计入大气阻力的电动力绳系系统的稳定性分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动力绳系系统(Electro-dynamic Tether, EDT)在航天航空中的应用十分广泛,主要可用于利用电动力绳索以高于燃料电池的效率发电,实现太空站轨道的维持;提供可以随意控制的微重力环境;对空间站的有效载荷以及日益严重的太空垃圾进行有效回收与处理;利用动量交换原理来改变空间飞行器的轨道;进行多种太空物理实验研究等。为了充分利用地磁场的作用,电动力绳系系统一般运行在近地轨道。因此这类系统在运行过程中受大气摄动影响显著。本文对计入大气阻力的电动力绳系系统的稳定性分析与控制进行了深入研究,具体工作和结论如下:
     (1)给出了电动力绳系系统的轨道要素以及其工作原理,以及建立动力学模型所需要的坐标系和它们之间的转化关系。
     (2)详细分析了影响大气阻力的各种因素,如大气的阻力系数,大气密度,卫星的轨道高度等。特别值得一提的是,大气密度本身又是一个非常复杂的变量,受地心纬度、轨道高度、季节变化以及昼夜变化等多种因素的影响。通过计算仿真分别得到各因素对大气阻力的影响程度。分析结果表明,影响大气阻力的因素之间是相互耦合的关系。
     (3)利用拉格朗目方法分别建立了电动力绳系系统的二维和三维动力学模型,研究了两类方程的稳定性状态。广义力涉及到地球中心引力、电磁力、大气阻力。计算结果表明,大气阻力的摄动作用使原本可以维持自平衡状态的二维电动力绳系系统失去了稳定性;三维电动力绳系系统在轨道平面内外的运动相互耦合,系统在平面内受到初始扰动时,并不会引起平面外的运动,但是系统在平面外受到初始扰动时,将会引起平面内外的耦合运动;大气阻力的主要分量与系统的轨道速度反向,因此主要影响系统的平面内运动,而对平面外运动的影响并不大;随着绳索长度的增加,无论是绳索的平面内角还是平面外角的摆角幅度都有明显衰减的趋势,这是大气阻力和电磁力共同作用的结果;卫星轨道高度的增加,会使绳索的平面内角运动的发散趋势明显减小。因为随着系统轨道高度的增加,大气阻力作用减弱。
     (4)对二维电动力绳系系统引入了以电流为反馈量的反馈控制方法进行控制,控制结果表明,该控制方法是有效的。
The electro-dynamic tethered (EDT) system is widely used in astronautics and aeronautics, such as, it can be mainly used to retain the orbit of space station using the electro-dynamic tether to generate power which is higher effcient than the fuel cell; provide the micro-gravity environment freely; recycle the useful loads of the space station and remove the growing space debris effectively; change the orbit of spacecraft based on the principle of momentum exchange; do experiments in the microgravity field and so on. To make full use of the role of the geomagnetic field, the EDT system generally runs in near-Earth orbit. This kind of system is perturbed by the atmosphere significantly during flying. An intensive study of the analysis and control of the electro-dynamic tethered satellite system considering the atmospheric drag is done in this thesis. The contents of research work are as follows,
     (1) The orbital elements and operating principle of the EDT are introduced, and coordinate frames, which are used to establish the dynamic model, and the transformation of their relations are presented.
     (2) The various influence factors of atmospheric drag, for instance, the atmospheric drag coefficient, the atmospheric density, the height of the satellite's orbit and so on, are analyzed in detail. It is particularly mentioned that the atmospheric density is a complex variable, which are influenced by the geocentric latitude, the orbit altitude, the seasonal variation and the diurnal variation and etc. The atmospheric drags under the influence of various factors are obtained by numerical simulation. The analysis results show that all influence factors of the atmospheric drag couple with each other.
     (3) The two-dimension and three-dimension governing equations of the electro-dynamic tethered satellite system are derived using the Lagrangian method, and the stability states of the two equations are studied. The generalized forces include the gravity of the Earth, the electromagnetic force and the atmosphere drag. The calculation results of two-dimensional EDT system show that the self-balancing system will lose its stability because of the atmospheric drag. The analysis of three-dimensional model shows that there is a coupling between the in-plane motion and the out-of-plane motion. The system disturbed in the plane will not produce the out-of-plane motion. However, when the system is disturbed out of the plane, the in-plane motion will be caused. The atmospheric drag mainly influences on the in-plane motion, but not the out-of-plane motion of the system, because it is reverse with the orbital speed of the system. As the length of the tether increases, the swing angles of both the in-plane motion and the out-of-plane motion of the system are obviously weakened due to the disturbance both the atmospheric drag and electromagnetic force. The divergent trend of the in-plane motion of the system is substantially reduced because of the increasing of satellite orbit height because the atmospheric drag is decreased.
     (4) The current feedback control method is introduced to the two-dimensional model of the EDT system. The control results show that this control method is effective.
引文
[1]Cosmo M, Lorenzini E. Tethers in space handbook(3rd ed).Washington DC, NASA,1997.
    [2]Modi V, Lakshmanan P, Misra A. Dynamics and control of tethered space-craft:A brief overview. AIAA Dynamics Specialist Conference, Long Beach, California, United States,1990.
    [3]Kumar K D. Review of dynamics and control of non-electrodynamic tethered satellite systems. Journal of Spacecraft and Rockets,2006,43(4):705-720.
    [4]"The life of Konstantin Eduardovitch Tsiolkovsky". URL:http://www. informatics.org/museum/tsiol. html.
    [5]Tethers in space handbook. National Aeronautics and Space Administration office of space flight advanced programs NASA headquarters Code MT Washington, D. C.20546,1986.
    [6]Emico C. A Three-mass tethered system for micro-gravity applications. J.Guidance.1987,10(3).
    [7]Kyroudis G, Conway B. Advantages of tether release of satellites from elliptic orbits. J. Guidance,1988,11(5).
    [8]Yuuki I, Satomi K, Seishiro K. Study on electro-dynamic tether system for space debris removal. Acta Asronautica,2004,55:917-929.
    [9]Satomi K, Takeshi M, Frmiki S, et al. Precise numerical simulations of electrodynamic tethers for an active debris removal. Acta Astronautica,2006,59 (1-5):139-148.
    [10]Vanneroni G, Dobrowolny M, Venuto F. Deorbiting with electrodynamic tethers: Comparison between different tether configurations. Space Debris,2001,1: 159-172.
    [11]Corsi J, less L. Stability and control of electrodynamic tethers for de-orbiting applications. Acta Astronautica,2001,48(5-12):491-501.
    [12]Holger G, Frank Z, Steffen B, et al. Adaptive neural control of the deployment procedure for tether assisted re-entry. Aerospace Science and Technology,2004,8: 73-81.
    [13]Thomas G, Edward L, Lee O. Tether power generator for earth orbiting satellites. United States:US, No 4,923,151B1.1990.
    [14]David J, Mattew P. On the performance of a motorized tether using a ballistic launch method.55th International Astronautical Congress, Canada:Vancouver, 2004.
    [15]Spencer W, Matthew P. Investigating the use of motorized tethers for payload orbital transfer. AIAA-2000-4529.
    [16]Moon & Mars orbiting spinning tether transport architecture study. Interim report on NIAC Phase II contract 07600-034 NASA Institute for advanced concepts, universities space research association.
    [17]Mankala K, Agrawal S, Hagedorn P, Equilibrium to equilibrium maneuvers of rigid electrodynamic tethers,14thAAS/AIAA Space Flight Mechanics Conference, Maui, Hawaii, USA, February 8-12,2004.
    [18]Hirohisa K, Tetsuro S. Stability analysis of in-plane and out-of-plane periodic motions of electro-dynamic tether system in inclined elliptic orbit. Acta Astronautica,2009,65:477-488.
    [19]冯圣,张勇,孙启国.赤道轨道面上运行的电动力学绳索建模和动力学分析.兰州交通大学学报,2008,2.
    [20]Sun Q G, Vander H. A model for a 3D spinning rigid electro-dynamic tether. Proceedings of international conference on nonlinear mechanics, Shanghai: Shanghai University,2007:672-678.
    [21]Pelaez J, Lara M. Periodic solutions in electro-dynamic tethers on inclined orbits. Journal of Guidance Control and Dynamics.2003,26(3).
    [22]Jerome P, Eugene L, Joseph A, et al. Orbital maneuvering with spinning electro-dynamic tethers.2nd International Energy Conversion Engineering Conference,2004:1554-1560.
    [23]Valverde J, Escalona J, Dominguez J, et al. Stability and bifurcation analysis of a spinning space tether. Journal of Nonlinear Science,2006,16(5):507-542.
    [24]Valverde, Escalona J, Mayo J, et al. Dynamics analysis of a light structure in outer space:Short Electro-dynamic tether. Multi-body System Dynamics,2003, 10(1):125-146.
    [25]Valverde J, Vander G. Instability of a whirling conducting rod in the presence of a magnetic field. Application to the problem of space tethers. Proceedings of the ASME IDETC&CIEConference, ISBN:0-7918-3766-1, USA:California,2005.
    [26]Valverde J, Escalona J, Dominguez J. Stability and dynamic analysis of the SET (Short Electro-dynamic Tether), Proceedings of the ASME DETE&CIE Conference, ISBN:0-7918-3698-3, USA:Chicago,2003.
    [27]Valverde J, Escalona J, Freire E, et al. Stability and bifurcation analysis of a modified geometrically nonlinear orthotropic Jeffcott model with internal damping. Nonlinear Dynamics,2005,42(2):137-163.
    [28]Lorenzini E. Error-tolerant technique for catching a spacecraft with a spinning tether. Journal of Vibration and Control.2004,10:1473-1491.
    [29]Lorenzini E, Cosmo M, Kaiser M. et al. Mission analysis of spinning systems for transfers from low orbits to geostationary. Journal of Spacecraft and Rockets. 2000,37(2):165-172.
    [30]Hoyt R, Uphoff C. Cislunar tether transport system. Journal of Spacecraft and Rockets,2000,37(2):178-186.
    [31]Onada J, Watanabe N. Tethered subsatellite swinging from atmospheric gradient. Journal of Guidance Control and Dynamics.1988:477-479.
    [32]Steiner W, Zemamn J, Steindl A, et al. Numerical study of large amplitude oscillations of a two-satellite continuous tether system with a varying length. Acta Astronautica,1995,35:607-621.
    [33]Hironori A, Takeo W, et al. Sounding rocket experiment of bare electro-dynamic tether system. Acta Astronautica,2009,64:313-324.
    [34]Cartmell M, McKenzie D. A review of space tether research. Progress in Aerospace Sciences,2008,44:1-21.
    [35]Satomi K, Takeshi M, Frmiki S, et al. Precise numerical simulations of electro-dynamic tethers for an active debris removal. Acta Astronautica,2006, 59(1-5):139-148.
    [36]Vanneroni G, Dobrowolny M, Venuto F. Deorbiting with electrodynamic tethers: Comparison between different tether configurations. Space Debris,2001,1: 159-172.
    [37]Paul W, Chris B, Pavel T. Libration control of flexible tethers using electro-magnetic forces moveable attachment. AIAA Guidance, Navigation, and Control Conference and Exhibit, USA:Austin,2003.
    [38]Robert P. Stabilization of electro-dynamic space tethers. Tether unlimited, Inc, 2001.
    [39]Kalyan K, Sunil K. Equilibrium-to-Equilibrium maneuvers of flexible electro-dynamic tethers in equatorial orbits. Journal of Spacecraft and Rockets. 2006,43(3):651-658.
    [40]Kalyan K, Sunil K. Equilibrium to equilibrium maneuvers of rigid electro-dynamic tethers. Journal of Guidance, Control and Dynamics,2005, 28(3):541-545.
    [41]Robert L, Robert P, Chauncey U. Application of the terminator tether M electro-dynamic drag technology to the de-orbit of constellation spacecraft. AIAA 98-4168, tether unlimited.
    [42]Joseph A, Kirk S, John W, et al.2006 status of the momentum exchange electro-dynamic re-boost tether development. Joint Propulsion conference, USA: Sacramento,2006.
    [43]Pelaez J. Sanjurjo M, Fontdecaba J. Satellite deorbiting using a self balanced electro-dynamic tether.55th International Astronautical Congress, Canada: Vancouver,2004.
    [44]Eugene M, Joseph A. Method and apparatus for propulsion and power generation using spinning electro-dynamic tethers. United States:US 6,942,186B1.2005.
    [45]Ehud N, Thomas R. Electrodynamic forces in tethered satellite system Part I: system control. IEEE Transactions on Aerospace and Electronic Systems,1994, 30(4):1031-1038.
    [46]Keith R, Brian E, Sven B, et al. System analysis of the expected electro-dynamic tether performance for the pro seds mission,39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, USA:Huntsville,2003.
    [47]Charles L, Judy L, Jason A, et al. Electrodynamic tether. United States:US 7,118,074 B 1.2006.
    [48]Roger P. High voltage characteristics of the electrodynamic tether and the generation of power and propulsion. NASA-CR-178949,1986.
    [49]Charles L, Gregory L. Combination solar sail and electro-dynamic tether propulsion system. United States:US 6,565,044 B1.2003.
    [50]Eugene M, Joseph A. Apparatus for observing and stabilizing electro-dynamic tethers. United States:US 6,755,377 B1.2004.
    [51]Robert P. Hoyt H, Robert L. Electro-dynamic tether control. United States:US 6, 419,191B1.2002.
    [52]Jerome P, Eugene L, John O, et al. The electrodynamic delivery experiment. Space Technology and Applications International Forum,2001.
    [53]Yoshiki Y, Eiji H, Tomoko K. Dynamic behavior of electro-dynamic tether deorbit system on elliptical orbit and its control by lorentz force. Aerospace Science and Technology,2005:366-373.
    [54]Hoyt R, Stabilization of electrodynamic tethers. AIAA 2002-4045.
    [55]Fujii H, Watanabe T, Taira W, et al. An analysis of vibration and wave-absorbing control of tether system. AIAA 2001-4003.
    [56]Corsi J, less L. Stability and control of electro-dynamic tethers for de-orbiting applications. Acta Astronautic,2001,48 (5-18):491-501.
    [57]Rupp C. A tether tension control law for tethered satellite deployed along local vertical. Marshall Space Flight Center. NASA TM X-64963,1975.
    [58]顾晓勤.绳系卫星释放及工作态动力学分析.空间科学学报,2002,22(2):154-162.
    [59]王维.绳系卫星的动力学与控制研究(硕士论文).北京:清华大学,2000.
    [60]于绍华.绳系卫星系统中的周期运动.宇航学报,1997,18(3):5 1-58.
    [61]于绍华,刘强.含无质量绳索的卫星系统平面运动和常规动力学.空间科学学报,2001,21(2):172-180.
    [62]于绍华,刘强.有分布质量绳索的卫星系统的动力学.宇航学报,2001,22(3):52-61.
    [63]于绍华.航天飞行器相对运动动力学及控制方法.宇航学报,1995,16(3):1-7.
    [64]Pelaez J, Lorenzini E.Sensitivity analysis of tether-mediated orbital injection. J.Astron Sci.1996,44(4):491-514.
    [65]Yu S H. Dynamic model and control of mass-distributed tether satellite system. Journal of Spacecraft and Rockets,2002,39(2):213-218.
    [66]Yu S.H. Tethered satellite system analysis,two-dimensional case and regular dynamics. Acta Astronautica,2000,47(12):849-858.
    [67]崔乃刚,刘墩,林晓辉.基于椭圆轨道的绳系卫星伸展及释放过程仿真研究.哈尔滨工业大学学报,1996,28(4):117-122.
    [68]朱仁璋.绳系卫星系统的运动与控制.宇航学报,1991,10(4):32-42.
    [69]顾晓勤.圆及椭圆轨道释放绳系子星的方法研究.空间科学学报,2002,22(3):282-288.
    [70]袁亚琼.电动力缆绳展开特性研究(硕士论文).哈尔滨:哈尔滨工业大学,2008.
    [71]文浩,金栋平,胡海岩.基于微分包含的绳系卫星时间最优释放控制.力学学报,2008,40(1):135-140.
    [72]刘莹莹,周军.近距离绳系卫星动力学与释放方法研究.系统仿真学报,2008,20(20):5642-5645.
    [73]De M. Dynamics of a tethered satellite in elliptical, Non-equatorial Orbits. Journal of Guidance, Control, and Dynamics,1992,15(3):621-626.
    [74]Misra A, Nixon M, Modi V. Nonlinear dynamics of two-body tethered satellite systems:constant length case. Journal of the Astronautical Sciences,2001,49(2): 219-236.
    [75]Fujii H, Ichiki W. Nonlinear dynamics of the tethered subsatellite system in the station keeping phase. Journal of Guidance, Control, and Dynamics,1997,20(2): 403-406.
    [76]王晓宇,金栋平.计入姿态的绳系卫星概周期振动.振动工程学报,2010,23(4):361-365.
    [77]朱仁璋,雷达.绳系卫星系统复杂模型研究.宇航学报,1999,20(3):7-12.
    [78]Beletsky V, Levin E. Dynamics of space tether systems. Advances in the Astronautical Sciences, Vol.83,1993.
    [79]Ivanov V, Sitarsky. Flight dynamics of flexible tethered system of space objects. Mashinostroene, Moscow,1986.
    [80]冯圣.主轴方向旋转的电动力绳索建模和动力学分析(硕士论文).兰州:兰州交通大学,2008.
    [81]刘文佳.电动力缆绳离轨特性研究(硕士论文).哈尔滨:哈尔滨工业大学,2006.
    [82]Cosmo M, Lorenzini E. Tethers in Space Handbook (3rd ed). Washington DC, NASA,1997.
    [83]less L. Space tethers:An overview. The 7th spacecraft charging technology conference, Noordwijk, Netherlands,2001.
    [84]贾世锦,佘明生.利用月球引力场改变地球卫星轨道倾角原理.中国空间科学技术,2001,10(5):25-31.
    [85]高扬.洛伦兹力推进的带电卫星:轨道运动和推进概念.2009年第二十二届全国空间探测学术讨论会论文,大连,2009.
    [86]Martinez-Sanchez M, Hastings D, A systems study of a 100kw electro-dynamic tether, Journal of Astronautical Sciences,1987,35:75-96.
    [87]Estes R, Lorenzini E, Sanmartin J, et al. Bare tethers for electro-dynamic spacecraft propulsion, Journal of Spacecraft and Rockets,2000,37:205-211.
    [88]Lanoix E, Misra, Modi V, et al. Effect of electromagnetic forces on orbital dynamics of tethered satellites, in:AAS/AIAA Spaceflight Mechanics Meeting, Clearwater, Florida, Paper No. AAS-00-189,2000.
    [89]Rex D, Eichler P. The possible long term overcrowding of LEO and the necessity and effectiveness of debris mitigation measures. Proceedings of the First European Conference on Space Debris, Darmstadt, Germany,1993,01: 607-615.
    [90]娄宗勇.电动力缆绳离轨时间特性研究(硕士论文).哈尔滨:哈尔滨工业大学,2007.
    [91]袁亚琼.电动力缆绳展开特性研究(硕士论文).哈尔滨:哈尔滨工业大学,2008.
    [92]夏灿英.卫星大气阻力系数的计算公式.天文研究与技术,1982,01:81-91.
    [93]刘林.航天器轨道理论.北京:国防工业出版社,2000.
    [94]郑文虎.地球大气及其对卫星运动的影响.西昌师范高等专科学校学报,2001,13(3):7-12.
    [95]Elsalam F, Sehnal L. A second order analytical atmospheric drag theory based on the TD88 thermospheric density model. Celestial Mechanics and Dynamical Astronomy,2004,90:361-389.
    [96]Monica P, Enrico C. Two analytical models for the analysis of a tethered satellite system in atmosphere. Meccanica,1997,32:263-277.
    [97]Misra A, Nixon M, Modi V. Nonlinear dynamics of two-body tethered satellite systems:constant length case. Journal of the Astronautical Sciences,2001,49(2): 219-236.
    [98]董景新,赵长德,熊沈署.控制工程基础(第二版).北京:清华大学出版社,2003.
    [99]章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700