硫氧还蛋白在乳腺癌中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫氧还蛋白(Thioredoxin,Trx)是一类分布广泛的小分子多功能蛋白,它们在进化上相当保守,都具有一个相同的有氧化还原活性的Cys-Gly-Pro-Cys的氨基酸序列。哺乳动物的Trx家族包括Trx-1和Trx-2。它们在其保守的活化区域内含有具备氧化还原活性的二硫巯基和二硫醇,因此硫氧还蛋白在细胞内行使着各种不同的功能。硫氧还蛋白系统是由硫氧还蛋白、硫氧还蛋白还原酶、NADPH三部分组成的。硫氧还蛋白系统可催化还原氢过氧化物、有机过氧化物以及一些被氧化的蛋白,是一个在自然界中普遍存在的系统。癌组织中Trx-1的过量表达会促进细胞的增殖和抑制细胞的凋亡,其机制是为DNA的合成提供平衡的氧化还原环境和活化转录因子等。关于它抑制细胞凋亡的机制仍在不断的研究中。由于Trx-1对肿瘤细胞的促进生长和抑制凋亡作用,它正成为治疗癌症和阻止癌症发生的分子靶点。
     某些癌症病人的血清中Trx-1的浓度是较高的,但乳腺癌病人的血清和正常人的血清中的Trx-1含量并不清楚。Trx-1对细胞周期的作用也未见报道。Trx-1对细胞凋亡中的作用有一不致的报道。为此我们进行了以下的研究:
     1)利用RT-PCR技术从MCF-7细胞中扩增获得了Trx-1基因,构建了该基因的原核表达载体pET32a-Trx,在E.coli中获得了高效表达的融合蛋白,并利用亲和层析的方法成功地对其进行了纯化,纯化的蛋白大小与预期一致。
     2)利用纯化的Trx-1蛋白对新西兰大白兔进行免疫,制备出相应的多克隆抗体,经间接ELISA法检测其效价为1:10000,并对Trx-1具有特异性,可以用于ELISA或western blot实验。
     3)利用间接ELISA法对正常人和乳腺癌病人的血清中的Trx-1的浓度进行测定,发现乳腺癌病人的外周血中Trx-1的含量低于正常人。
     4)构建了真核表达载体pcDNA-Trx,并将其转染到乳腺癌细胞系MCF-7中。
     5)研究了Trx-1对细胞周期的影响。用维生素C刺激乳腺癌细胞MCF-7,或者用pcDNA-Trx转染MCF-7使细胞中的Trx-1表达升高,另外在细胞培养基中加入不同浓度的Trx-1,再用流式细胞仪检测细胞中进入S期细胞的比例。结果发现维生素C的刺激使细胞体内Trx-1表达上升,更多的细胞进入到S期。转染pcDNA-Trx的细胞Trx-1的表达上升,进入S期的细胞比例明显增加。将Trx-1蛋白加入到培养基中后,进入S期的细胞比例明显地随Trx-1的浓度的提高而升高。这些结果都说明无论在细胞体外还是体内,Trx-1水平的上升均会促使细胞进入S期。
     6)细胞中的总Trx-1水平升高而核内Trx-1水平无变化时,不能影响MCF-7细胞对顺铂的敏感性。但核内Trx-1水平增加而总TRx-1水平不变时MCF-7明显的表现出对顺铂的抗性增加了。MCF-7抗性株中的核内Trx-1水平高于敏感株,而且MCF-7细胞用顺铂处理时,顺铂敏感细胞株中核内Trx-1会下降,而顺铂抗性株中核内Trx-1的水平没有明显的变化。同时研究发现,抗癌基因p53的mRNA水平明显和核内Trx-1水平正相关。这些结果说明,核内Trx-1是MCF-7抵抗顺铂诱导的凋亡中所必需的,而可能的机制是核内Trx-1促使抗癌基因p53的表达。
     从以上的实验可以得出如下结论:乳腺癌病人的血清中Trx-1的浓度和正常人相比略有下降但并不明显;Trx-1无论在MCF-7细胞的体外还是体内均可以细胞滞留于S期;用不同的方法诱导MCF-7细胞凋亡时,Trx-1的表达量变化并没有固定的趋势,而核内Trx-1则均出现增强的表达;核内Trx-1对MCF-7抵抗顺铂诱导的凋亡是必需的。
The thioredoxins are ubiquitous proteins containing conserved Cys-Gly-Pro-Cys redox catalytic site. Mammalian thioredoxin family members include thioredoxin-1 (Trx-1), and mitochondrial thioredoxin-2 (Trx-2). Thioredoxin is reduced by NADPH and thioredoxin reductase and, in turn reduces oxidized cysteine groups on proteins. When thioredoxin levels are elevated there is increased cell growth and resistance to the normal mechanism of programmed cell death. An increase in thioredoxin levels seen in many human primary cancers compared to normal tissue appears to contribute to increased cancer cell growth and resistance to chemotherapy. Mechanisms by which thioredoxin increases cell growth include an increased supply of reducing equivalents for DNA synthesis, activation of transcription factors that regulate cell growth, and an increase in the sensitivity of cells to other cytokines and growth factors. The mechanisms for the inhibition of apoptosis by thioredoxin are just now being elucidated. Because of its role in stimulating cancer cell growth and as an inhibitor of apoptosis, thioredoxin offers a target for the development of drugs to treat and prevent cancer.
     Our studies are as following:
     1) Trx-1 gene was obtained by RT-PCR. Prokaryotic fusion gene expression vector, pET32a-Trx, was constructed. A high level of expression of fusion protein in E.coli was detected after IPTG induction and purified proteins were obtained by affinity chromatography.
     2) The purified Trx-1 proteins were mixed with Freund’s complete or incomplete adjuvant as antigen to immune rabbits. ELISA assay revealed that the titer of the prepared antiserum against Trx-1 protein was as high as 1:10000. IgG was purified with saturated ammonium sulfate. These polyclonal antibodies are special to Trx-1 and can be used to detect Trx-1.
     3) The contrations of Trx-1 in the serum of breast cancer patients were detected with ELISA, and we found that the contration of Trx-1 is a little lower than control.
     4) Trx-1 gene was cloned into eukaryotic expression vector, pcDNA3.1+ and transferred into breast cancer cells, MCF-7.
     5) Trx-1 overexpressed in MCF-7 cells after dealed with Vc or transferred with Trx-1 cDNA. At the same time, more cells were in S phase. Meanwhile, higher Trx-1 in vitro can also bring more cells into S phage. So Trx-1 contributes to prolonging S phase of MCF-7 cells, both in vivo and in vitro.
     6) We explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced by cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.
     Based our data, we can include that i) the contrations of Trx-1 in the serum of breast cancer patients is a little lower than control, ii) Trx-1 contributes to prolonging S phase of MCF-7 cells, both in vivo and in vitro, and iii) the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.
引文
[1] Laurent TC, Moore EC, Reichard P. Enzymatic synthesis of deoxyribonucleotides VI Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J. Biol. Chem. 1964,239: 3436-3444
    [2] Holmgren A. Thioredoxin. 6. The amino acid sequence of the protein from Escherichia coli B. Eur.J. Biochem. 1968,6: 475-484
    [3] Holmgren A. Thioredoxin. Ann Rev Biochem, 1985, 54: 237-271
    [4] Moore EC. A thioredoxin-thioredoxin reductase system from rat tumor. Biochem. Biophys. Res. Commun. 1967, 29: 264-268
    [5] Teshigawara K, Maeda M, Nishino K, et al. Adult T leukemia cells produce a lymphokine that augments interleukin 2 receptor expression. J Mol Cell Immunol. 1985, 2: 17-26
    [6] Tagaya Y, Maeda Y, Mitsui A, et al. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO. 1989, 8: 757-764
    [7] Yodoi J, Tursz T. ADF, a growth-promoting factor derived from adult T cell leukemia and homologous to thioredoxin: involvement in lymphocyte immortalization by HTLV-I and EBV. Adv Cancer Res. 1991, 57: 381-411
    [8] Yodoi J, Uchiyama T. Diseases associated withHTLV-I: virus, IL-2 receptor dysregulation and redox regulation. Immunol Today. 1992, 13: 405-411
    [9] Wakasugi H, Rimsky L, Mahe Y. et al. Epstein-Barr virus-containing B-cell line produces an interleukin 1 that it uses as a growth factor. Proc. Natl. Acad. Sci. 1987, 84: 804-808
    [10] Clarke FM, Orozco C, Perkins AV, et al. Identification of molecules involved in the“early pregnancy factor”phenomenon. J. Reprod. Fertil. 1991, 93: 525-539
    [11] Wollman EE, d 'Auriol L, Rimsky L, et al. Cloning and expression of a cDNA for human thioredoxin. J. Biol. Chem. 1988, 263(30): 15506-15512
    [12] Nakamuraa H, Masutani H, Yodoi J. Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Seminars in Cancer Biology. 2006, 16: 444-451
    [13] Berggren M, Gallegos A, Gasdaska JR, et al. Thioredoxin and thioredoxin reductase gene expression in human tumors and cell lines, and the effects of serum stimulation and hypoxia. Anticancer Res. 1996, 16: 3459-3466
    [14] Gasdaska PY, Berggren MM, Berry MJ, et al. Cloning, sequencing and functional expression of a novel human thioredoxin reductase. FEBS Lett. 1999, 442: 105-111
    [15] Lee S, Kim J, Kwon K, et al. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem. 1999, 274: 4722-4734
    [16] Miranda VA, Damdimopoulos AE, Pedrajas JR, et al. Human mitochondrial thioredoxin reductase: cDNA cloning, expression and genomic organization. Eur. J. Biochem. 1999, 261: 405-411
    [17] Gasdaska PY, Gasdaska JR, Cochran S, et al. Cloning and sequencing of human thioredoxin reductase. FEBS Lett. 1995, 373: 5-9
    [18] Grogan T, Fenoglio PC, Zaheb R, et al. Overexpression of thioredoxin, a putative oncogene, in gastric carcinoma with associated change in proliferation and apoptosis. Human Path. 31:475-481, 2000.
    [19] Hirota K, Matsui M, Iwata S, et al. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc. Natl. Acad. Sci. USA. 1997, 94: 3633-3638
    [20] Makino Y, Yoshikawa N, Okamoto K, et al. Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function. J. Biol. Chem. 1999, 274: 3182-3188
    [21] Masutani H, Hirota K, Sasada T, et al. Transactivation of an inducible anti-oxidative stress protein, human thioredoxin by HTLV-I tax. Immunol. Lett. 1996, 54: 67-71
    [22] Haendeler J, Goy C, Dimmeler S. The anti-apoptotic function of physiological concentration of reactive oxygen species is dependent on the nuclear import of thioredoxin-1 in endothelial cells. Circulation. 2005, 112: II-145
    [23] Nishinaka Y, Masutani H, Oka S, et al. Importin alpha1 (Rch1) mediates nuclear translocation ofthioredoxin binding protein-2/vitamin D(3)-up-regulated protein 1. J Biol Chem. 2004, 279: 37559-37565
    [24] Yoneda Y. Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells. 2000, 5: 777-787
    [25] Chen K, Chen J, Li D, et al. Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPARgamma ligand pioglitazone. Hypertension 2004, 44: 655-661
    [26] Tao L, Gao E, Bryan NS, et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci USA. 2004, 101: 11471-11476
    [27] Hirota K, Nakamura H, Masutani H, et al. Thioredoxin superfamily and thioredoxin -inducing agents. Ann N Y Acad Sci. 2002, 957: 189-199
    [28] Nakamura H, Herzenberg LA, Bai J, et al. Circulating thioredoxin suppresses lipopolysaccharide-induced neutrophil chemotaxis. Proc Natl Acad Sci USA. 2001, 98: 15143-15148
    [29] Wakasugi N, Tagaya Y, Wakasugi H, et al. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci USA. 1990, 87: 8282-8286
    [30] Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev. 2005, 126: 987-1002
    [31] Arner ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000, 267: 6102-6109
    [32] Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol. 1997, 15: 351-369
    [33] Burke GA, Callister ME, Nakamura H. Thioredoxin: friend or foe in human disease? Trends Pharmacol Sci. 2005, 26: 398-404
    [34] Tanaka T, Nishiyama Y, Okada K, et al. Induction and nuclear translocation of thioredoxin by oxidative damage in the mouse kidney: independence of tubular necrosis and sulfhydryl depletion.Lab Invest. 1997, 77: 145-155
    [35] Haendeler J, Tischler V, Hoffmann J, et al. Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Lett. 2004, 577: 427-433
    [36] Yamamoto M, Sato N, Tajima H, et al. Induction of human thioredoxin in cultured human retinal pigment epithelial cells through cyclic AMP-dependent pathway; involvement in the cytoprotective activity of prostaglandin E1. Exp Eye Res. 1997, 65: 645-652
    [37] Hirota K, Nakamura H, Arai T, et al. Geranylgeranylacetone enhances expression of thioredoxin and suppresses ethanol-induced cytotoxicity in cultured hepatocytes. Biochem Biophys Res Commun. 2000, 275: 825-830
    [38] Yamamoto M, Yang G, Hong C, et al. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest. 2003, 112: 1395-1406
    [39] Turoczi T, Chang VW, Engelman RM, et al. Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol. 2003, 35: 695-704
    [40] Leppa S, Pirkkala L, Chow SC, et al. Thioredoxin is transcriptionally induced upon activation of heat shock factor 2. J Biol Chem. 1997, 272: 30400-30404
    [41] Nishiyama A, Matsui M, Iwata S, et al. Identification of thioredoxin-binding protein-2/vitamin D(3) upregulated protein 1 as a negative regulator of thioredoxin function and expression. J Biol Chem. 1999, 274: 21645-21650
    [42] Junn E, Han SH, Im JY, et al. Vitamin D3 upregulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol. 2000, 164: 6287-6295
    [43] Butler LM, Zhou X, Xu WS, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. PNAS. 2002, 99(18): 11700-11705
    [44] Ikarashi M, Takahashi Y, Ishii Y, et al. Vitamin D3 up-regulated protein 1 (VDUP1) expression in gastrointestinal cancer and its relation to stage of disease. Anticancer Res. 2002, 22(6C): 4045-4048
    [45] Ohta S, Lai EW, Pang AL, et al. Downregulation of metastasis suppressor genes in malignant pheochromocytoma. Int J Cancer. 2005, 114(1): 139-143
    [46] Nishinaka Y, Nishiyama A, Masutani H, et al. Loss of thioredoxin-binding protein-2/Vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: implications for adult T-cell leukemia leukemogenesis. Cancer Res. 2004, 64(4):1287-1292
    [47] de Vos S, Hofmann WK, Grogan TM, et al. Gene expression profile of serial samples of transformed B-cell lymphomas. Lab Invest. 2003, 83(2): 271-285
    [48] Escrich E, Moral R, Garcia G, et al. Identification of novel differentially expressed genes by the effect of a high-fat n-6 diet in experimental breast cancer. Mol Carcinog. 2004, 40(2): 73-78
    [49] Li H, Kantoff PW, Giovannucci E, et al. Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Cancer Res. 2005, 65(6): 2498-2504
    [50] Schulze PC, Keulenaer GW, Yoshioka J,et al. Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res. 2002, 91: 689-695
    [51] Watson WH, Pohl J, Montfort WR, et al. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem. 2003, 278: 33408-33415
    [52] Casagrande S, Bonetto V, Fratelli M, et al. Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci USA. 2002, 99: 9745-9
    [53] Haendeler J, Hoffmann J, Tischler V, et al. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol. 2002, 4: 743-749
    [54] Tao L, Jiao X, Gao E, et al. Nitrative inactivation of thioredoxin-1 and its role in post-ischemic myocardial apoptosis. Circulation. 2006, 114(13): 1395-1402
    [55] Ago T, Sadoshima J. Thioredoxin and ventricular remodeling. Journal of Molecular and Cellular Cardiology. 2006, 41: 762-773
    [56] Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu Rev PharmacolToxicol. 2001, 41: 261-295
    [57] Powis G, Kirkpatrick DL, Angulo M, et al. Thioredoxin redox control of cell growth and death and the effects of inhibitors. Chem-Biol Interact. 1998, 111: 23-34
    [58] Herrmann EC, Moore EC. Purification of thioredoxin from rat Novikoff ascites hepatoma. J Biol Chem. 1973, 248: 1219-1223
    [59] Miyazaki K, Noda N, Okada S, et al. Elevated serum level of thioredoxin in patients with hepatocellular carcinoma. Biotherapy. 1998, 11: 277-288
    [60] Rubartelli A, Bonifaci N, Sitia R. High rates of thioredoxin secretion correlate with growth arrest in hepatoma cells. Cancer Res. 1995, 55: 675-680
    [61] Nakamura H, Masutani H, Tagaya Y, et al. Expression and growth-promoting effect of adult T-cell leukemia derived factor: A human thioredoxin homologue in hepatocellular carcinoma. Cancer. 1992, 69: 2091-2097
    [62] Ros′en A, Lundman P, Carlsson M, et al. A CD4+ T cell line-secreted factor, growth promoting for normal and leukemic B cells, identified as thioredoxin. Int Immunol 1995, 7: 625-633
    [63] Gasdaska JR, Berggren M, Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ. 1995, 6: 1643-1650
    [64] Yamawaki H, Pan S, Lee RT, et al. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest. 2005, 115: 733-738
    [65] Pekkari K, Goodarzi MT, Scheynius A, et al. Truncated thioredoxin (Trx80) induces differentiation of human CD14+ monocytes into a novel cell type (TAMs) via activation of the MAP kinases p38, ERK, and JNK. Blood. 2005, 105: 1598-1605
    [66] Pekkari K, Holmgren A. Truncated thioredoxin: physiological functions and mechanism. Antioxid Redox Signal. 2004, 6: 53-61
    [67] Saitoh M, Nishitoh H, Fujii M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998, 17: 2596-2606
    [68] Liu Y, Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res. 2002, 90: 1259-1266
    [69] Smith AD, Guidry CA, Morris VC, et al. Aurothioglucose inhibits murine thioredoxin reductase activity in vivo. J Nutr. 1999, 129: 194-198
    [70] Becker K, Gromer S, Schirmer RH, et al. Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem. 2000, 267: 6118-6125
    [71] Henderson WR, Chi EY, Teo JL, et al. A Small Molecule Inhibitor of Redox-Regulated NF-{kappa}B and Activator Protein-1 Transcription Blocks Allergic Airway Inflammation in a Mouse Asthma Model. J lmmunol. 2002, 169: 5294-5299
    [72] Vogt A, Tamura K, Watson S, et al. Antitumor Imidazolyl Disulfide IV-2 Causes Irreversible G2/M Cell Cycle Arrest without Hyperphosphorylation of Cyclin-Dependent Kinase Cdk1. J Pharmacol Exp Ther. 2000, 294: 1070-1075
    [73] Welsh SJ, Williams RR, Birmingham A, et al. The Thioredoxin Redox Inhibitors 1-Methylpropyl 2-Imidazolyl Disulfide and Pleurotin Inhibit Hypoxia-induced Factor 1 {alpha} and Vascular Endothelial Growth Factor Formation. Mol Cancer Ther. 2003, 2: 235-243
    [74] Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003, 15: 247-254
    [75] Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002, 192: 1-15
    [76] Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 2001, 31: 1287-1312
    [77] Watson JA, Rumsby MG, Wolowacz RG. Phage display identifies thioredoxin and superoxide dismutase as novel protein kinase C-interacting proteins: thioredoxin inhibits protein kinase C-mediated phosphorylation of histone. Biochem J. 1999, 343: 301-305
    [78] Meuillet EJ, Mahadevan D, Berggren M, et al. Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN’s lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN’s tumor suppressor activity. Arch Biochem Biophys. 2004, 429: 123-133
    [79] Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997, 275: 90-94
    [80] Hayakawa T, Matsuzawa A, Noguchi T, et al. The ASK1-MAP kinase pathways in immune andstress responses. Microbes Infect. 2006, 8: 1098-1107
    [81] Liu H, Nishitoh H, Ichijo H, et al. Activation of apoptosis signalregulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol. 2000, 20: 2198-2208
    [82] Tobiume K, Saitoh M, Ichijo H. Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol. 2002, 191: 95-104
    [83] Lee SR, Yang KS, Kwon J, et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002, 277: 20336-20342
    [84] Nichole BA, Knut K, J?rg K, et al. Thioredoxin is downstream of smad7 in a pathway that promotes growth and suppresses cisplatin-induced apoptosis in pancreatic cancer. Cancer Res. 2004, 64: 3599-3606
    [85] Toshio T, Hiroko K, Hiroko F. Adenoviral transfection of hepatocytes with the thioredoxin gene confers protection against apoptosis and necrosis. Biochem. Biophys. Res. Commun. 2003, 307: 765-770
    [86] Baker A, Payne CM, Briehl MM, et al. Thioredoxin, a gene found overexpressed in human cancer, inhibitis apoptosis in vitro and in vivo. Cancer Res. 1997, 57, 5162-5167
    [87] Haendeler and Judith. P50 Cathepsin D Degrades Thioredoxin in Endothelial Cells: Important Role in Oxidative Stress and Apoptosis. Arte, Thro & Vasc Biol. 2004, 24: E-10
    [88] Junqin C, Francesca M, Couto AH, et al. Exenatide inhibits b-cell apoptosis by decreasing thioredoxin-interacting protein. Biochem. Biophys. Res. Commun. 2006, 346: 1067-1074
    [89] Zhang R, Lamki R, Bai L, et al. Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res. 2004, 94: 1483-1491
    [90] Nishida K, Otsu K. The role of apoptosis signal-regulating kinase 1 in cardiomyocyte apoptosis. Antioxid Redox Signal. 2006, 8: 1729-1736
    [91] Kaimul AM, Nakamura H, Tanito M, et al. Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and byinhibiting DEP-induced downregulation of Akt. Free Radical Biol Med. 2005, 39: 1549-1559
    [92] Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997, 91: 231-241
    [93] Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998, 282: 1318-1321
    [94] Dawn B, Xuan YT, Marian M, et al. Cardiac-specific abrogation of NF- kappa B activation in mice by transdominant expression of a mutant I kappa B alpha. J Mol Cell Cardiol. 2001, 33: 161-173
    [95] Rundl AK, Arn′er ESJ. Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth and signaling events. Antioxid Redox Signal. 2004, 6: 41-52
    [96] Ueno M, Masutani H, Arai RJ, et al. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem. 1999, 274: 35809-35815
    [97] Moos PJ, Edes K, Cassidy P, et al. Electrophilic prostaglandins and lipid aldehydes repress redox-sensitive transcription factors p53 and hypoxia-inducible factor by impairing the selenoprotein thioredoxin reductase. J Biol Chem. 2003, 278: 745-750
    [98] Anest?l K, Arnér ES. Rapid induction of cell death by selenium compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine. J Biol Chem. 2003, 278: 15966-15972
    [99] Nonn L,Williams RR, Erickson RP, et al. The Absence of Mitochondrial Thioredoxin 2 Causes Massive Apoptosis, Exencephaly, and Early Embryonic Lethality in Homozygous Mice. Molecular and Cellular Biology. 2003, 23(3): 916-922
    [100] Tanaka T, Hosoi F, Yamaguchi IY, et al. Thioredoxin-2(Trx-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 2002, 21(7): 1695-1703
    [101] Patenaude A, Murthy MRV, Mirault ME. Mitochondrial Thioredoxin System: effects of trxr2 overexpression on redox balance, cell growth, and apoptosis. J. Biol. Chem. 2004, 279(26): 27302-27314
    [102] Husbeck B, Stringer DE, Gerner EW, et al. Increased thioredoxin-1 inhibits SSAT expression in MCF-7 human breast cancer cells. Biochem. Biophys. Res. Commun. 2003, 306: 469-475
    [103] Seung JK, Yasuo M, Tetsuya T, et al. High Thioredoxin Expression Is Associated with Resistance to Docetaxel in Primary Breast Cancer. Clinical Cancer Research, 2005, 11: 8425-8430
    [104] Gasdaska PY, Oblong JE, Cotgreave IA, et al. The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): Thioredoxin mRNA is elevated in some human tumors. Biochim. Biophys. Acta. 1994,1218: 292-296
    [105] Haapasalo H, Kylaniemi M, Pannul N, et al. Expression of antioxidant enzymes in astrocitc brain tumors. Brain Pathol, 2003, 13(2): 155-l64
    [106] Gallegos A, Raffel J, Bhattacharyya AK, et al. Increased expression of thioredoxin in human primary and metastatic colon cancer. Amer. Assoc. Cancer Res. 2000, 41: 189
    [107] Fujii S, Nanbu Y, Nonogaki H, et al. Coexpression of adult T-cell leukemia-derived factor, a human thioredoxin homologue, and human papillomavirus DNA in neoplastic cervical squamous epithelium. Cancer. 1991, 68: 1583-1591
    [108] Kawahara N, Tanaka T, Yokomizo A, et al. Enhanced coexpression of thioredixin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res. 1996, 56, 5330-5333
    [109] Nakamura H, Masutani H, Tagaya Y, et al. Expression and growth-promoting effect of adult T-cell leukemia-derived factor: A human thioredoxin homologue in hepatocellular carcinoma. Cancer, 1996, 69: 2091-2097
    [110] Nakamura H, Bai J, Nishinaka Y, et al. Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect. Prev. 2000, 24: 53-60
    [111] Wakita H, Yodoi J, Masutani H, et al. Immunohistochemical distribution of adult T-cell leukemiaderived factor/thioredoxin in epithelial components of normal and pathologic human skin conditions. J. Invest. Dermatol. 1992, 99: 101-107
    [112] Qin J, Clore GM, Kennedy WP, et al. Solution structureof human thioredoxin in a mixed disul-fide intermediate complex with its target peptide from the transcription factor NF-kappaB. Structure. 1994, 3: 289-297
    [113] Powis G, Briehl M, Oblong J. Redox signaling and the control of cell growth and death. Pharmac Ther. 1995, 68: 149-173
    [114] Jordan A, Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 1998, 67: 71-98
    [115] Ravi D, Muniyappa H,Das KC. Endogenous Thioredoxin Is Required for Redox Cycling of Anthracyclines and p53-dependent Apoptosis in Cancer Cells. J. Biol. Chem. 2005, 280(48): 40084-40096
    [116] Isowa N, Yoshimura T, Kosaka S, et al. Human thioredoxin attenuates hypoxia-reoxygenation injuryof murine endothelial cells in a thiol-free condition. J Cell Physiol. 2000, 182: 33-40
    [117] Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005, 38: 1543-1552
    [118] Welsh SJ, Bellamy WT, Bfiehl MM, et a1. The redox protein thioredoxin-l(Trx-1) increases hypoxia-inducible factor 1'alpha protein expression:Trx-l overexpression reatlts in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. 2002, 62(17): 5089-5095
    [119] Das KC, Lewis MY, White CW. Elevation of manganese superoxide dismutase gene expression by thioredoxin. Cell Mol Biol, 1997, 17: 713-726
    [120] Yoshida T, Nakamura H, Masutani H, et al. The Involvement of Thioredoxin and Thioredoxin Binding Protein-2 on Cellular Proliferation and Aging Process. Ann NY Acad Sci 2005, 1055: 1-12
    [121] Husbeck B, Powis G. The redox protein thioredoxin-1 regulates the constitutive and inducible expression of the estrogen metabolizing cytochromes P450 1B1 and 1A1 in MCF-7 human breast cancer cells. Carcinogenesis. 2002, 23(10): l625-1630
    [122] Wang J, Kobayashi M, Sakurada K, et al. Possible roles of an adult T-cell leukemia (ATL)-derived factor/thioredoxin in the drug resistance of ATL to adriamycin. Blood. 1997, 89: 2480-2487
    [123] Sasada T, Iwata S, Sato N, et al. Redox control of resistance to cis-diamminedichloroplatinum (II) (CDDP): protective effect of human thioredoxin against CDDP-induced cytotoxicity. J Clin Invest. 1996, 97: 2268-2276
    [124] Yamada M, Tomida A, Yoshikawa H, et al. Overexpression of thioredoxin does not confer resistance to cisplatin in transfected human avarian and colon cancer cell lines. Cancer Chemother Pharmacol. 1997, 40: 31-37
    [125] Sugawara K, Nakamura H, Kanai M, et al. Surgical stress during operation for gastrointestinal cancer increases plasma thioredoxin levels and decreases mitochondrial membrane potential in peripheral blood lymphocytes. Comm Free Radi Res. 2002, 7(3): 165-169
    [126] Raffel J, Bhattacharyya AK, Gallegos A, et al. Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. The Journal of laboratory and clinical medicine. 2003, 142(1): 46-51
    [127] Noda N, Ochiai A, Miyazaki K, et al. Detection of thioredoxin in gastric cancer: association with histological type. Antioxidants & redox signaling. 2000, 2(3): 519-528
    [128] Oblong JE, Chantler EL, Gallegos A, et al. Reversible inhibition of human thioredoxin reductase activity by cytotoxic alkyl 2-imidazolyl disulfide analogues. Cancer Chemother. Pharmacol. 1994, 34: 434-438
    [129] Wipf P, Hopkins TD, Jung JK, et al. New inhibitors of the thioredoxin-thioredoxin reductase system based on a napthoquinone spiroketal natural product lead. Bioorg Med Chem Lett. 2001, 11: 2637-2641
    [130] Mukherjee A, Westwell AD, Bradshaw TD, et al. Cytotoxic and antiangiogenic activity of AW464 (NSC 706704), a novel thioredoxin inhibitor: an in vitro study. British Journal of Cancer. 2005, 92:350-358
    [131] Misra-press A, McMillan M, Cudaback E, et al. Identification of a novel inhibitor of the NF-κB pathway. Current Medicinal Chemistry. 2002, 1: 29-39
    [132] Wipf P, Lynch SM, Birmingham A, et al. Natural product based inhibitors of the thioredoxin-thioredoxin reductase system. Org Biomol Chem. 2004, 2: 1651-1658
    [133] Shioji K, Kishimoto C, Nakamura H, et al. Thioredoxin-1 transgenic mice attenuates adriamyocin-induced cardiotoxicity, a novel redox modulating therapy against adriamyocin-induced cardiotoxicity. Circulation. 2002, 106: 1435-1439
    [134]袁祖始,刘艳,岸本千晴,等.特莫普利上调心肌硫氧化还蛋白表达减轻心肌炎.中华内科杂. 2003, 42(5): 309-312
    [135] Kishimoto C, Shioji K, Nakamura H, et al. Serum thioredoxin (Trx) levels in patients with heart failure. Jpn Circ J. 2001, 65: 491-494
    [136] Jekell A, Hossain A, Alehagen U, et al. Elevated circulating levels of thioredoxin and stress in chronic heart failure. Eur J Heart Fail. 2004, 6: 883-890
    [137] Yamamoto S, Yang G, Zablocki D, et al. Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J Clin Invest. 2003, 111: 1463-1474
    [138] Van LA, Dallalio G, McKenzie SW, et al. Thioredoxin and protein nitrotyrosine in bone marrow supematant from patients with human immunodeficiency virus infection. J Investig Med. 2002, 50(1): 10-18
    [139] Nakamura H, Masutani H, Yodoi J. Redox imbalance and its control in HIV infection. Antioxid Redox Signal. 2002, 4(3) : 455-464
    [140] Jikimoto T, Nishikubo Y, Koshiba M, et al. Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritis. Mol Immunol. 2002, 38(10): 765-772
    [141] Sugimoto M, Inoue T, Takeshita K, et al. Effects of a new anti-rheumatic drug KE-298 and its active metabolite: KE-758 on secretion of thioredoxin and onthe level of intracellular glutathione in human monocytes and T cells. Mol Immunol. 2002, 38(10): 793-799
    [142] Lee SY, Andoh T, Murphy DL, et al. 17beta-estradiol activates ICI 182780-sensitive estrogen receptors and cyclic GMP-dependent thioredoxin expression for neuroprotection. Faseb J. 2003, 17: 947-948
    [143] Bai J, Nakamura H, Hattori I, et al. Thioredoxin suppresses 1-methyl-4-phenylpyridinium-induced neurotoxicity in rat PC12 cells. Neurosci Lett. 2002, 321:81-84
    [144] Kontou M, Adelfalk C, Ramirez MH, et al. Overexpressed thioredoxin compensates Fanconi anemia related chromosomal instability. Oncogene, 2002, 21(15): 2406-2412
    [145] Kondo N, Ishii Y, Kwon YW, et al. Redox-sensing release of human thioredoxin from T lymphocytes with negative feedback loops. J Immunol. 2004, 172: 442-448
    [146] Nakamura H, De RS, Roederer M, et al. Elevation of plasma thioredoxin levels in HIV-infected individuals. Int Immunol. 1996, 8: 603-611
    [147] Nakamura H, De RS, Yodoi J, et al. Chronic elevation of plasma thioredoxin: inhibition of chemotaxis and curtailment of life expectancy in AIDS. Proc Natl Acad Sci USA. 2001, 98: 2688-2693
    [148] Sumida Y, Nakashima T, Yoh T, et al. Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol. 2000, 33: 616-622
    [149] Toshio T, Hiroko K, Hiroko F. Adenoviral transfection of hepatocytes with the thioredoxin gene confers protection against apoptosis and necrosis. Biochem. Biophys. Res. Commun. 2003, 307: 765-770
    [150] Ma X, Karra S, Lindner DJ, et al. Thioredoxin participates in a cell death pathway induced by interferon and retinoid combination. Oncogene. 2001, 20: 3703-3715
    [151] Walter HW, Dean PJ. Oxidation of nuclear thioredoxin during oxidative stress, FEBS Letters. 2003, 543: 144-147
    [152] Hirota K, Murata M, Sachi Y, et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus: a two-step mechanism of redox regulation of transcription factor NF-κB. J. Biol. Chem. 1999, 274: 27891-27897
    [153] Young MG, Thomas RZ, Jennifer MJ, et al. Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells. Free Radical Biology & Medicine. 2007, 42: 363-370
    [154] Ruth EF, Jiri N. Role of thioredoxin-1 in apoptosis induction by a-tocopheryl succinate 3 and TNF-related apoptosis-inducing ligand in mesothelioma cells. FEBS letters. 2006,580: 2671-2676
    [155] Bertini R, Howard OM, Dong HF, et al. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J. Exp. Med. 1999, 189: 1783-1789
    [156]付士波,鞠桂芝,杨英.蝎毒对B16黑色素瘤细胞生长的抑制作用.吉林大学学报. 2004, 30(2): 178-181
    [157] Junqin C, Francesca MC, Alexandra HM, et al. Exenatide inhibits b-cell apoptosis by decreasing thioredoxin-interacting protein. Biochem. Biophys. Res. Commun. 2006, 346: 1067-1074
    [158] Ueda S, Nakamura H, Masutani H, et al. Redox Regulation of Caspase-3(-like) Protease Activity: Regulatory Roles of Thioredoxin and Cytochrome C. J. Immunol. 1998, 161: 6689-6695
    [159] Yamada M, Tomida A, Yoshikawa H, et al. Increased expression of thioredoxin/adult T-cell leukemiaderived factor in cisplatin-resistant human cancer cell lines. Clin. Cancer Res. 1996, 2: 427-432
    [160] Powis G, Mustacich D, Coon A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radical Biology & Medicine. 2000, 29: 312-322
    [161] Ueno M, Matsutani Y, Nakamura H, et al. Possible association of thioredoxin and p53 in breast cancer. Immunology Letters, 2000, 75: 15-20
    [162] Liang ZQ, Li YL, Zhao XL, et al. NF-κB contributes to 6-hydroxydopamine-induced apoptosis of nigral dopaminergic neurons through p53. Brain Research. 2007, 1145: 190-203
    [163] Azuma M, Tamatani T, Ashida Y, et al. Cisplatin induces apoptosis in oral squamous carcinoma cells by the mitochondria-mediated but not the NF-κB-suppressed pathway. Oral Oncology. 2003, 39: 282-289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700