Fe_3O_4磁性纳米颗粒及其相关结构材料的调控制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究背景是肿瘤磁过热治疗中磁性材料的制备。这需要材料具有良好的生物相容性,因此选择生物毒性较低的Fe3O4材料比较合理的;同时材料的磁热转化性能将会直接影响治疗的效果,需要对制备的材料进行调控。因此实现Fe3O4颗粒的调控制备及发展与其相关的一些纳米结构材料对肿瘤磁过热治疗的研究将会是一个良好的支撑作用。
     首先用溶胶-凝胶法制备Fe3O4磁性纳米颗粒。论文中讨论了该方法制备Fe3O4磁性颗粒时不同起始条件对制备得到产物的影响,发现可以制备粒径在40nm~1200nm范围内的Fe3O4磁颗粒,从而实现了不同粒径大小的铁氧体颗粒的可控性制备。用X-射线衍射(XRD)、X-透射电子显微镜(TEM)、电子衍射(ED)对不同大小的颗粒进行了结构和形貌的表征,此外还运用了振动样品磁强计(VSM)对其进行磁学特性测量。结果表明:这种方法能够制备不同粒径的立方尖晶石结构的Fe3O4磁性颗粒,并且粒径不同的Fe3O4磁性颗粒形貌、磁性均有所不同。
     此外,我们还通过KNO3氧化Fe(OH)2凝胶法制备Fe3O4过程中外加不同强度的磁场成功实现了产物Fe3O4磁性颗粒以及颗粒链的尺寸调控、形貌调控与链长的调控。对Fe3O4磁性颗粒链的磁学性质表征显示了一维有序结构的磁学各向异性,对该性质起因进行的分析表明是形状各向异性与链中颗粒的多畴结构共同作用的结果。
     最后,通过在制备Fe3O4颗粒的过程中加入L-谷氨酸成功地制备了Fe3O4空心球,并且在磁场的诱导下,能够制备出Fe3O4空心球一维的链状结构材料。对Fe3O4空心球及其一维结构材料进行了TEM、SEM、XRD、IR及VSM表征分析,通过对表面形貌、官能团信息和磁学特性的分析,有助于更好地研究其生长机理。
The research background of this paper is based on the preparation of magnetic materials for tumour therapy by magnetic fluid hyperthermia(MFH).The materials in this application are required to be biocompatible, of which the Fe3O4 with low biotoxicity are rational candidates. At the same time, the heating ability of the iron oxide nanoparticles is due to the synthesis route and is directly related with the efficiency of the therapy . So a tunable synthesis route of related iron oxide nanoparticles is necessary. Further, a research of the tunable synthesis and the development of related iron oxide nanoparticles are of importance to the research of MFH therapy.
     Firstly,we have prepared magnetite nanoparticles by sol-gel method. And in this paper, we will talk about the influence of the different original concentration of the solution on the production. We found that using this method we could prepare the magnetite nanoparticles with different diameters from 40nm to 1200nm . The obtained samples were characterized by Transmission Electron Microscopy (TEM) and X-Ray Powder Diffraction (XRD) in structure and appearance, and by Vibrating Sample Magnetmeter(VSM) in magnetism. These data show that we can use this method to fabricate the particles which are cubic spinel geometry; orbicular, symmetrical in size, and they have different diameters; the appearance and magnetism of them are different with each other.
     Secondly,one-dimensional magnetite chains of spheres with different radii and lengths were prepared by aging ferrous hydroxide gel with KNO3 under different external magnetic fields which induced the ultra-fine magnetite particles to combine into chain structure. The magnetite particle size、morphology and the chain length could be adjusted by varying the field intensity. The hysteresis loops were measured in different directions The result show that the ordered 1D pattern behaves a uniaxial anisotropy originating from the effects of shape anisotropy and the multi-domain of the each Fe3O4 particle.
     Finally, when preparing the magnetite nanoparticles ,we add the L-Glu in the solution .By this method, we can get the hollow microspheres of Fe3O4 . In addition, we can also get the one-diamension structure materials of Fe3O4 hollow microspheres under different external magnetic fields which can induce the hollow microspheres to combine into chain structure. The abtained samples were characterized by TEM、SEM、XRD、IR and VSM.And by analysing its morphology and magnetic characteristic ,we can study its growth mechanism better.
引文
1. Van Vleck J.H. The Theory of Electric and Magnetic Susceptibilities. Oxford University Press: London, 1932.
    2. Smit J., Wijn H.P.J., Ferrites. Philips Technical Library., 1959.
    3. 钟文定,铁磁学,人民教育出版社,1987, 中册, 423.
    4. Sattler K,Mühlbach J,Recknagel E,Phys,Rev.Lett.,1991,65,207.
    5. Pankhurst Q.A.., Connolly J., Jones S.K., Dobson J., Applications of magnetic nanoparticles in biomedicine. J.Phys.D: Appl.Phys. 2003, 36,R167.
    6. Tartaj P., Morales M.P., Veintemillas-Verdaguer S.,et al. The preparation of magnetic nanoparticles for application in biomedicine. J.Phys.D:Appl.Phys. 2003, 36,R182.
    7. Berry C.C., Curtis A.S.G. Functionalisation of magnetic nanoparticles for applications in biomedicine. J.Phys.D:Appl.Phys. 2003,36,R198.
    8. Ibrahim A,Couvreur P,Roland M. New magnetic drug carrier. Journal of Pharmacy and Pharmacology(England),1983,35:59-61.
    9. H?feli U.,Schütt W.,Teller J. Scientific and Clinical Applications of Magnetic Carriers. Plenum Press: New York,1997.
    10. Christopher H.D., Hui-Chen S., Wen-Jang C., et al. Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J.Immunological Methods, 2001,256,89.
    11. Hergt R., Andra W., d’Ambly C.G., Higer I., et al. Physical limits of hyperthermia using magnetite fine particles. IEEE.Trans.Mag. 1998,34,3745.
    12. Jinquan C.,Yongxian W.,Junfeng Y.,et al. Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J.Magn.Magn. Mater., 2004,277,165.
    13. Xin X.,Xu Z.,Huan Z.,Depu C., Weiyang F. Preparation and application of surface-coated superparamagnetic nanobeads in the isolation of genomic DNA. J.Magn.Magn.Mater. 2004,227,16.
    14. Wolfgang J.P.,Daniele G.,Teresa P.,Daniela Z.,et al. Biological applications of colloidal nanocrystals. Nanotechnology, 2003,14,R15.
    15. Patrick S. D.,Jér?me B.,Aurélien B.,Jean-Louis V. Self-assembled magetic matrices for DNA separation chips. Science, 2002,295,2237.
    16. Nam J.M.,Stoeva S.I.,Mirkin C.A. Bio-bar-code based DNA detection with PCR-like sensitivit. J.Am.Chem.Soc., 2004,126,5932.
    17. Josephson L.,Perez J.M.,Weissleder R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew.Chem.Int.Ed. 2001,40,3204.
    18. Miller M.M.,Sheehan P.E.,Edelstein R.L.,et al. A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J.Magn.Magn.Mater., 2001,225,138.
    19. Ma?té L.,Nadia C.,Ching-Hsuan T.,et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology, 2000,18,410.
    20. Cornell R.M.,Schertmann U. Iron oxides in the labboratory : preparation and characterization. VCH, Weinheim, 1991.
    21. Sugimoto T., Matijevic E. Formation of uniform sphericla. J.Colloid Interface Sci., 1980,74,227.
    22. Tada M.,Hatanaka S.,Sanbonsugi H.,et al. Method for synthesizing ferrite nanoparticles ~30 nm in diameter on neutral pH condition for biomedical applications. J.App.Phys., 2003,93,7566.
    23. Dong-Hwang C.,Yuh-Yuh C. Synthesis of strontium ferrite ultrafine particles using microemulsion processing. J.Colloid Interface Sci., 2001,236,41.
    24. Shah D.O.,Pillai V. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J.Magn.Magn.Mater., 1996,163,243.
    25. Wang J.,Chong P.F.,Ng S.C.,Gan L.M. Microemulsion processing of manganese zinc ferrites. Mater.Lett., 1997,30,217.
    26. Yaccob I.I.,Nunes A.C.,Bose A. Magnetic nanoparticles produced in spontaneous cationic-anionic vesicles: room temperature synthesis and characterization. J.Colloid Interface Sci., 1995,171,73.
    27. Harrison P.M.,Arosio P. Biochimica et Biophysica Acta, 1996,1275,161.
    28. Meldrum F.C.,Heywood B.R.,Mann S. Science, 1992,257,522.
    29. Pardoe H.,Chua-anusorn W.,Pierre St.,et al. Structural and magnetic properties of nanoscale iron oxide pariticles synthesized in the presence of dextran or polyvinyl alcohol. J.Magn.Magn. Mater., 2001,225,41.
    30. Oster J.,Parker J.,Brassard L. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences. J.Magn.Magn.Mater., 2001,225,145.
    31. Ngo A.T.,Pileni M.P. Cigar-shaped ferrite nanocrystals: Orientation of the easy magnetic axes. J.App.Phys., 2002,92,4649.
    32. Shenoy S.D.,Joy P.A.,Anantharaman M.R. Effect of mechanical milling on thestructural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J.Magn.Magn.Mate., 2004,269,217.
    33. Chen Q.,Rondinone A.J.,Bryan C.,et al. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J.Magn.Magn.Mater., 1999,194,1.
    34. Cornell R.M.,Schertmann U. Iron oxides in the laboratory: preparation and characterization. VCH: Weinheim, 1991.
    35. Santra S.,Tapec R.,Theodoropoulou N.,et al. Langmuir, 2900,17,2001.
    36. Elmore W.C. Ferromagentic colloid for studying magnetic structures. Phys.Rev., 1938,54,309.
    37. Yamaura Y.,Ito K.,Katsura T. J.Chem.Soc.D. Trans., 1983,189.
    38. Farley K.J.,Dzombak D. A.,Morel F.M.M. J.Colloid Interface Sci., 1985,106,226.
    39. Sugimoto T. Fine particles: Synthesis, Characterization and Mechanism of Growth. Marcel Dekker: New York, 2000.
    40. LaMer V.K.,Dinegar R.H. J.Am.Chem.Soc., 1950,72,4847.
    41. Hyeon T.,Lee S.S.,Park J.,et al. J.Am.Chem.Soc., 2001,123,12798.
    42. Guo Q.,Teng X.,Rahman S.,et al. J.Am.Chem.Soc., 2003,125,630.
    43. Hyeon T.,Chung Y.,Park L.,et al. J.Phys.Chem.B., 2002,106,6831.
    44. Shouheng S.,Hao Z.,David B.R.,et al. J. Am.Chem.Soc., 2004,126,273.
    45. Khalafalla S.E., Reimers G.W., IEEEE Trans. Magnetics, 1980,16,178.
    46. Gribanoc N.M.,Bibik E.E.,Buzunov O. V.,et al. J.Magn.Magn.Mater., 1990,85,7.
    47. Babes L.,Denizot B.,Tanguy G.,et al. J. Colloid Interface Sci., 1999,212,474.
    1. Sugimoto T,Matijevic E. Formation of uniform spherical magnetic particles by crystallization from ferrous hydroxide gels. J Colloid Interf Sci,1980,74(1):227-243.
    2. 沈忠,王果庭.《胶体与表面化学》(第二版).北京:化学工业出版社,1997,18-19.
    3. Rashi Mathur, D.R. Sharma, S.R. Vadera et al. Room temperature synthesis of nanocomposites of Mn-Zn ferrites in a polymer matrix[J]. NanoStructured Materials,1999,11(5):677-680.
    4. Tadao Sugimoto, Egon Matijevic. Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels[J]. Journal of Colloid and Interface Science, 1980,74:227-242.
    5. Dunlop D.J. The rock magnetism of fine particles[J]. Phys.Earth Planet.Inter. 1981,26:1-26.
    6. 冯端等.《金属物理学(第四卷)》.北京:科学出版社,2000,537-538.
    7. Tang J., Myers M., Bosnick K. A., et al. Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J. Phys. Chem. B,107,2003, 7501.
    1. Xia Y.,Yang P.,Sun Y.,Wu Y,Mayers B.,Gates B.,Yin Y.,Kim F.,Yan H. Adv.Mater.,2003,15,353.
    2. Puntes V.F.,Krishnan K.M.,Duan X.F.,Cui,Y.,Lieber C.M. Science.,2001,293,1445.
    3. Wang J.F.,Gudiksen D.M.,Hultgren A.,Bauer L.A.,Searson P.C., Mayer G.J.,Reich.D.H. J.Appl.Phys.,2002,91,8549.
    4. Tanase M.,Silevitch D.M.,Hultgren A.,Bauer L.A.,Searson P.C.,Meyer G.J.,Reich D.H. J.Appl.Phys.,2002,91,8549.
    5. Ge S.H.,Li C.,Ma X.,Li W.,Xi L.,Li C.X. J.Appl.Phys.,2001,90,509.
    6. Melissa S.S.,Tan,L.S. Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates., Adv.Funct.Mater.,2003,13,393.
    7. Urbach A.R.,Love J.C.,Prentiss M.G.,Whitesides G.M. Sub-100nm confinement of magnetic nanoparticles using localized magnetic field gradients., J.Am.Chen.Soc., 2003,125,12704.
    8. Mao C.,Solis D.J.,Reiss B.D.,Kottman S.T.,Sweeney R.Y.,Hayhurst A.,Georgiou G.,Iverson B.,Belcher A.M. Science., 2004,303,213.
    9. Salem A.K.,Chao J.,Leong K.W.,Searson P.C. Adv.Mater. 2004,16,268.
    10. Philipse A.P.,Mass D. Langmuir, 2002,18,9977.
    11. Salem A.K.,Chao J.,Leong K.W.,Searson P. C. Adv. Mater., 2004,16,268.
    12. Hua Z.,Zhi L.,Mirkin C. A. Dip-pen nanolithography-based methodlogy for preparing arrays of nanostructures functionalized with oligonucleotides. Adv.Mater. , 2002,14,1472.
    13. Blakemore R. Science., 1975,190,377.
    14. Niu H.,Chen Q.,Ning M.,Jia Y.,Wang X. J.Phys.Chem.B. 2004,108,3996.
    15. Wang J.,Chen Q.,Zeng C.,Hou B.Y. Adv.Mater., 2004,16,137.
    16. Ngo A. T.,Pileni M.P. J.Appl. Phys.,2002, 92, 4649.
    17. Zhai Ya,Studies of magnetic properties on unpatterned and patterned magnetic thin and ultrathin films. PhD Thesis, Southeast University, 2003.
    1. Caruso.F. [J]. Chem.Eur. 2000,6(3):413-419.
    2. Wilcox D.L.,Berg M.,Bernat T. et al. Hollow and Solid Spheres and Microspheres In Science and Technology Associated with Their Fabrication and Application. Pittsburgh:Materials Research Society Proceedings,1995,1-13.
    3. Schart W. [J]. Adv. Mater.,2000,12(24):1899-1908.
    4. Liu S Y,Weaver J V,Save M,et al. [J].Langmuir,2002,18:8350-8357.
    5. Caruso F,Caruso R A,Mohwald H. [J]. Science,1998,282:1111-1114.
    6. Bamnolker H,Nitzan B,Gura S,et al. [J]. Mater.Sci.Lett.,1997,16:1412-1413.
    7. Schmidt H T,Ostafin A E. [J]. Adv.Mater., 2002,14(7):532-535.
    8. Braun P V,Stupp S I. [J]. Mater.Res.Bull.,1999,34:463-469.
    9. Liu T,Xie Y,Chu B. [J]. Langmuir,2000,16(3):9015-9022.
    10. Schacht S,Huo Q,Martin I G,et al. [J]. Science,1996,273:768-771.
    11. Silvano D,Krol S A,Diaspro A,et al. [J]. Angew.Chem.Int.Ed.,2003,263:467-472.
    12. Yang Z,Niu Z,Lu Y,et al. [J]. Angew. Chem. Int. Ed.,2003,42:1943-1945.
    13. Bamnolker H,Nitzan B,Gura S,et al. [J]. Mater. Sci. Lett.,1997,16:1412-1415.
    14. Zhang G,Yu Y,Chen X,et al. [J]. J. Colloid Interface Sci.,2003,263:467-472.
    15. Niu Z,Yang Z,Hu Z,et al.[J]. Adv. Funct. Mater.,2002,13(12):949-954.
    16. Yin J,Qian X,Yin J,et al.. [J]. Inorg. Chem. Commun.,2003,6:942-945.
    17. Chah S,Fendler J H,Yi J J. [J]. Colloid Interface Sci.,2002,250:142-148.
    18. Shiho H,Kawahashi N J. [J] Colloid Interface Sci.,2000,226:91-97.
    19. Yu C,Tian B,Fan J,et al. [J]. Chem. Lett.,2002,1:62-63.
    20. Thurmond K B,Kowalewski T,Wooley K L. [J]. J. Am. Chem. Sco.,1997,119(28):6656-6665.
    21. Zhixiang Wei,Meixiang Wan. [J]. Adv. Mater.,2002,14(18):1314-1317.
    22. Tartaj P,Gonzalez-Carreno T,Serna C J. [J]. Adv.Mater.,2001,13(21):1620-1624.
    23. Bruinsma P J,Kim A Y,Liu J,et al. [J]. Chem.Mater.,1997,9(11):2507-2512.
    24. Iida M,Sasaki T,Watanab M. [J]. Chem.Mater.,1998,10(12):3780-3782.
    25. Hu Y,Chen J,Chen W,et al . [J]. Adv.Mater.,2003,15(9):726-729.
    26. Li C,Yang X,Yanf B,et al. [J]. Eur.J.Inorg.Chem.,2003(19):3534-3537.
    27. Bao J,Liang Y,Xu Z,et al. [J]. Adv.Mater.,2003,15(20):1832-1835.
    28. Zhang D,Qi L,Ma J,et al. [J]. Adv.Mater.,2002,14(20):1499-1502.
    29. Zhu J,Xu S,Wang H,et al. [J]. Adv.Mater.,2003,15(2):156-159.
    30. Rana R K,Mastai Y,Gedanken A. [J]. Adv.Mater.,2002,14(19):1414-1418.
    31. Park M K,Xia C,Caruso F,et al. [J]. Langmuir,2001,17(24):7670-7674.
    32. Caruso R A,Susha A,Caruso F. [J]. Chem.Mater.,2001,13:400-409.
    33. Liang Z,Susha A,Caruso F. [J]. Chem.Mater.,2003,15(16):3176-3183.
    34. Sugimoto,T.;Matijevic,E. [J]. J.colloid Interface Sci.74,1980,227.
    35. Maria.Mikhaylova,Do Kyung Kim,et al. [J].Chem.Mater.,2004,26.2344-2354.
    36. Ngo,A.T.;Pileni,M.P.J.Appl.Phys. 92,2002,4649.
    37. Zhai Ya, Studies of magnetic properties on unpatterned and patterned magnetic thin and ultrathin films.,PhD Thesis, Southeast University,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700