猪七个候选印记基因的分离、印记鉴定及其与性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因组印记是指二倍体生物的某些组织或细胞中,来源于不同亲本的一对等位基因发生差异性表达,即只有一方亲本的等位基因表达,而另一亲本的等位基因不表达或很少表达的生物学现象,而相应的基因就称为印记基因。对哺乳动物的研究表明,印记基因在胎儿、胎盘的生长发育及胎儿出生后的表现等方面,都发挥着重要的调节作用。目前,对基因组印记的研究主要集中在人和小鼠中,在家畜特别是猪中研究比较少。因此在猪中鉴定印记基因对于基因组印记在物种间的保守性研究具有重要意义。另外,大部分已研究的印记基因都是重要的调控基因,包括转录因子,细胞周期调节基因,生长因子或者是参与复杂的信号通路。基于印记基因在生长和发育中的重要调控作用,预测这些基因可能对猪等家畜动物的生产性状产生较大的影响。因而,在育种中能否将印记基因作为分子标记进行标记辅助选择,是一个值得探讨的新课题。所以本研究主要进行了以下两个方面的工作:(1)利用大白猪×梅山猪和梅山猪×大白猪正反交模型,通过RT-PCR-RFLP分析和PCR产物直接测序法检测“表达的SNP”,鉴定了猪7个候选印记基因的印记状态,以期探讨基因组印记在猪与其他物种间的保守性;(2)在大白猪×梅山猪F_2代群体中,利用PCR-RFLP技术,进行了4个猪候选印记基因的基因型与重要经济性状的关联分析,以期探讨印记基因在育种中作为分子标记的可行性。目前,取得了如下结果:
     1.根据人和小鼠印记基因的印记状况及生理功能,筛选了PLAGL1、PEG10、PPP1R9A、XIST、MEST、NAP1L5和PEG3基因作为猪候选印记基因。利用电子克隆和比较基因组学方法获得了7个候选印记基因的cDNA序列,其中3个基因包括完整的ORF;(1)PLAGL1,获得cDNA序列2238bp,其中开放阅读框(Open reading frame,ORF)为1392bp,GenBank登录号为DQ28899;(2)PEG10,获得cDNA序列6379bp,其中ORF为1212bp,GenBank登录号为DQ779285;(3)PPP1R9A,获得cDNA序列1946bp,GenBank登录号为EF619476;(4)XIST,获得cDNA序列1039b,GenBank登录号为EF619477;(5)uesr,获得cDNA序列2167bp,其中ORF为981bp,GenBank登录号为EF619473;(6)NAP1L5,获得cDNA序列1158bp,GenBank登录号为EF619474;(7)PEa3,获得cDNA序列2052bp,GenBank登录号为EF619475。比较了所获得的7个候选印记基因cDNA序列与人和鼠同源序列的相似性,表明7个基因cDNA序列的猪-人相似性均大于猪-鼠相似性和人-鼠相似性。
     2.对所获得的猪7个候选印记基因的cDNA序列,在3头大白猪和3头梅山猪间进行了比对分析:(1)PLAGL1,在CDS和3'UTR各发现1个SNP,全为转换突变;(2)PEa10,在3'UTR发现4个SNP,其中3个转换突变,1个插入/缺失突变;(3)PPP1RgA,在3'UTR发现8个SNP,其中4个转换突变,3个颠换突变,1个插入/缺失突变;(4)XIST,在3'UTR发现4个SNP,其中3个转换突变,1个插入/缺失突变;(5)MEST,在3'UTR发现2个SNP,全为转换突变;(6)NAP1L5,在3'UTR发现2个SNP,其中1个转换突变,1个插入/缺失突变;(7)PE63,在3'UTR发现3个SNP,其中1个转换突变,2个插入/缺失突变。
     3.利用大白猪×梅山猪和梅山猪×大白猪正反交模型,通过RT-PCR-RFLP分析和PCR产物直接测序法,鉴定了7个候选印记基因在二月龄猪14个组织和器官中的印记状况。(1)PLAGL1基因在肌肉、脂肪、心、肝、脾、肺、肾、胃、小肠、子宫、卵巢和睾丸中母系印记;(2)PEG10基因在肌肉、脂肪、心、肝、脾、肺、肾、胃、小肠、子宫、卵巢和睾丸中母系印记;(3)PPP1R9A基因在肌肉、脂肪、心、肝、脾、肺、肾、胃、小肠、子宫、卵巢和垂体中双等位基因表达;(4)XIST基因在肌肉、脂肪、心、肝、脾、肺、肾、胃、小肠、子宫、卵巢和垂体中双等位基因表达:(5)MEST基因在肝脏、脾和卵巢中双等位基因表达,在肌肉、脂肪、心、肺、肾、胃、子宫和垂体中母系印记;(6)NAP1L5基因在肌肉、脂肪、肝、脾、肺、肾、胃、小肠、子宫、卵巢和垂体中母系印记;(7)PEG3基因在脂肪、心、肺、胃、小肠和卵巢中双等位基因表达,在肌肉、肝、脾、肾和子宫中母系印记。结果表明,虽然7个候选基因的印记状况在不同组织间有些差异,但从总体来看,它们在人、小鼠和猪中是趋于保守的。
     4.利用PCR-RFLP技术,对4个候选印记基因中存在的SNP位点在不同猪群中进行了基因分型,并在大白×梅山F_2代群体中进行了性状关联分析。结果表明:(1)PLAGL1基因,C1428T位点与肩部背膘厚、内脂率和股二头肌pH值的相关达到显著水平(p<0.05);(2)PEG10基因,C5274T位点与眼肌高度和股二头肌pH值的相关达到了显著水平(p<0.05),与眼肌宽度的相关达到了极显著水平(p<0.01);(3)PPP1R9A基因,A1688C位点与肩部背膘厚、臀部膘厚和肌内脂肪的相关达到了显著水平(p<0.05),和平均背膘厚、胴体长、眼肌面积和骨率的相关达到了极显著水平(p<0.01);(4)XIST基因,在公猪群体中,598-TCCATGG位点与臀部膘厚、平均膘厚、肌内脂肪和肌内水分的相关达到了显著水平(p<0.05),与肥肉率、瘦肉率、6-7胸椎间膘厚、胸腰椎间膘厚达到了极显著水平(p<0.01),在母猪群体中,598-TCCATGG位点与肥肉率、平均膘厚和眼肌高度的相关达到了显著水平(p<0.05),与臀部膘厚和6-7胸椎间膘厚达到了极显著水平(p<0.01)。4个候选印记基因中有3个与脂肪沉积相关,这些结果表明,将印记基因特别是位于性染色体上的XIST基因,作为分子标记应用于育种实践中,具有非常好的前景。
Genomic imprinting indicates that alleles from one parent are expressed, but allelesfrom the other parent are not expressed or express little in some tissues or cell types ofdiploid organism. Imprinted genes are genes that preferentially expressed from either thematernally inherited allele or the paternally inherited allele. The researches on genomicimprinting in mammals show that imprinted genes have important roles in the regulationof fetal growth, development, function of the placenta and postnatal behavior. At present,most studies on genomic imprinting are in human and mouse but little in livestock. Inpigs, there is no report on the identification of imprinted genes at the molecular level.Therefore, it is of interest to identify more imprinted genes in pigs for analyzing theconservation of genomic imprinting among different species. Most of the imprinted genesthat have been studied are regulatory: transcription factors, alternative splicer, tumorsuppressors, growth factors, or are involved in complex signal pathways. Because of theimportant regulatory function of imprinted genes on growth and development, we couldpredict that imprinted genes may affect growth and development largely in pigs. Whetherthe imprinted genes may be used as molecular mark in pigs' breeding is not known. Basedon above, our research includes two main aspects: first, analyzing the imprinted status of7 candidate imprinted genes with RT-PCR-RFLP or sequencing directly in the F_1 hybridsof Large White boars×Meishan sows and Meishan boars×Large White sows; second,PCR-RFLP analysis of 4 genes is used to detect the association of the polymorphism inimprinted genes and the carcass traits in the pigs of Large White×Meishan F_2 hybrids.Our results are as follows:
     1. We chose PLAGL1、PEG10、PPP1R9A、XIST、MEST、NAP1L5 and PEG3 genesas candidate imprinted genes in pigs according to the imprinted status of the genes inhuman and mouse and their biological functions. We obtained some sequences includesome complete ORF of the genes with electronic cloning and comparative genomictechnology. (1) PLAGL1, obtained cDNA sequence 2238bp, ORF (Open reading frame)1392bp, GenBank accession number DQ28899; (2) PEG10, obtained cDNA sequence6379bp, ORF 1212bp, GenBank accession number DQ779285; (3) PPP1R9A, obtainedcDNA sequence 1946bp, GenBank accession number EF619476; (4) XIST, obtainedcDNA sequence 1039b, GenBank accession number EF619477; (5) MEST, obtainedcDNA sequence 2167bp, ORF 981bp, GenBank accession number DQ EF619473; (6)NAP1L5, obtained cDNA sequence, GenBank accession number EF619474; (7) PEG3,obtained cDNA sequence 2052bp, GenBank accession number EF619475. Comparing thesimilarity between the cDNA sequences of the 7 genes and the corresponding homology in human and mouse show that the sequences similarities between human and pigs are allhigher than the sequences similarities between mouse and pigs.
     2. Aligning the cDNA sequences of the 7 genes between 3 Large White pigs and 3Meishan pigs revealed that: (1) PLAGL1, one SNP existed in coding region and one SNPexisted in the 3' UTR region, both of them are transition mutation. (2) PEG10, weidentified 4 SNPs in the 3' UTR region. Of 3 are transition mutation, 1 isinsertion/deletion mutation. (3) PPP1R9A, we identified 8 SNPs in the 3' UTR region. Of4 are transition mutation, 3 are transversion mutation, 1 is insertion/deletion mutation. (4)XIST, we identified 4 SNPs in the 3' UTR region. Of 3 are transition mutation, 1 isinsertion/deletion mutation. (5) MEST, two SNPs existed in the 3' UTR region, both ofthem are transition mutation. (6) NAP1L5, two SNPs existed in the 3' UTR region, one istransversion mutation and the other is insertion/deletion mutation. (7) PEG3, weidentified 3 SNPs in the 3' UTR region. Of 1 is transition mutation, 2 areinsertion/deletion mutation.
     3. Using the model of F_1 hybrids of Large White boar×Meishan sow and Meishanboar×Large White sow, we identified the imprinted status of the 7 genes in 14 differenttissues of 12 two-month pigs in the model through RT-PCR-RFLP analysis andsequencing directly. (1) PLAGL1gene is paternally expressed in skeletal muscle, fat, heart,liver, spleen, lung, kidney, stomach, small intestine, uterus, ovary and testicle. (2) PEG10gene is paternally expressed in skeletal muscle, fat, heart, liver, spleen, lung, kidney,stomach, small intestine, uterus and ovary. (3) PPP1R9A gene escapes genomicimprinting in skeletal muscle, fat, heart, liver, spleen, lung, kidney, stomach, smallintestine, uterus, ovary and pituitary. (4) Xist gene is biallelically expressed in skeletalmuscle, fat, heart, liver, spleen, lung, kidney, stomach, small intestine, uterus, ovary andpituitary. (5) MEST gene is biallelically expressed in liver, spleen and ovary, butpaternally expressed in skeletal muscle, fat, heart, lung, kidney, stomach, uterus, ovaryand pituitary. (6)NAP1L5 gene is paternally expressed in skeletal muscle, fat, liver,spleen, lung, kidney, stomach, small intestine, uterus, ovary and pituitary. (7) PEG3 geneis biallelically expressed in fat, heart, lung, stomach, small intestine and ovary, butpaternally expressed in skeletal muscle, liver, spleen, kidney and uterus. Although theimprinted status of the 7 genes is different in various tissues, they are relativelyconservative among pigs, human and mouse as a whole.
     4. Using PCR-RFLP, we detected 4 SNPs of 4 genes in different pig populations andobserved associations with traits in Large White and Meishan F_2 hybrids. The resultsshowed: (1) PLAGL1, C1428T-TaqI-RFLP is significant association with shoulder backfat thickness, internal fat ratio and biceps femoris pH (p<0.05). (2) PEG10,C5274T-TaqI-RFLP is significant association with lion eye height and biceps femoris pH(p<0.05), higher significant association with lion eye width (p<0.01). (3) PPP1R9A,A1688C-Eco47I-RFLP is significant association with shoulder backfat thickness, buttockfat thickness and intramuscular fat (p<0.05), higher significant association with averagebackfat thickness, carcass length, lion eye area and bone percentage (p<0.01). (4) Xist,598-TCCATGG-Eco47I-RFLP is significant association with buttock fat thickness,average backfat thickness, intramuscular fat and water moisture (p<0.05), highersignificant association with fat percentage, lean meat percentage, 6~7 rib fat thickness andthorax-waist fat thickness (p<0.01) in the population of male pigs. But in the populationof female pigs, 598-TCCATGG-Eco47I-RFLP is significant association with fatpercentage, average backfat thickness and lion eye height (p<0.05), higher significantassociation with buttock fat thickness and 6~7 rib fat thickness (p<0.01). Three of the 4candidate genes are associated with fat deposition, which showed that imprinted genes inparticular Xist gene located on sexual chromosome are fit for the molecular breeding.
引文
1.宾艳芳.牛IGF2和猪H19基因遗传印记研究.[博士学位论文].武汉:华中农业大学图书馆,2004
    2.程姗.印记控制区(ICR)的调控机制.生命的化学,2004,24(5):383-386
    3.崔英霞,武建国.基因组印记与基因组印记病.医学研究生学报,2001,14:70-73
    4.丁健华,蔡刚,傅传刚,李闻捷.H19/IGF2基因印记调控机制研究进展.国外医学分子生物学,2003,25(4):241-245
    5.伏彭辉.哺乳动物基因组印记的研究进展.畜禽业,2004,5:65-67
    6.侯晓军,焦丽红,陈新,王柳.基因组印记对个体发育及动物克隆的影响.遗传学报,2005,32(5):550-554
    7.黎真,傅衍,牛冬,阮晖.遗传印记—一种对孟德尔定律的发展与扩充的新现象.生物学通报,2003,38(12):3-7
    8.束婧婷.DNA甲基化与基因组印记.畜牧兽医杂志,2005,24(6):18-20
    9.吴瑞娟.基因组印记.生物学通报,2005,40(9):16
    10.吴一迁,崔恒宓.基因组印记与癌症.肿瘤,2002,22(2):154-156
    11.余升红.基因组印迹调节.生物技术,2005,15(3):83-85
    12.岳强,刘主.“遗传印记”现象的研究.韶关学院学报(自然科学版),2001,22(9):113-117
    13.张锋锐,何小兵,王基平.基因组印记及相关疾病.国外医学遗传学分册,2001,24(5):240-244
    14.张立岭,菊林花,杨丽君.蒙古羊胸椎数的亲本印记遗传研究.内蒙古农业大学学报,2000,21(2):1-6
    15.张立岭,斯琴毕力格,张世铨.多脊椎蒙古羊的胸腰椎长度对产肉性能的影响.中国畜牧杂志,1998,34(3):24-25
    16.张立岭.绵羊基因组印记遗传研究进展.中国草食动物,2001,3(4):38-40
    17.张守全,冯定远,田秀春,杨向中.哺乳动物印记基因的研究进展.中国生物工程 杂志,23(12):48-54
    18.张守全.2003.牛IGF2、H19基因的结构及遗传印记研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    19.张永彪,褚嘉祐.表观遗传学与人类疾病的研究进展.遗传,2005,27(3):466-472
    20.朱新产,王宝维,张涌.基因组印迹的起动与沉默.生物工程进展,2001,21(6):81-84
    21. Ashkar S,Weber G F,Panoutsakopoulou V, Sanchirico M E,Jansson M,Zawaideh S, Rittling S R,Denhardt D T,Glimcher M J,Cantor H.Eta-1(osteopontin):an early component of type-1 (cell-mediated) immunity. Science, 2000, 287(5454): 860-864
    22. Adams M D, Kelly J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Merril C R, Wu A, Olde B, Moreno R F. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252(5013): 1651-1656
    23. Adams R L P, Burdon R H. Molecular Biology of DNA methylation. New York, Berlin, Herddberg, Tokyo: Spring-Verlag, 1985,1.
    24. Alleman M, Doctor J. Genomic imprinting in plants: observation and evolutionary implications. Plant Mol Biol, 2000, 43:147-161
    25. Amarger V, Nguyen M, Van Laere A S, Braunschweig M, Nezer C, Georges M, Andersson L. Comparative sequence analysis of the INS-IGF2-H19 gene cluster in pigs. Mamm Genome, 2002,13(7): 388-398
    26. Anderson C L, Brown C J. Variability of X chromosome inactivation: effect on levels of TIMP1 RNA and role of DNA methylation. Hum Genet, 2002,110(3): 271-278
    27. Andreu N, Pujol-Moix N, Martinez-Lostao L, Oset M, Muniz-Diaz E, Estivill X, Volpini V, Fillat C. Wiskott-Aldrich syndrome in a female with skewed X-chromosome inactivation. Blood Cells Mol Dis, 2003,31(3): 332-337
    28. Arima T, Drewell R A, Arney K L, Inoue J, Makita Y, Hata A, Oshimura M, Wake N, Surani M A. A conserved imprinting control region at the HYMAI/ZAC domain is implicated in transient neonatal diabetes mellitus. Hum Mol Genet, 2001, 10(14): 1475-1483
    29. Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res, 2005, 33(8): 2650-2660
    30. Baguisi A, Behboodi E, Melican D T, Pollock J S, Destrempes M M, Cammuso C, Williams J L, Nims S D, Porter C A, Midura P, Palacios M J, Ayres S L, Denniston R S, Hayes M L, Ziomek C A, Meade H M, Godke R A, Gavin W G, Overstrom E W, Echelard Y. Production of goats by somatic cell nuclear transfer. Nat Biotechnol, 1999, 17(5): 456-461
    31. Bajaj V, Markandaya M, Krishna L, Kumar A. Paternal imprinting of the SLC22A1LS gene located in the human chromosome segment 11p15.5. BMC Genet, 2004, 5: 13
    32. Banfi S, Guffanti A, Borsani G How to get the best of dbEST. Trends Genet, 1998, 14(2): 80-81
    33. Barlow D P. Competition-a common motif for the imprinting mechanism? EMBO J, 1997, 16(23): 6899-6905
    34. Beechey C V. A reassessment of imprinting regions and phenotypes on mouse chromosome 6: Napll5 locates within the currently defined sub-proximal imprinting region. Cytogenet Genome Res, 2004,107(1-2): 108-114
    35. Bell A C Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature, 2000,405(6785): 482-485
    36. Bestor T H, Tycko B. Creation of genomic methylation patterns. Nat Genet, 1996, 12(4): 363-367
    37. Bidwell C A, Shay T L, Georges M, Beever J E, Berghmans S, Cockett N E. Differential expression of the GTL2 gene within the callipyge region of ovine chromosome 18. Anim Genet, 2001,32(5): 248-256
    38. Birger Y, Shemer R, Perk J, Razin A. The imprinting box of the mouse Igf2r gene. Nature, 1999,397(6714): 84-88
    39. Blagitko N, Mergenthaler S, Schulz U, Wollmann H A, Craigen W, Eggermann T, Ropers H H, Kalscheuer V M. Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue- and isoform-specific fashion. Hum Mol Genet, 2000, 9(11): 1587-1595
    40. Bourcigaux N, Gaston V, Logie A, Bertagna X, Le Bouc Y, Gicquel C. High expression of cyclin E and Gl CDK and loss of function of p57KIP2 are involved in proliferation of malignant sporadic adrenocortical tumors. J Clin Endocrinol Metab, 2000, 85(1): 322-330
    41. Brannan C I, Dees E C, Ingram R S, Tilghman S M. The product of the H19 gene may function as an RNA. Mol Cell Biol, 1990,10(1): 28-36
    42. Brockdorff N, Ashworth A, Kay G F, Cooper P, Smith S, McCabe V M, Norris D P, Penny G D, Patel D, Rastan S. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature, 1991, 351(6324): 329-331
    43. Brockdorff N, Ashworth A, Kay G F, McCabe V M, Norris D P, Cooper P J, Swift S, Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell, 1992, 71(3): 515-526
    44. Brookes A J. The essence of SNPs. Gene, 1999, 234(2): 177-186
    45. Brown C J, Ballabio A, Rupert J L, Lafreniere R G, Grompe M, Tonlorenzi R, Willard H F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 1991, 349(6304): 38-44
    46. Brown C J, Hendrich B D, Rupert J L, Lafreniere R G, Xing Y, Lawrence J, Willard H F. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell, 1992, 71(3): 527-542
    49. Chakravarti A. To a future of genetic medicine. Nature, 2001,409(6822): 822-823
    50. Chao W, Huynh K D, Spencer R J, Davidow L S, Lee J T. CTCF, a candidate trans-acting factor for X-inactivation choice. Science, 2002, 295(5553): 345-347
    51. Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, Georges M. Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEGll, and MEG8. Genome Res, 2001,11(5): 850-862
    52. Chesne P, Adenot P G, Viglietta C, Baratte M, Boulanger L, Renard J P. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol, 2002, 20(4): 366-369
    53. Cockett N E, Jackson S P, Shay T L, Farnir F, Berghmans S, Snowder G D, Nielsen D M, Georges M. Polar overdominance at the ovine callipyge locus. Science, 1996, 273(5272): 236-238
    54 Crouse H. The controlling element in sex chromosome behavior in Scia2ra. Genetics, 1960,45:1425
    55. Curley J P, Barton S, Surani A, Keverne E B. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci, 2004, 271(1545): 1303-1309
    56. de Koning D J, Rattink A P, Harlizius B, van Arendonk J A, Brascamp E W, Groenen M A. Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci U S A, 2000, 97(14): 7947-7950
    57 DeChiara T M, Efstratiadis A, Robertson E J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature, 1990, 345(6270): 78-80
    58. DeChiara T M, Robertson E J , Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell, 1991, 64(4): 849-859
    59. Dindot S V, Kent K C, Evers B, Loskutoff N, Womack J, Piedrahita J A. Conservation of genomic imprinting at the XIST, IGF2, and GTL2 loci in the bovine. Mamm Genome, 2004,15(12): 966-974
    60. Dittrich B, Buiting K, Korn B, Rickard S, Buxton J, Saitoh S, Nicholls R D, Poustka A, Winterpacht A, Zabel B, Horsthemke B. Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene. Nat Genet, 1996, 14(2): 163-170
    61. Eden S, Constancia M, Hashimshony T, Dean W, Goldstein B, Johnson A C, Keshet I, Reik W, Cedar H. An upstream repressor element plays a role in Igf2 imprinting. EMBO J, 2001, 20(13): 3518-3525
    62. Enlund F, Persson F, Stenman G Molecular analyses of the candidate tumor suppressor gene, PLAGL1, in benign and malignant salivary gland tumors. Eur J Oral Sci, 2004,112: 545-547
    63. Falls J G, Pulford D J, Wylie A A, Jirtle R L. Genomic imprinting: implications for human disease. Am J Pathol, 1999,154(3): 635-647
    64. Feil R, Khosla S, Cappai P, Loi P. Genomic imprinting in ruminants: allele specific gene expression in parthenogenetic sheep. Mamm Genome, 1998, 9: 831-834
    65. Frevel M A, Hornberg J J, Reeve A E. A potential imprint control element: identification of a conserved 42 bp sequence upstream of H19. Trends Genet, 1999, 15(6): 216-218
    66. Gaboreanu A M, Grapes L, Ramos A M, Kim J J, Rothschild M F. Characterization of an X-chromosome PCR-RFLP marker associated with fat deposition and growth in the pig. Anim Genet, 2004,35(5): 401-403
    67. Gardner R J, Mungall A J, Dunham I, Barber J C, Shield J P, Temple I K, Robinson D O. Localisation of a gene for transient neonatal diabetes mellitus to an 18.72 cR3000 (approximately 5.4 Mb) interval on chromosome 6q. J. Med. Genet, 1999, 36: 192-196
    68. Giudice L C, Irwin J C. Roles of the insulinlike growth factor family in nonpregnant human endometrium and at the decidual: trophoblast interface. Semin Reprod Endocrinol, 1999,17(1): 13-21
    69. Guillemot F, Caspary T, Tilghman S M, Copeland N G, Gilbert D J, Jenkins N A, Anderson D J, Joyner A L, Rossant J, Nagy A. Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet, 1995, 9(3): 235-242
    70. Haig D, Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell, 1991, 64(6): 1045-1046
    71. Halushka M K, Fan J B, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet, 1999, 22(3): 239-247
    72 Hark A T, Schoenherr C J, Katz D J, Ingram R S, Levorse J M, Tilghman S M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature, 2000, 405(6785): 486-489
    73. Harlizius B, Rattink A P, de Koning D J, Faivre M, Joosten R G, van Arendonk J A, Groenen M A. The X chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Mamm Genome, 2000,11(9): 800-802
    74. Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, Okada A, Ohishi S, Nabetani A, Morisaki H, Nakayama M, Niikawa N, Mukai T. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet, 1996, 14(2): 171-173
    75. Higashimoto K, Soejima H, Saito T, Okumura K, Mukai T. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain: the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer. Cytogenet Genome Res, 2006, 113(1-4): 306-312
    76 Higashimoto K, Soejima H, Yatsuki H, Joh K, Uchiyama M, Obata Y, Ono R, Wang Y, Xin Z, Zhu X, Masuko S, Ishino F, Hatada I, Jinno Y, Iwasaka T, Katsuki T, Mukai T. Characterization and imprinting status of OBPH1/Obph1 gene: implications for an extended imprinting domain in human and mouse. Genomics, 2002, 80(6): 575-584
    77. Hikichi T, Kohda T, Kaneko-Ishino T, Ishino F. Imprinting regulation of the murine Meg1/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Res, 2003, 31(5): 1398-1406
    78. Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout W M 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R. Epigenetic instability in ES cells and cloned mice. Science, 2001, 293(5527): 95-97
    79. Hurst L D, McVean G T. Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends Genet,1997,13(11): 436-443
    80. Isles A R, Davies W, Wilkinson L S. Genomic imprinting and the social brain. Philos Trans R Soc Lond B Biol Sci, 2006, 361(1476): 2229-2237
    81. Jaenisch R, Schnieke A, Harbers K. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc Natl Acad Sci U S A, 1985, 82(5): 1451-1455
    82. Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, Roeckel N, Taviaux S, Lefranc J L, Cau P, Berta P, Lalande M, Muscatelli F. The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet, 1997, 17(3): 357-361
    83. Jeon J T, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet, 1999, 21(2): 157-158
    84. Jong M T, Gray T A, Ji Y, Glenn C C, Saitoh S, Driscoll D J, Nicholls R D. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet, 1999, 8(5): 783-793
    85. Jost J P. Nuclear extracts of chicken embryos promote an active demethylation of DNA by excision repair of 5-methyldeoxycytidine. Proc Natl Acad Sci U S A, 1993, 90(10): 4684-4688
    86. Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M, Takada S, Takagi N, Arima T, Wake N, Kamimura K, Satomura K, Hermann R, Bonthron D T, Hayashizaki Y. The cell cycle control gene ZAC/PLAGL1 is imprinted-a strong candidate gene for transient neonatal diabetes. Hum Mol Genet, 2000,9(3): 453-460
    87. Kaneko-Ishino T, Kuroiwa Y, Miyoshi N, Kohda T, Suzuki R, Yokoyama M, Viville S, Barton S C, Ishino F, Surani M A. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nature Genetics, 1995,11: 52-59
    88. Kato Y, Tani T, Sotomaru Y, Kurokawa K, Kato J, Doguchi H, Yasue H, Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science, 1998, 282(5396): 2095-2098
    89. Kay G F, Barton S C, Surani M A, Rastan S. Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell, 1994, 77(5): 639-650
    90. Kay G F, Penny G D, Patel D, Ashworth A, Brockdorff N, Rastan S. Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell, 1993, 72(2): 171-182
    91. Khatib H. Imprinting of Nesp55 gene in cattle. Mamm Genome, 2004,15(8): 663-667
    92. Killian J K, Byrd J C, Jirtle J V, Munday B L, Stoskopf M K, MacDonald R G, Jirtle R L. M6P/IGF2R imprinting evolution in mammals. Mol Cell, 2000, 5(4): 707-716
    93. Killian J K, Nolan C M, Wylie A A, Li T, Vu T H, Hoffman A R, Jirtle R L. Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet, 2001,10(17): 1721-1728
    94. Kim J, Ashworth L, Branscomb E, Stubbs L. The human homolog of a mouse-imprinted gene, Peg3, maps to a zinc finger gene-rich region of human chromosome 19ql3.4. Genome Res, 997, 7: 532-540
    95. Kim J, Bergmann A, Lucas S, Stone R, Stubbs L. Lineage-specific imprinting and evolution of the zinc finger gene ZIM2. Genomics, 2004, 84: 47-58
    96. King T, Bland Y, Webb S, Barton S, Brown N A. Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dyn, 2002, 225: 212-215
    97. Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll D J, Nicholls R D, Cedar H. Allele-specific replication timing of imprinted gene regions. Nature, 1993, 364(6436): 459-463
    98. Kobayashi S, Kohda T, Miyoshi N, Kuroiwa Y, Aisaka K, Tsutsumi O, Kaneko-Ishino T, Ishino F. Human PEG1/MEST, an imprinted gene on chromosome 7. Hum Mol Genet, 1997, 6(5): 781-786
    99. Koohmaraie M, Shackelford S D, Wheeler T L, Lonergan S M, Doumit M E. A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J Anim Sci, 1995, 73(12): 3596-3607
    100. Kosaki K, Kosaki R, Craigen W J, Matsuo N. Isoform-specific imprinting of the human PEG1/MEST gene. Am J Hum Genet, 2000, 66(1): 309-312
    101. Kubota C, Yamakuchi H, Todoroki J, Mizoshita K, Tabara N, Barber M, Yang X. Six cloned calves produced from adult fibroblast cells after long-term culture. Proc Natl Acad Sci U S A, 2000,97(3): 990-995
    102. Kuroiwa Y, Kaneko-Ishino T, Kagitani F, Kohda T, Li L-L, Tada M, Suzuki, R, Yokoyama M, Shiroishi T, Wakana S, Barton S C, Ishino F, Surani M A. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nature Genet, 1996,12:186-190
    103. Landers M, Bancescu D L, Le Meur E, Rougeulle C, Glatt-Deeley H, Brannan C, Muscatelli F, Lalande M. Regulation of the large (approximately 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Res, 2004, 32(11): 3480-3492
    104. Lee J T, Jaenisch R. The (epi)genetic control of mammalian X-chromosome inactivation. Curr Opin Genet Dev, 1997, 7(2): 274-280
    105. Lee M P, Brandenburg S, Landes G M, Adams M, Miller G, Feinberg A P. Two novel genes in the center of the 11p15 imprinted domain escape genomic imprinting. Hum Mol Genet, 1999, 8(4): 683-690
    106. Lee M P, Feinberg A P. Genomic imprinting of a human apoptosis gene homologue, TSSC3. Cancer Res, 1998, 58(5): 1052-1056
    107. Lee M P, Hu R J, Johnson L A, Feinberg A P. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet, 1997,15(2): 181-185
    108. Lee S, Kozlov S, Hernandez L, Chamberlain S J, Brannan C I, Stewart C L, Wevrick R. Expression and imprinting of MAGEL2 suggest a role in Prader-willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet, 2000, 9(12): 1813-1819
    109. Lefebvre L, Viville S, Barton S C, Ishino F, Keverne E B, Surani M A. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet, 1998, 20(2): 163-169
    110. Lehner B, Williams G, Campbell R D, Sanderson C M. Antisense transcripts in the human genome. Trends Genet, 2002,18(2): 63-65
    111. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature, 1993, 366(6453): 362-365
    112. Li L, Keverne E B, Aparicio S A, Ishino F, Barton S C, Surani M A. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science, 1999, 284(5412): 330-333
    113. Liao D J, Du Q Q, Yu B W, Grignon D, Sarkar F H. Novel perspective: focusing on the X chromosome in reproductive cancers. Cancer Invest, 2003, 21(4): 641-658
    114. Long M, Rosenberg C, Gilbert W. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci U S A, 1995, 92(26): 12495-12499
    115. Loyola A, Almouzni G Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta, 2004,1677: 3-11
    116. Lux A, Beil C, Majety M, Barron S, Gallione C J, Kuhn H M, Berg J N, Kioschis P, Marchuk D A, Hafner M. Human retroviral gag- and gag-pol-like proteins interact with the transforming growth factor-beta receptor activin receptor-like kinase 1. J Biol Chem, 2005, 280(9): 8482-8493
    117. Ma D, Shield J P, Dean W, Leclerc I, Knauf C, Burcelin R R, Rutter G A, Kelsey G Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J. Clin. Invest, 2004,114: 339-348
    118. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature, 2000, 403(6769): 501-502
    119. McAvoy T, Allen PB, Obaishi H, Nakanishi H, Takai Y, Greengard P, Nairn A C, Hemmings H C Jr. Regulation of neurabin I interaction with protein Phosphatase 1 by phosphorylation. Biochemistry, 1999, 38(39): 12943-1299
    120. McCann J A, Zheng H, Islam A, Goodyer C G, Polychronakos C. Evidence against GRB10 as the gene responsible for Silver-Russell syndrome. Biochem Biophys Res Commun, 2001, 286(5): 943-948
    121. McGrath J , Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37(1): 179-183
    122. Meguro M, Kashiwagi A, Mitsuya K, Nakao M, Kondo I, Saitoh S, Oshimura M. A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nat Genet, 2001, 28(1): 19-20
    123. Milan D, Bidanel J P, Iannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol, 2002, 34(6): 705-728
    124. Miyoshi N, Kuroiwa Y, Kohda T, Shitara H, Yonekawa H, Kawabe T, Hasegawa H, Barton S C, Surani M A, Kaneko-Ishino T, Ishino F. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc Natl Acad Sci U S A, 1998, 95(3): 1102-1107
    125. Mizuno Y, Sotomaru Y, Katsuzawa Y, Kono T, Meguro M, Oshimura M, Kawai J, Tomaru Y, Kiyosawa H, Nikaido I, Amanuma H, Hayashizaki Y, Okazaki Y. Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem Biophys Res Commun, 2002, 290(5): 1499-1505
    126. Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet, 1991,7: 45-49
    127. Murphy S K, Wylie A A, Jirtle R L. Imprinting of PEG3, the human homologue of a mouse gene involved in nurturing behavior. Genomics, 2001, 71(1): 110-117
    128. Mutirangura A, Jayakumar A, Sutcliffe J S, Nakao M, McKinney M J, Buiting K, Horsthemke B, Beaudet A L, Chinault A C, Ledbetter D H. A complete YAC contig of the Prader-Willi/Angelman chromosome region (15qll-ql3) and refined localization of the SNRPN gene. Genomics, 1993,18(3): 546-552
    129. Nagase T, Ishikawa K, Kikuno R, Hirosawa M, Nomura N, Ohara O. Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res, 1999, 6(5): 337-345
    130. Nakabayashi K, Bentley L, Hitchins M P, Mitsuya K, Meguro M, Minagawa S, Bamforth J S, Stanier P, Preece M, Weksberg R, Oshimura M, Moore G E, Scherer S W. Identification and characterization of an imprinted antisense RNA (MESTIT1) in the human MEST locus on chromosome 7q32. Hum Mol Genet, 2002, 11(15): 1743-5176
    131. Nakabayashi K, Makino S, Minagawa S, Smith A C, Bamforth J S, Stanier P, Preece M, Parker-Katiraee L, Paton T, Oshimura M, Mill P, Yoshikawa Y, Hui C C, Monk D, Moore G E, Scherer S W. Genomic imprinting of PPP1R9A encoding neurabin I in skeletal muscle and extra-embryonic tissues. J Med Genet, 2004, 41(8): 601-608
    132. Nakanishi H, Obaishi H, Satoh A, Wada M, Mandai K, Satoh K, Nishioka H, Matsuura Y, Mizoguchi A, Takai Y. Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J Cell Biol, 1997, 139(4): 951-961
    133. Neumann B, Kubicka P, Barlow D P. Characteristics of imprinted genes. Nat Genet, 1995, 9(1): 12-13
    134. Nicholls R D. The impact of genomic imprinting for neurobehavioral and developmental disorders. J Clin Invest, 2000,105(4): 413-418
    135. Nickerson DA, Taylor S L, Weiss K M, Clark A G, Hutchinson R G, Stengard J, Salomaa V, Vartiainen E, Boerwinkle E, Sing C F. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet, 1998,19(3):233-240
    136. Nikaido I, Saito C, Wakamoto A, Tomaru Y, Arakawa T, Hayashizaki Y, Okazaki Y. EICO (Expression-based Imprint Candidate Organizer): finding disease-related imprinted genes. Nucleic Acids Res, 2004, 32: 548-551
    137. Ogawa O, Eccles M R, Szeto J, McNoe L A, Yun K, Maw M A, Smith P J, Reeve A E. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature, 1993, 362(6422): 749-751
    138. Ogonuki N, Inoue K, Yamamoto Y, Noguchi Y, Tanemura K, Suzuki O, Nakayama H, Doi K, Ohtomo Y, Satoh M, Nishida A, Ogura A. Early death of mice cloned from somatic cells. Nat Genet, 2002, 30(3): 253-254
    139. Okabe H, Satoh S, Furukawa Y, Kato T, Hasegawa S, Nakajima Y, Yamaoka Y, Nakamura Y. Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res, 2003, 63: 3043-3048
    140. Okamura K, Hagiwara-Takeuchi Y, Li T, Vu T H, Hirai M, Hattori M, Sakaki Y, Hoffman A R, Ito T. Comparative genome analysis of the mouse imprinted gene impact and its nonimprinted human homolog IMPACT: toward the structural basis for species-specific imprinting. Genome Res, 2000,10(12): 1878-1889
    141. Okita C, Meguro M, Hoshiya H, Haruta M, Sakamoto Y K, Oshimura M. A new imprinted cluster on the human chromosome 7q21-q31, identified by human-mouse monochromosomal hybrids. Genomics, 2003, 81: 556-559
    142. Oliver C J, Terry-Lorenzo R T, Elliott E, Bloomer W A, Li S, Brautigan D L, Colbran R J, Shenolikar S. Targeting protein Phosphatase 1 (PP1) to the actin cytoskeleton: the neurabin I/PP1 complex regulates cell morphology. Mol Cell Biol, 2002, 22(13): 4690-4701
    143. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry A C. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000, 289(5482): 1188-1190
    144. Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, Kaneko-Ishino T, Ishino F. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics, 2001, 73(2): 232-237
    145. Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, Hino T, Suzuki-Migishima R, Ogonuki N, Miki H, Kohda T, Ogura A, Yokoyama M, Kaneko-Ishino T, Ishino F. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet, 2006, 38(1): 101-106
    146. Ono R, Shiura H, Aburatani H, Kohda T, Kaneko-Ishino T, Ishino F. Identification of a large novel imprinted gene cluster on mouse proximal chromosome 6. Genome Res, 2003,13(7): 1696-1705
    147. Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol, 2000,10(8): 475-478
    148. Penny G D, Kay G F, Sheardown S A, Rastan S, Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature, 1996, 379(6561): 131-137
    149. Penzes P, Johnson R C, Sattler R, Zhang X, Huganir R L, Kambampati V, Mains R E, Eipper B A. The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron, 2001, 29(1): 229-242
    150. Perez-Enciso M, Mercade A, Bidanel J P, Geldermann H, Cepica S, Bartenschlager H, Varona L, Milan D, Folch J M. Large-scale, multibreed, multitrait analyses of quantitative trait loci experiments: the case of porcine X chromosome. J Anim Sci, 2005, 83(10): 2289-2296
    151. Pfeifer K, Tilghman S M. Allele-specific gene expression in mammals: the curious case of the imprinted RNAs. Genes Dev, 1994, 8(16): 1867-1874
    152. Piras G, El Kharroubi A, Kozlov S, Escalante-Alcalde D, Hernandez L, Copeland N G, Gilbert D J, Jenkins N A, Stewart C L. Zac1 (Lot1), a potential tumor suppressor gene, and the gene for epsilon-sarcoglycan are maternally imprinted genes: identification by a subtractive screen of novel uniparental fibroblast lines. Mol Cell Biol, 2000, 20(9): 3308-3315
    153. Polejaeva I A, Chen S H, Vaught T D, Page R L, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares D L, Colman A, Campbell K H. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 2000, 407(6800): 86-90
    154. Price R A, Li W D, Kilker R. An X-chromosome scan reveals a locus for fat distribution in chromosome region Xp21-22. Diabetes, 2002,51(6): 1989-1991
    155. Puck J M, Willard H F. X inactivation in females with X-linked disease. N Engl J Med, 1998, 338(5): 325-328
    156. Qian N, Frank D, O'Keefe D, Dao D, Zhao L, Yuan L, Wang Q, Keating M, Walsh C, Tycko B. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum Mol Genet, 1997, 6(12): 2021-2029
    157. Rainier S, Johnson L A, Dobry C J, Ping A J, Grundy P E, Feinberg A P. Relaxation of imprinted genes in human cancer. Nature, 1993,362(6422): 747-749
    158. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science, 2001, 293(5532): 1089-1093
    159. Reik W, Santos F, Dean W. Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology, 2003, 59(1): 21-32
    160. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet, 2001, 2(1): 21-32
    161. Relaix F, Wei X, Wu X, Sassoon D A. Peg3/Pwl is an imprinted gene involved in the TNF-NF-kappa-B signal transduction pathway. Nature Genet, 1998,18: 287-291
    162. Rohrer G A, Keele J W. Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J Anim Sci, 1998, 76(9): 2247-2254
    163. Rohrer G A, Thallman R M, Shackelford S, Wheeler T, Koohmaraie M. A genome scan for loci affecting pork quality in a Duroc-Landrace F2 population. Anim Genet, 2006, 37(1): 17-27
    164. Rougeulle C, Cardoso C, Fontes M, Colleaux L, Lalande M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet, 1998,19(1): 15-16
    165. Rougeulle C, Heard E. Antisense RNA in imprinting: spreading silence through Air. Trends Genet, 2002,18(9): 434-437
    166. Ruddock N T, Wilson K J, Cooney M A, Korfiatis N A, Tecirlioglu R T, French A J. Analysis of imprinted messenger RNA expression during bovine preimplantation development. Biol Reprod, 2004, 70(4): 1131-1135
    167. Runte M, Huttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet, 2001, 10(23): 2687-2700
    168. Ruvinsky A. Basics of gametic imprinting. J Anim Sci, 1999, 77(2): 228-237
    169. Sambrook J, Fritsch E F, Maniatic T. Molecular cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989,464-467
    170. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol, 2002, 241(1): 172-182
    171. Sato S, Atsuji K, Saito N, Okitsu M, Sato S, Komatsuda A, Mitsuhashi T, Nirasawa K, Hayashi T, Sugimoto Y, Kobayashi E. Identification of quantitative trait loci affecting corpora lutea and number of teats in a Meishan x Duroc F2 resource population. J Anim Sci, 2006, 84(11): 2895-2901
    172. Shastry B S. SNP alleles in human disease and evolution. J Hum Genet, 2002, 47(11): 561-566
    173. Shemer R, Birger Y, Dean W L, Reik W, Riggs A D, Razin A. Dynamic methylation adjustment and counting as part of imprinting mechanisms. Proc Natl Acad Sci U S A, 1996,93(13): 6371-6376
    174. Shi W, Lefebvre L, Yu Y, Otto S, Krella A, Orth A, Fundele R. Loss-of-imprinting of Peg1 in mouse interspecies hybrids is correlated with altered growth. Genesis, 2004, 39(1): 65-72
    175. Shi W, Zakhartchenko V, Wolf E. Epigenetic reprogramming in mammalian nuclear transfer. Differentiation, 2003, 71(2): 91-113
    176. Shigemoto K, Brennan J, Walls E, Watson C J, Stott D, Rigby P W, Reith A D. Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. Nucleic Acids Res, 2001, 29(19): 4079-4088
    177. Sleutels F, Tjon G, Ludwig T, Barlow D P. Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air. EMBO J, 2003, 22(14): 3696-3704
    178. Sleutels F, Zwart R, Barlow D P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 2002, 415(6873): 810-813
    179. Smith R J, Dean W, Konfortova G, Kelsey G Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res, 2003, 13(4): 558-569
    180. Smith R J, Dean W, Konfortova G, Kelsey G. Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res, 2003, 13(4): 558-569
    181. Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J, Journot L. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J, 1997,16: 2814-2825
    182. Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J, Journot L. Regulation of apoptosis and cell cycle arrest by Zacl, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J, 1997,16(10): 2814-2825
    183. Stadnick M P, Pieracci F M, Cranston M J, Taksel E, Thorvaldsen J L, Bartolomei M S. Role of a 461-bp G-rich repetitive element in H19 transgene imprinting. Dev Genes Evol, 1999, 209(4): 239-248
    184. Stephens D J, Banting G Direct interaction of the trans-Golgi network membrane protein, TGN38, with the F-actin binding protein, neurabin. J Biol Chem, 1999, 274(42): 30080-30086
    185. Szabo P, Tang S H, Rentsendorj A, Pfeifer G P, Mann J R. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr Biol, 2000,10(10): 607-610
    186. Takahashi M, Kamei Y, Ezaki O. Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. Am J Physiol Endocrinol Metab, 2005, 288(1): 117-24
    187. Van Laere A S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald A L, Haley C S, Buys N, Tally M, Andersson G, Georges M, Andersson L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832-836
    188. Varrault A, Ciani E, Apiou F, Bilanges B, Hoffmann A, Pantaloni C, Bockaert J, Spengler D, Journot L. hZAC encodes a zinc finger protein with antiproliferative properties and maps to a chromosomal region frequently lost in cancer. Proc. Nat. Acad. Sci, 1998,95: 8835-8840
    189. Walter J, Paulsen M. Imprinting and disease. Semin Cell Dev Biol, 2003, 14(1): 101-110
    190. Webber A L, Ingram R S, Levorse J M, Tilghman S M. Location of enhancers is essential for the imprinting of H19 and Vg/2 genes. Nature, 1998, 391(6668): 711-715
    191. Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810-813
    192. Wolffe A P. Transcriptional control: imprinting insulation. Curr Biol, 2000, 10(12): 463-465
    193. Wood A J, Roberts R G, Monk D, Moore G E, Schulz R, Oakey R J. A Screen for Retrotransposed Imprinted Genes Reveals an Association between X Chromosome Homology and Maternal Germ-Line Methylation. 2007 Feb 9;3(2):0192-0203.e20 [Epub ahead of print]
    194. Wutz A, Smrzka O W, Schweifer N, Schellander K, Wagner E F, Barlow D P. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature, 1997, 389(6652): 745-749
    195. Xin Z, Soejima H, Higashimoto K, Yatsuki H, Zhu X, Satoh Y, Masaki Z, Kaneko Y, Jinno Y, Fukuzawa R, Hata J, Mukai T. A novel imprinted gene, KCNQ1DN, within the WT2 critical region of human chromosome 11p15.5 and its reduced expression in Wilms' tumors. J Biochem (Tokyo), 2000,128(5): 847-853
    196. Xue F, Tian X C, Du F, Kubota C, Taneja M, Dinnyes A, Dai Y, Levine H, Pereira L V, Yang X. Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet, 2002, 31(2): 216-220
    197. Yamada H Y, Gorbsky G J. Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene, 2006, 25(9): 1330-1339
    298. Yang Q, Lai C Q, Parnell L, Cupples L A, Adiconis X, Zhu Y, Wilson P W, Housman D E, Shearman A M, D'Agostino R B, Ordovas J M. Genome-wide linkage analyses and candidate gene fine mapping for HDL3 cholesterol: the Framingham Study. J Lipid Res, 2005,46(7): 1416-1425
    199. Yevtodiyenko A, Carr M S, Patel N, Schmidt J V. Analysis of candidate imprinted genes linked to Dlkl-Gtl2 using a congenic mouse line. Mamm Genome, 2002, 13(11): 633-638
    200. Young L E, Fernandes K, McEvoy T G, Butterwith S C, Gutierrez C G, Carolan C, Broadbent P J, Robinson J J, Wilmut I, Sinclair K D. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet, 2001, 27(2): 153-154
    201. Young LE, Schnieke AE, McCreath K J, Wieckowski S, Konfortova G, Fernandes K, Ptak G, Kind A J, Wilmut I, Loi P, Feil R. Conservation of IGF2-H19 and IGF2R imprinting in sheep: effects of somatic cell nuclear transfer. Mech Dev. 2003 Dec;120(12):1433-1442
    202. Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y, Cuevas B, Kuo W L, Gray J W, Siciliano M, Mills G B, Bast R C Jr. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci U S A, 1999, 96(1): 214-219
    203. Zaitoun I, Khatib H. Assessment of genomic imprinting of SLC38A4, NNAT, NAP1L5, and H19 in cattle. BMC Genet, 2006,7: 49
    204. Zemel S, Bartolomei M S, Tilghman S M. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nat Genet, 1992, 2(1): 61-65
    205. Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H. Establishment of transcriptional competence in early and late S phase. Nature, 2002,420(6912): 198-202
    206. Zhang S, Kubota C, Yang L, Zhang Y, Page R, O'Neill M, Yang X, Tian X C. Genomic imprinting of H1 9 in naturally reproduced and cloned cattle. Biol Reprod, 2004, 71(5): 1540-1544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700