性剂制备了硅油基磁性流体。为了提高Fe_3O_4纳米粒子和EY之间的结合性,先在Fe_3O_4纳米粒子表面包裹一层SiO2,使Fe_3O_4纳米粒子表面富含硅羟基。然后EY水解和Fe_3O_4纳米粒表面的硅羟基结合到一起。本研究确定了TE和EY最佳用量,研究了所制备的Fe_3O_4纳米粒子的晶型、形貌、磁性能;研究了所制备的硅油基磁性流体的磁性能、稳定性、流变性等性能。
     (4)用KT对Fe_3O_4纳米粒子进行了表面改性,并制备了水基磁性流体。对所制备的KT改性的Fe_3O_4纳米粒子及所制备的水基磁性流体进行了一系列表征。研究了磁性流体在交变磁场中的升温特性,考察了磁场大小、不同浓度及改性前后对升温效果的影响。
Fe_3O_4 magnetic nanoparticles and magnetic fluid are very important magnetic nanomaterials. In this paper, the preparation of Fe_3O_4 magnetic nanoparticles and magnetic fluid was systematically investigated.
     (1) The traditional chemical co-precipitation was modified. The Fe_3O_4 nanoparticles were prepared without the protection of inert gas, which simplify the operation process. The reaction conditions such as molar ratio of iron ion, reaction temperature and reaction time were studied and the optimal condition was determined. To improve the crystal structure and tune the particle size, the Fe_3O_4 nanoparticles were treated with ultrasonic. The effect of the ultrasonic on the particle size, morphology, crystal structure and magnetic properties was investigated. To tune the particle size, the Fe_3O_4 nanoparticles were treated with hydrothermal condition. The effect of reaction temperature, time and pH value on the Fe_3O_4 nanoparticle was investigated. The results indicated that the pH value has great effect on the morphology of the Fe_3O_4 nanoparticle. At low pH, it is favorable to get larger spherical nanoparticles. While at high pH, octahedral nanoparticles were obtained.
     (2) Fe_3O_4 nanoparticles were prepared by modified co-precipitation method without of the protection of inert gas. OL was used to modify the Fe_3O_4 nanoparticles to improve the compatibility between the Fe_3O_4 nanoparticles and the carried liquid. Finally, stable conducting oil based magnetic fluid was obtained. The optimal preparation conditions such as reaction temperature, time and OL dosage were determined. The particle morphology, crystal structure and magnetic properties were investigated. The interaction between the Fe_3O_4 nanoparticles and OL was characterized using Fourier transform infrared (FT-IR) spectroscopy. The stability and magnetic properties were characterized using magnetic balance.
     (3) Silicon oil based magnetic fluid was prepared using TE and silicon surfactant EY as modifier. To improve the interaction between the Fe_3O_4 nanoparticles and the silicon surfactant, The Fe_3O_4 nanoparticles were firstly coated with a SiO2 layer by the hydrolysis of TE. Then the hydroxyl groups on the surface of the Fe_3O_4 nanoparticles were easily to react with the ethoxy groups on the silicon surfactant. The optimal amount of TE and silicon surfactant EY was determined. The properties of the Fe_3O_4 nanoparticles and the silicon oil based magnetic fluid were investigated. The results indicated that the Fe_3O_4 nanoparticles had well crystal structure, uniform particle size and high saturation magnetization. The silicon oil based magnetic fluid had strong magnetism, high stability and sheer thinning property.
     (4) KT which has good biocompatibility was used to modify the Fe_3O_4 nanoparticles and water-based magnetic fluid was prepared. The magnetic fluid was characterized by a series of methods. And the heating effect of the magnetic fluid in alternate current magnetic field was investigated. The effect of magnetic field strength, concentration of the magnetic fluid and the modification on the heating effect was studied.
引文
(1)白春礼.纳米科学与技术.云南:云南科技出版社, 1995.
    (2)洪若瑜.磁性纳米粒和磁性流体:制备与应用,北京:化学工业出版社, 2008.
    (3)稽均生.纳米技术的发展及趋势.航空精密制造技术, 1995, 31, 1-7.
    (4) Zhang D.H.; Li G..D.; Li J.X.; Chen J.S. One-pot synthesis of Ag-Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene, Chem. Commun., 2008, 3414-3416.
    (5) Zhou X.F.; Zhang D.Y.; Zhu Y.; Shen Y.Q.; Guo X.F.; Ding W.P, Chen Y. Mechanistic investigations of PEG-directed assembly of one-dimensional ZnO nanostructures, J. Phys. Chem. B, 2006, 110, 25734-25739.
    (6) Jain D.; Wilhelm R. An easy way to produce iron filled multiwalled carbon nanotubes, Carbon, 2007, 45, 602-606.
    (7) Pan Z.W.; Dai Z.R.; Wang Z.L. Nanobelts of semiconducting oxides. Science, 2001, 291, 1947-1949.
    (8) Gudiksen M.S.; Lauhon L.J.; Wang J.; Smith D.C.; Lieber C.M. Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, 2002, 417, 617-619.
    (9) Duan X.; Lieber C.M. General synthesis of compound semiconductor nanowires. Adv. Mater., 2000, 12, 298-302.
    (10) Srivastava R.; Brown J.Q.; Zhu H.G; McShane M.J. Stable encapsulation of active enzyme by application of multilayer nanofilm coatings to alginate microspheres. Macromol. Bioscience, 2005, 5, 717-727.
    (11)张立德,纳米材料,化学工业出版社,北京: 2000.
    (12) Haruta M.; DatéM. Advances in the catalysis of Au nanoparticles. Appl.Catal. A: Gen., 2001, 222, (1-2): 427-437.
    (13) Han M.Y.; Gao X.; Su J.Z.; Nie S.M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol., 2001, 19, 631-635.
    (14) Black T.; Raj K.; Tsuda S. Characterization of an ultra-low vapor pressure ferrofluid. J. Magn. Magn. Mater., 2002, 252, 39- 42.
    (15)周寿增,董清飞.超强永磁体,北京:冶金工业出版社, 2004.
    (16) Liang Q.; Hu X.F.; Li H.Q.; He X.X.; Wang X.Y; Zhang W. Enhancement of coercivity with reduced grain size in CoCrPt film grown by pulsed laser deposition, Appl. Surf. Sci., 2006, 252, 4628-4631.
    (17) Hu Z.H.; Zhu M.G.; Li W.; Lian F.Z. Effects of Nb on the coercivity and impact toughness of sintered Nd–Fe–B magnets. J. Magn. Magn. Mater., 2008, 320, 96-99.
    (18) Kim T.H.; Senanayake G..; Kang J.G.; Sohn J.S.; Rhee K. I.; Lee S.W.; Shin S.M. Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn-Zn ferrite nanoparticles, Hydrometallurgy, 2009, 96, 154-158.
    (19) Poddar P.; Wilson J.L.; Srikanth H.; Ravi B.G.; Wachsmuth J.; Sudarshan T.S. Grain size influence on soft ferromagnetic properties in Fe-Co nanoparticles, Mat. Sci. Eng. B. 2004, 106, 95-100.
    (20) Song F. Z.; Shen X. Q.; Xiang J.; Song H. J. Formation and magnetic properties of M-Sr ferrite hollow fibers via organic gel-precursor transformation process, Mater. Chem. Phys., 2010, 120, 213-216.
    (21) Dobrzański L.A.; and Drak M. Structure and properties of composite materials with polymer matrix reinforced Nd-Fe-B hard magnetic nanostructured particles, J. Mater. Process. Tech., 2004, 157, 650-657.
    (22) Lee Y.H.; Rho J.H.; Jung B.S. Preparation of magnetic ion-exchange resins by the suspension polymerization of styrene with magnetite, J. Appl. Polym. Sci., 2003, 89, 2058-2067.
    (23) LuoY.D.; Dai C.A.; Chui W.Y. Polystyrene/Fe3O4 Composite latex via miniemulsion polymerization-nucleation mechanism and morphology, J. Polym. Sci.: Part A: Polym.Chem., 2008, 46, 1014-1024
    (24) Yang X.Q.; Chen Y.H., Yuan R.X.; Chen G.H.; Blanco E.; Gao J.M.; Shuai X.T. Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells, Polymer, 2008, 49, 3477-3485.
    (25) Nagao D.; Yokoyama M.; Saeki S.; Kobayashi Y.; Konno M. Preparation of composite particles with magnetic silica core and fluorescent polymer shell, Colloid Polym. Sci., 2008, 286, 959-964.
    (26) Xu C.J.; Xu K.M.; Gu H.W.; Zheng R.K.; Liu H.; Zhang X.X.; Guo Z.H.; Xu B. Dopamine as A robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles, J. Am. Chem. Soc., 2004, 126, 9938-9939.
    (27) Zhong L.S.; Hu J.S.; Liang H.P.; Cao A.M, Song W.G.; Wan L.J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment, Adv. Mater., 2006, 18, 2426-2431.
    (28) Li Z.; Sun Q.; Gao M.Y. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4, Angew. Chem. Int. Ed., 2005, 44, 123 -126.
    (29) Samara G. A. Effect of pressure on the néel temperature of magnetite, Phys. Rev., 1969, 186, 577-580.
    (30) Weiss W.; Barbieri A.; Van Hove M.A.; Somorjsi G.A. Surface structure determination of an oxide film grown on a foreign substrate: Fe3O4 multilayer on Pt (111) identified by low energy electro diffraction, Phys. Rev. Lett., 1993, 71, 1848-1851.
    (31)李言荣,恽正中,曲新喜.电子材料导论,北京:清华大学出版社, 2001.
    (32) Schmidbauer E.; Keller R. Magnetic properties and rotational hysteresis of Fe3O4 andγ-Fe2O3 particles~250 nm in diameter, J. Magn. Magn. Mater., 1996, 152, 99-108.
    (33) Bandow S.; Kimura K.; Kon-no K. Magnetic properties of magnetite ultrafine particles prepared by microemulsion method, J. Appl. Phys., 1987, 26, 713-717.
    (34) Odenbach S. Ferro?uids-magnetically controlled suspensions, Colloid. Surfa. A: Physicochem. Eng. Aspects, 2003, 217, 171-178.
    (35) Holm C.; Weis J.J. The structure of ferrofluids: A status report, Curr. Opin. Colloid In. Sci., 2005, 10, 133-140.
    (36) Bacri J.C.; Perzynski R.; Shliomis M.I.; Burde G.I. Negative Viscosity effect in a magnetic ?uid, Phys. Rev. Lett., 1995, 75, 2128-2131.
    (37) Patel R.; Upadhyay R.V.; Mehta R.V. Viscosity measurements of a ferro?uid: comparison with various hydrodynamic equations, J. Colloid Interf. Sci., 2003, 263, 661-664.
    (38) Zubarev A.Yu.; Iskakova L.Yu. Rheological properties of ferro?uids with drop-like aggregates, Physica. A, 2007, 376, 38-50.
    (39) Józefczak A. Acoustic properties of PEG biocompatible magnetic fluid under perpendicular magnetic field, J. Magn. Magn. Mater., 2005, 293, 240-244.
    (40) Murashov V.V. Dielectric relaxation of chained ferroluids, J. Chem Physic., 2002, 116, 6731-6737.
    (41) Sun Y.; Kwok Y.C.; Lee P.F.P.; Nguyen N. T. Rapid amplification of genetically modified organisms using a circular ferrofluid-driven PCR microchip, Analytical and Bioanalytical Chemistry, 2009, 394, 1505-1508.
    (42) Volder M. De.; Reynaerts D. Development of a hybrid ferrofluid seal technology for miniature pneumatic and hydraulic actuators, Sensor. Actuat. A: Phys., 2009, 152, 234-240.
    (43) Vorobiev A.; Gordeev G..; Konovalov O.; Orlova D. Surface structure of sterically stabilized ferrofluids in a normal magnetic field: Grazing-incidence x-ray study, Phys. Rev. E, 2009, 79, 031403.
    (44) Moeser G.D.; Roach K.A.; Green W.H.; Laibinis P.E.; Hatton T.A. Water-based magnetic fluids as extractants for synthetic organic compounds, Ind. Eng. Chem. Res., 2002, 41, 4739- 4749.
    (45) Papell S.S. Low viscosity magnetic fluid obtained by colloidal suspension of magnetic particles. US 3215572, 1965.
    (46) Valenzuela R.; Fuentes M.C.; Parr C.; Baeza J..; Duran N.; Sharmad S.K.; Knobeld M.; Freer J. Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method., J. Alloy. Compd., 2009, 488, 227-231.
    (47)王全胜.;刘颖等.沉淀氧化法制备Fe3O4的影响因素研究.北京理工大学学报, 1994, 14, 200-205.
    (48) Tada M.; Hatanaka S.; Sanbonsugi H.; Matsushita N.; Abe M. Method forsynthesizing ferrite nanoparticles 30 nm in diameter on neutral pH condition for biomedical applications, J. Appl. Phys., 2003, 93, 7566-7668.
    (49)于文广.;张同来.;乔小晶.;张建国.;杨利.不同形Fe3O4纳米粒子的氧化沉淀法制备与表征,无机化学学报, 2006, 22, 1263-1268.
    (50) Deng H.; Li X.L.; Peng Q.; Wang X.; Chen J.P.; Li Y.D. Monodisperse magnetic single-crystal ferrite microspheres, Angew. Chem. Int. Ed., 2005, 44, 2782 -2785.
    (51) Zhang J.H.; Kng Q.H.; Lu W.L.; Liu H. Synthesis, characterization and magnetic properties of near monodisperse Fe3O4 sub-microspheres, Chinese Sci. Bull., 2009, 54, 2434-2439.
    (52) Liang, X.; Wang X.; Zhuang J.; Chen Y.T.; Wang Di.S.; Li Y.D. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals, Adv. Funct. Mater., 2006, 16, 1805-1813.
    (53) Zhou Z.H.; Wang J.; Liu X.; Chan H.S.O. Synthesis of Fe3O4 nanoparticles from emulsions, J. Mater. Chem., 2001, 11, 1704-1709.
    (54) Lee Y.J.; Lee J.O.; Bae C.J.; Park J.G., Noh H.J.; Park J.H.; Hyeon T.H. Large scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreacor under reflux conditions, Adv. Funct. Mater., 2005, 15, 503-508.
    (55) Zhang D.E.; Tong Z.W.; Li S.Z.; Zhang X.B. Ying A.L. Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion, Mater. Lett., 2008, 62 4053-4055.
    (56) Sun S.; Zeng H., Robinson D.B. Monodisperse MFe2O4 (M=Fe,Co,Mn) nanoparticles, J. Am. Chem. Soc., 2004, 126, 273-279.
    (57) Park J.; An K.; Hwang Y.; park J.G.; Noh Ha.J.; Kim J.Y.; Park J.H.; Hwang N.M.; Hyeon T.H. Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. mater., 2004, 3, 891-895.
    (58) Li H.; Sun Q.; Gao M.Y. Preparation of Water-Soluble Magnetite nanocrystals from hydrated ferric salts in 2-Pyrrolidone: mechanism leading to Fe3O4, Angew. Chem. Int. Ed., 2005, 44,123 -126.
    (59) Nakatsuka K.; Jeyadevan B.; Neveu S.; Koganezaw H. The magnetic ?uid for heat transfer applications, J. Magn. Magn. Mater., 2002, 252, 360-362.
    (60) Volder M.De.; Reynaerts D. Development of a hybrid ferrofluid seal technology for miniature pneumatic and hydraulic actuators, Sensor. Actuat. A: Phys., 2009, 152, 234-240.
    (61) Mitamura Y.; Arioka S.; Sakota D. Application of a magnetic fluid seal to rotary blood pumps, J. phys.: condensed mater., 2008, 20, 4145-4149.
    (62) Urreta H.; Leicht Z.; Sanchez A.; Agirre A.; Kuzhir P.; Magnac G. Hydrodynamic bearing lubricated with magnetic fluids, J. Phys.: Conf. Ser., 2009, 149, 012113.
    (63) Odenbach S. Ferrofluids: magnetically controllable liquids. PAMM, Proc. Appl. Math. Mech., 2002, 1, 28-32.
    (64) Ravaud R.; Lemarquand G. Design of ironless loudspeakers with ferrofluid seals: analytical study based on the coulombian model, Prog. Electromagnetics Res., B, 2009, 14, 285-309.
    (65) Zhou G.Y.; Sun L.Z. Smart colloidal dampers with on-demand controllable damping capability, Smart Mater. Struct., 2008, 17, 055023.
    (66) Lee J.H.; Jun Y.W.; Yeon S.I.; Shin J.S.; Cheon J. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma, Angew. Chem. Int. Ed., 2006, 45, 8160 -8162.
    (67) Hu F.Q.; Wei L.; Zhou Z.; Ran Y.L.; Li Z.; Gao M.Y. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer, Adv. Mater., 2006, 18, 2553-2556.
    (68) Sonvico F.; Mornet S.; Vasseur S.; Dubernet C.; Jaillard D.; Degrouard J.; Hoebeke J.; Duguet E.; Colombo P.; Couvreur P. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments, Bioconjugate Chem., 2005, 16, 1181-1188.
    (69) Zhang L.Y.; Gu H.C.; Wang X.M. Magnetite ferro?uid with high specific absorption rate for application in hyperthermia, J. Magn. Magn. Mater., 2007, 311, 228-233
    (70) Sivakumar M.; Gedanken A. Insights into the sonochemical decomposition of Fe(CO)5: theoretical and experimental understanding of the role of molarconcentration and power density on the reaction yield, Ultrason. Sonochem., 2004, 11, 373-378.
    (71) Suslick K.S.; Flint E.B.; Grinstaff M.W.; Kemper K.A. Sonoluminescence from metal carbonyls, J. Phys. Chem., 1993, 97, 3098-3099.
    (72) Mukh-Qasem R. Abu.; Gedanken A. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles, J. Colloid Interf. Sci., 2005, 284, 489-494.
    (73) Perkas N.; Amirian G.; Rottman C.; Vega F.de la.; Gedanken A. Sonochemical deposition of magnetite on silver nanocrystals, Ultrason. Sonochem., 2009, 16 132-135.
    (74) Burda C.; Chen X.B.; Narayanan R.; El-Sayed M.A. Hemistry and properties of nanocrystals of different shapes, Chem. Rev., 2005, 105, 1025-1102.
    (75) Hu C.Q.; Gao Z.H.; Yang X.R. Fabrication and magnetic properties of Fe3O4 octahedra, Phys. Lett., 2006, 429, 5 513-5517.
    (76) Liu X.M.; Fu S.Y.; Xiao H.M. Fabrication of octahedral magnetite microcrystals, Mater. Lett., 2006, 60, 2979-2983.
    (77) Wang Z.F.; Shen B.; Aihua Z.; He N, Synthesis of Pd/Fe3O4 nanoparticle-based catalyst for the cross-coupling of acrylic acid with iodobenzene, Chem. Eng. J., 2005, 113, 27-34.
    (78) Chang Q.; Zhu L.H.; Yu C.; Tang H.Q.; Chang Q.; Zhu L.H.; Yu C.; Tang H.Q. Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles, J. Lumin., 2008, 128, 1890-1895.
    (79) Li P.; Zhu A.M.; Liu Q.L.; Zhang Q.G. Fe3O4/poly(N-Isopropylacrylamide)/ KT composite microspheres with multiresponsive properties, Ind. Eng. Chem. Res., 2008, 47, 7700-7706.
    (80) Hong R.Y.; Li J.H.; Li H. Z.; Ding J.; Zheng Y.; Wei D.G. Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids, J. Magn. Magn. Mater., 2008, 320, 1605-1614.
    (81) Redl F. X.; Black C.T.; Papaefthymiou G.C.; Sandstrom R.L.; Yin M.; Zeng H.; Murray C.B.; O’Brien S. P. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale, J. Am. Chem. Soc., 2004, 126,14583-14599.
    (82) Yamaura M.; Camilo R.L.; Sampaio L.C.; Macedo M.A.; Nakamura M.; Toma H.E. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles, J. Magn. Magn. Mater., 2004, 279, 210-217.
    (83) Tubio G.; PicóG.A.; Nerli B. B. Extraction of trypsin from bovine pancreas by applying polyethyleneglycol/sodium citrate aqueous two-phase systems, J. Chromatogr. B, 2009, 877, 115-120.
    (84) Rosensweig R. E. Ferrohydrodynamics, Dover Publications, Inc, NY, 1997.
    (85)谢凤,郑发正,于烨平.合成基础油的性能与应用,润滑与密封, 2003, 90-92.
    (86) Zhao Y.X.; Zhuang L.; Shen H.;. Zhang W.; Shao Z.J. Study of polydiethylsiloxane-based ferrofluid with excellent frost resistance property, J. Magn. Magn. Mater., 2009, 321, 377.
    (87) Dailey J.P.; Phillips J.P.; Li C.; Riffle J.S. Synthesis of silicone magnetic fluid for use in eye surgery, J. Magn. Magn. Mater., 1999, 194, 140-148.
    (88) Borduz L.; Tsuda S.; Hirota Y. Ferrofluid composition and process, US Patent 6277298 B1, 1982.
    (89) Raj, K.; Rosensweig R.E.; Aziz L.M. Stable polysiloxane ferrofluid compositions and method of making same, US 5851416, 1998.
    (90) Wilson K.S.; Goff J.D.; Rifle J.S.; Harris L.A.; Pierre T.G.St, Polydimethylsiloxane-magnetite nanoparticle complexes and dispersions in polysiloxane carrier ?uids, Polym. Adv. Technol., 2005, 16, 200-211.
    (91) Kobayashi Y.; Horie M.; Konno M.; Rodríguez-González B.; Liz-Marzán L.M. Preparation and properties of silica-coated cobalt nanoparticles, J. Phys. Chem. B, 2003, 107, 7420-7425.
    (92) Zhang E.; Zou C.; Zeng S.Y. Preparation and characterization of silicon substituted hydroxyapatite coating by a biomimetic process on titanium substrate, Surf. Coat. Tech., 2009, 203, 1075-1080.
    (93) Huang C.H.; Wang N.F.; Tsai Y.Z.; Liu C.C.; Hung C.I.; Houng M.P. The formation of a SiOx interfacial layer on low-k SiOCH materials fabricated in ULSI application, Mater. Chem. Phys., 2008, 110, 299-302.
    (94) Liu H.; Jiang E.Y.; Bai H.L.; Zheng R.K.; Zhang X.X. Large room-temperature spin-dependent tunneling magnEYresistance in polycrystalline Fe3O4 films, Appl. Phys. Lett., 2003, 83, 3531-3538.
    (95) Zhang D.E.; Zhang X.J.; Ni X.M.; Song J.M.; Zheng H.G. Fabrication and characterization of Fe3O4 octahedrons via an EDTA-Assisted Route, Cryst. Growth Des., 2007, 7, 2117-2119.
    (96) Feddes B.; Wolke J.G.C.; Vredenberg A.M.; Jansen J. A. Initial deposition of calcium phosphate ceramic on polyethylene and polydimethylsiloxane by magnetron sputtering deposition: the interface chemistry, Biomaterials, 2004, 25, 633-639.
    (97) Xu Z.C.;. Hou Y.L.; Sun, S.H. J. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties, J. Am. Chem. Soc., 2007, 129, 8698-8699.
    (98) Seyssiecq I.; Marrot B.; Djerroud D.; Roche N. In situ triphasic rheological characterisation of activated sludge, in an aerated bioreactor, Chem. Eng. J., 2008, 142, 40-47.
    (99) Giri J.; Pradhan P.; Sriharsha T.; Bahadur D. Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications, J. Appl. Phys., 2005, 97, 10Q916.
    (100)夏启胜,耿传营,唐劲天.磁感应治疗肿瘤新技术研究现状,中国微创外科杂志, 2007, 7, 1017-1022.
    (101) Hu Y.; Ding Y.; Ding D.; Sun M.J.; Zhang L.Y.; Jiang X.Q.; Yang C.Z. Hollow KT/poly(acrylic acid) nanospheres as drug carriers, Biomacromolecules, 2007, 8,1069-1076.
    (102) Guo T.Y.; Xia Y.Q.; Wang J.; Song M.D.; Zhang B.H. KT beads as molecularly imprinted polymer matrix for selective separation of proteins, Biomaterials, 2005, 26, 5737-5745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700