MIMO干扰对齐预编码与信道反馈研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰对齐(Interference alignment, IA)是一种有效的干扰控制机制,能够通过发送端预编码使多个发送用户的干扰在接收端重叠在一起,可以实现干扰系统最大自由度(Degree of Freedom, DoF)并显著提高系统容量,近年来受到学术界的广泛关注。多输入多输出(MIMO)技术是提高频谱效率的关键技术,MIMO技术能够提供大量的空间自由度,适合于应用到干扰对齐系统之中。将MIMO技术与干扰对齐相结合能够大幅度提高多用户干扰系统的通信速率,是当前无线通信领域的一个重要研究方向。
     干扰对齐技术的研究还处于起步阶段,还有许多的问题没有解决。例如,干扰对齐的预编码在大多数情况下难以获得显式解,只能获得数值解,并且只能得到次优解。干扰对齐需要发送端具有全局信道状态信息(CSI)。一方面获取发送端全局信道状态信息会带来大量的开销,另一方面信道状态信息误差导致预编码产生误差,使系统性能下降。此外,干扰对齐最初是在对称干扰网络的背景下被提出的,将干扰对齐应用到现有网络,例如蜂窝网中,需要根据现有系统的特点对传统干扰对齐算法进行改进。
     本文针对MIMO干扰对齐系统中的预编码算法、信道状态信息反馈以及蜂窝网中的预编码算法进行如下的研究工作:
     首先,本文对干扰对齐的自由度和预编码算法进行了分析和研究。在进行MIMO干扰对齐预编码设计之前需要确定预编码的自由度,并且这一自由度不能大于系统能够实现的最大自由度。本文对几种主要MIMO干扰信道下的自由度进行了分析,研究了自由度的实现方法,并对干扰对齐预编码的解析算法和数值算法进行了分析。在此基础上,本文提出了一种基于二次规划的干扰对齐预编码算法,该算法以系统容量为优化目标,联合设计预编码矩阵和接收解码矩阵,在每次迭代中都同时更新预编码矩阵和接收解码矩阵。仿真表明该算法能够实现较高的系统速率。这些分析和研究为本文后续研究工作的展开进行了铺垫。
     其次,研究了非理想信道状态信息下基于最小均方误差(MMSE)的干扰对齐预编码算法。干扰对齐需要发送端具有全局信道状态信息,由于实际系统中能够获得的信道状态信息与真实信道状态信息会存在一定的误差,本文对高斯信道误差模型和范数有界信道误差模型进行了分析,然后在高斯信道误差模型下,提出一种每用户功率受限的MMSE干扰对齐算法。仿真表明该算法与传统MMSE算法相比,在信道状态信息存在高斯误差时能够获得更好的性能。在范数有界信道误差模型下提出了用户功率受限时的极小极大总MSE和极小极大用户MSE两种干扰对齐算法。两种算法都是以信道误差范数有界时,最差信道下的性能为优化目标,是鲁棒的预编码算法。极小极大总MSE算法从系统总体性能考虑,能够实现更好的总体MSE性能,而极小极大用户MSE算法能够实现更好的用户MSE性能,是一种实现用户间公平的预编码算法。
     再次,研究了干扰对齐信道状态信息反馈过程中的比特分配算法。由于干扰信道各链路增益不同,在各链路之间平均分配反馈比特数是一种次优算法。针对这一问题,本文分析了随机向量量化下的量化失真与量化比特数的关系,给出了有限反馈下干扰对齐的平均速率下限。根据平均速率下限与量化比特数和信道增益的关系,提出了干扰对齐系统中的分布式反馈比特分配算法和集中式反馈比特分配算法。分布式反馈比特分配算法以最大化每个用户的平均速率下限为目标,以每个用户的反馈比特数为约束,集中式反馈比特分配算法以最大化总平均速率下限为优化目标,总反馈比特数为约束。仿真表明,提出的两种反馈比特分配算法与等比特分配算法相比能够在相同的总反馈比特数下实现更高的总速率。集中式算法比分布式算法性能稍好,但是需要在中心处理单元进行,需要占用更多的控制链路资源,并且算法复杂度也高于分布式算法。
     最后,研究了蜂窝网中基于级联预编码的干扰对齐算法。针对传统级联预编码算法在多小区边缘速率下降的问题,提出了基于干扰空间扩展的级联预编码算法和基于干扰最小化的级联预编码算法。改进算法能够在多小区边缘实现更好的性能。针对干扰对齐不能对期望信号的功率进行控制,有可能导致期望信号功率损失较大,进而造成速率下降的问题,结合级联预编码算法的特点,提出了基于等效信道矩阵范数的多用户选择算法,从而利用多用户增益来提高系统性能。仿真表明提出的多用户选择算法能够实现系统性能的大幅度提升。
Interference alignment is an effective interference management strategy. With properly designed transmit precoder such that multiple interference from different transmitters overlapped at each receiver. Interference alignment can realizes the maximum degree of freedom (DoF) in interference system and significantly improve system capacity. Multiple input multiple output (MIMO) technology is the key technology to improve the spectrum efficiency. MIMO system can provide a large number of spatial degrees of freedom, which is very suitable for the implementation of interference alignment. Combining MIMO technology and the interference alignment will greatly improve the interference network capacity, therefore becomes an important research area in today’s wireless communication field.
     Research on interference alignment is still in its infancy and there are many problems unsolved. For example, explicit precoder of interference alignment is difficult to obtain in most cases, and only suboptimal numerical solution can be achieved by numerical methods. Interference alignment requires global channel state information at transmitter. On the one hand, acquisition of the global channel state information will bring a lot of overhead. On the other hand, imperfect channel state information bring about precoding error and lead to performance degradation. Further, the origin interference alignment algorithms are proposed based on symatric interference channel, and modifications are needed before the implementation of interference alignment in to the current networks such as cellular network.
     Focus on MIMO interference alignment, the research works in this thesis include precoder design, channel state information feedback and transceiver design for cellular networks, which are detailed as follows:
     Firstly, degree of freedom and precoding algorithms for interference alignment are analyzed. Since degrees of freedom should be known before designing the precoder in MIMO interference alignment, degree of freedom for several MIMO interference networks are analyzed and the methods of realize degree of freedom are evaluated. After that, precoder design algorithms are analyzed, which include closed form algorithms and numerical algorithms. This thesis gives an interference alignment algorithm based on quadratic programming which jointly design the transmit precoder and receive decoder to optimize the system capacity. In each iteration, precoders and decoders are updated simultaneously. Simulation results show that the proposed algorithm outperforms traditional interference alignment algorithm in the expanse of higher complexity. However, this algorithm can be used to evaluate the performance of interference alignment.
     Secondly, MMSE interference alignment strategy under imperfect channel state information is studied. Interference aligned requires global channel state information at transmitters (CSIT). Channel state information obtained at transmitter usually have some errors. Gaussian statistic channel error model and norm bounded channel model are analyzed. Based on the Gaussian statistic channel error model, this thesis gives interference alignment strategy which minimize the mean square error with per transmitter power constraint. Simulation results show that compared with traditional MMSE algorithm,the proposed algorithm achieves better performance. Based on norm bounded channel model, two interference alignment algorithms which minimize the worst case sum MSE and minimize worst case user MSE are proposed. These two algorithms are robust transceiver algorithms mini-max total MSE algorithm can achieve better total MSE performance, from the viewpoint of system and the mini-max users MSE algorithm can achieve better user MSE performance, which is a fair precoding algorithm.
     Thirdly, bit allocation algorithm in the process of channel state information feedback for MIMO interference alignment is studied. Since channel gains of interference channels are differenc, allocation feedback bits equally on different channels is sub-optimal. In order to solve this problem, relationship between quantization distortion and quantization bits is studied, and lower bound of average rate for interference alignment with limited feedback is derived. Based on the relationship between lower bound of average rate and the quantization bits and channel gains, distributed and centralized feedback bit allocation algorithms are proposed. Distributed feedback bit allocation algorithm maximize the lower bound of the average rate of each user with per user feedback bits constraint, while centralized feedback bit allocation algorithm maximize the average sum rate lower bound with the total number of feedback bits constraint. Simulation results show that the proposed two feedback bit allocation algorithms achieve higher sum rate compared with the equal bit allocation algorithm. Performance of centralized feedback bit allocation algorithm is slightly better than distributed algorithm, but centralized feedback bit allocation should be processed at central processing unit, so more control and feedback resources are needed. Also, the centralized feedback bit allocation algorithm is more computational complex than distributed algorithm.
     Lastly, interference alignment based on cascade precoding for cellular networks is studied. In order to solve the rate degradation for cell edge user due to inter cell interference, two modified interference alignment precoding algorithms are proposed. Cascade precoding algorithm based on interference space expansion and interference minimization are proposed. Proposed algorithms can achieve better performance when there are multiple interference base stations. Since desired signal power cannot be controlled in interference alignment, which could lead to signal power degradation and therefore the degradation of throughput. Considering the characteristics of the cascade precoding algorithm, multi-user selection algorithm based on the Frobenius norm of equivalent channel matrices are proposed. Simulation results show that the proposed multi-user selection algorithm can greatly improve system performance.
引文
[1] David K, Jefferies N. Wireless Visions: A Look to the Future by the Fellows ofthe WWRF[J]. IEEE Vehicular Technology Magazine,2012,7(4):26-36.
    [2]第33次中国互联网络发展状况统计报告[M].2014.
    [3] Zheng X, Walke B. Enhanced Fractional Frequency Reuse to IncreaseCapacity of OFDMA Systems[C]//20093rd International Conference on NewTechnologies, Mobility and Security (NTMS).2009:1-5.
    [4] Manli Q, Hardjawana W, Yonghui L, et al. Inter-Cell InterferenceCoordination through Adaptive Soft Frequency Reuse in LTE Networks[C]//IEEE Wireless Communications and Networking Conference.2012:1618-1623.
    [5] Poongup L, Taeyoung L, Jangkeun J, et al. Interference Management in LTEFemtocell Systems Using Fractional Frequency Reuse[C]//The12thInternational Conference on Advanced Communication Technology (ICACT).2010:1047-1051.
    [6] Assaad M. Optimal Fractional Frequency Reuse (FFR) in MulticellularOFDMA System[C]//IEEE68th Vehicular Technology Conference, VTC2008-Fall2008:1-5.
    [7] Stolyar A L, Viswanathan H. Self-Organizing Dynamic Fractional FrequencyReuse for Best-Effort Traffic through Distributed Inter-Cell Coordination[C]//INFOCOM.2009:1287-1295.
    [8] Zyoud A, Habaebi M H, Chebil J, et al. Femtocell Interference Mitigation[C]//Control and System Graduate Research Colloquium (ICSGRC), IEEE.2012:94-99.
    [9] Chandrasekhar V, Andrews J G, Gatherer A. Femtocell Networks: A Survey[J].IEEE Communications Magazine,2008,46(9):59-67.
    [10] Hasan S F, Siddique N H, Chakraborty S. Femtocell Versus WiFi-a Surveyand Comparison of Architecture and Performance[C]//1st InternationalConference on Wireless Communication, Vehicular Technology, InformationTheory and Aerospace&Electronic Systems Technology.2009:916-920.
    [11] Boudreau G, Panicker J, Ning G, et al. Interference Coordination andCancellation for4G Networks[J]. IEEE Communications Magazine,,2009,47(4):74-81.
    [12] Cadambe V R, Jafar S A. Interference Alignment and Spatial Degrees ofFreedom for the K User Interference Channel[C]//2008IEEE InternationalConference on Communications.2008:971-975.
    [13] Jafar S A. Interference Alignment—a New Look at Signal Dimensions in aCommunication Network [M]. Foundations and Trends in Communicationsand Information Theory.2010:1-136.
    [14] Cadambe V R, Jafar S A. Interference Alignment and Degrees of Freedom ofthe K-User Interference Channel[J]. IEEE Transactions on Information Theory,2008,54(8):3425-3441.
    [15] Birk Y, Kol T. Informed-Source Coding-on-Demand (ISCOD) over BroadcastChannels[C]//INFOCOM '98Seventeenth Annual Joint Conference of theIEEE Computer and Communications Societies Proceedings IEEE.1998:1257-1264.
    [16] Maddah-Ali M A, Motahari A S, Khandani A K. Signaling over MIMOMulti-Base Systems: Combination of Multi-Access and BroadcastSchemes[C]//IEEE International Symposium on Information Theory. Seattle,WA, United States.IEEE,2006:2104-2108.
    [17] Maddah-Ali M A, Motahari A S, Khandani A K. Communication over MIMOX Channels: Interference Alignment, Decomposition, and PerformanceAnalysis[J]. IEEE Transactions on Information Theory,2008,54(8):3457-3470.
    [18] Jafar S A, Shamai S. Degrees of Freedom Region of the MIMO X Channel[J].IEEE Transactions on Information Theory,2008,54(1):151-170.
    [19] Razaviyayn M, Lyubeznik G, Zhi-Quan L. On the Degrees of FreedomAchievable through Interference Alignment in a MIMO InterferenceChannel[J]. IEEE Transactions on Signal Processing,2012,60(2):812-821.
    [20] Jafar S A, Fakhereddin M J. Degrees of Freedom for the MIMO InterferenceChannel[J]. IEEE Transactions on Information Theory,2007,53(7):2637-2642.
    [21] Cadambe V R, Jafar S A. Degrees of Freedom of Wireless Networks-What aDifference Delay Makes[C]//41st Asilomar Conference on Signals, Systemsand Computers, ACSSC. Pacific Grove, CA, United states.IEEE ComputerSociety,2007:133-137.
    [22] Telatar E. Capacity of Multi-Antenna Gaussian Channels[J]. EuropeanTransactions on Telecommunications,1999,10(6):585-595.
    [23] Goldsmith A, Jafar S A, Jindal N, et al. Capacity Limits of MIMO Channels[J].IEEE Journal on Selected Areas in Communications,2003,21(5):684-702.
    [24] Yetis C M, Gou T, Jafar S A, et al. On Feasibility of Interference Alignment inMIMO Interference Networks[J]. IEEE Transactions on Signal Processing,2010,58(9):4771-4782.
    [25] Yetis C M, Tiangao G, Jafar S A, et al. Feasibility Conditions for InterferenceAlignment[C]//GLOBECOM,2009. Honolulu, HI, Unitedstates.IEEE,2009:1-6.
    [26] Ning H, Ling C, Leung K K. Relay-Aided Interference Alignment: FeasibilityConditions and Algorithm[C]//IEEE International Symposium on InformationTheory. Austin, TX, United states.IEEE,2010:390-394.
    [27] Tresch R, Guillaud M, Riegler E. On the Achievability of InterferenceAlignment in the K-User Constant MIMO Interference Channel[C]//IEEE/SP15th Workshop on Statistical Signal Processing. Cardiff, Unitedkingdom.IEEE Computer Society,2009:277-280.
    [28] Gomadam K, Cadambe V R, Jafar S A. Approaching the Capacity of WirelessNetworks through Distributed Interference Alignment[C]//IEEE GlobalTelecommunications Conference. New Orleans, LA, Unitedstates.IEEE,2008:1-6.
    [29] Gomadam K, Cadambe V R, Jafar S A. A Distributed Numerical Approach toInterference Alignment and Applications to Wireless Interference Networks[J].IEEE Transactions on Information Theory,2011,57(6):3309-3322.
    [30] Shen H, Li B. A Novel Iterative Interference Alignment Scheme Via ConvexOptimization for the MIMO Interference Channel[J]. IEEE VehicularTechnology Conference,2010,
    [31] Kumar K R, Feng X. An Iterative Algorithm for Joint Signal and InterferenceAlignment[C]//IEEE International Symposium on Information TheoryProceedings (ISIT).2010:2293-2297.
    [32] Santamaria I, Gonzalez O, Heath R W, et al. Maximum Sum-Rate InterferenceAlignment Algorithms for MIMO Channels[C]//IEEE GlobalTelecommunications Conference(GLOBECOM). Miami, FL, Unitedstates.IEEE,2010:1-6.
    [33] Seok-Hwan P, Haewook P, Young-Doo K, et al. Regularized InterferenceAlignment Based on Weighted Sum-MSE Criterion for MIMO InterferenceChannels[C]//IEEE International Conference on Communications (ICC).Cape Town, South africa.IEEE,2010:1-5.
    [34] Schmidt D A, Changxin S, Berry R A, et al. Minimum Mean Squared ErrorInterference Alignment[C]//Conference Record of the Forty-Third AsilomarConference on Signals, Systems and Computers. Pacific Grove, CA, Unitedstates.IEEE Computer Society,2009:1106-1110.
    [35] Lu E, Ma T, Lu I T. Interference Alignment-Like Behaviors of MMSE Designsfor General Multiuser MIMO Systems[C]//GLOBECOM. Houston, TX,United states.IEEE,2011:1-5.
    [36] Haishi N, Cong L, Leung K K. Feasibility Condition for InterferenceAlignment with Diversity[J]. IEEE Transactions on Information Theory,2011,57(5):2902-2912.
    [37] Nosrat-Makouei B, Andrews J G, Heath R W. MIMO Interference Alignmentover Correlated Channels with Imperfect CSI[J]. IEEE Transactions on SignalProcessing,2011,59(6):2783-2794.
    [38] Huang H, Lau V K N, Yinggang D, et al. Robust Approximate LatticeAlignment Design for K-Pairs Quasi-Static MIMO Interference Channels withImperfect CSI[C]//2010IEEE International Symposium on InformationTheory Proceedings (ISIT). Austin, TX, US.IEEE,2010:2298-2302.
    [39] Huang H, Lau V K N, Yinggang D, et al. Robust Lattice Alignment for K-UserMIMO Interference Channels with Imperfect Channel Knowledge[J]. IEEETransactions on Signal Processing,2011,59(7):3315-3325.
    [40] Park J, Sung Y, Kim D, et al. Outage Probability and Outage-Based RobustBeamforming for MIMO Interference Channels with Imperfect Channel StateInformation[J]. IEEE Transactions on Wireless Communications,2012,PP(99):1-13.
    [41] Ubaidulla P, Chockalingam A. Relay Precoder Optimization in MIMO-RelayNetworks with Imperfect CSI[J]. IEEE Transactions on Signal Processing,2011,59(11):5473-5484.
    [42] Chiu E, Lau V K N, Huang H, et al. Robust Transceiver Design for K-PairsQuasi-Static MIMO Interference Channels Via Semi-Definite Relaxation[J].IEEE Transactions on Wireless Communications,2010,9(12):3762-3769.
    [43] Krishnamachari R T, Varanasi M K. Interference Alignment under LimitedFeedback for MIMO Interference Channels[C]//IEEE InternationalSymposium on Information Theory Proceedings (ISIT). Austin, TX, Unitedstates.IEEE,2010:619-623.
    [44] Ganesan S, Sellathurai M, Ratnarajah T. Opportunistic Interference Alignmentin Cognitive MIMO with Finite Rate Feedback[C]//2009First UK-IndiaInternational Workshop on Cognitive Wireless Systems (UKIWCWS). NewDelhi, India.IEEE Computer Society,2009:1-5.
    [45] Sungyoon C, Hyukjin C, Kaibin H, et al. Efficient Feedback Design forInterference Alignment in MIMO Interference Channel[C]//IEEE75thVehicular Technology Conference (VTC Spring).2012:1-5.
    [46] Lingyang S, Zhu H, Shaohui S, et al. Evolutionary Channel State InformationFeedback Control for Interference Alignment[C]//2011Conference Record ofthe Forty Fifth Asilomar Conference on Signals, Systems and Computers(ASILOMAR).2011:1340-1344.
    [47] Papailiopoulos D S, Changho S, Dimakis A G. Feedback in the K-UserInterference Channel[C]//IEEE International Symposium on InformationTheory Proceedings (ISIT).2012:3130-3134.
    [48] Mingxin Z, Leiming Z, Lingyang S, et al. Interference Alignment withDelayed Differential Feedback for Time-Correlated MIMO Channels[C]//IEEE International Conference on Communications (ICC).2012:3741-3745.
    [49] Lee H-H, Ko Y-C. Interference Alignment with Random Vector Quantizationfor MIMO Interference Channels[C]//IEEE Vehicular Technology Conference(VTC Fall).2012:1-5.
    [50] Ayach O E, Heath R W. Interference Alignment with Analog Channel StateFeedback[J]. IEEE Transactions on Wireless Communications,2012,11(2):626-636.
    [51] Bhagavatula R, Heath R W. Adaptive Limited Feedback for Sum-RateMaximizing Beamforming in Cooperative Multicell Systems[J]. IEEETransactions on Signal Processing,2011,59(2):800-811.
    [52] El Ayach O, Heath R W. Grassmannian Differential Limited Feedback forInterference Alignment[J]. IEEE Transactions on Signal Processing,2012,60(12):6481-6494.
    [53] El Ayach O, Lozano A, Heath J R. On the Overhead of Interference Alignment:Training, Feedback, and Cooperation[J]. IEEE Transactions on WirelessCommunications,2012, PP(99):1-12.
    [54] Heath R W, Love D J, Rao B D, et al. Exploiting Limited Feedback inTomorrow's Wireless Communication Networks[J]. IEEE Journal on SelectedAreas in Communications,2008,26(8):1337-1340.
    [55] Love D J, Heath R W, Jr. Limited Feedback Unitary Precoding for OrthogonalSpace-Time Block Codes[J]. IEEE Transactions on Signal Processing,2005,53(1):64-73.
    [56] Love D J, Heath R W, Lau V K N, et al. An Overview of Limited Feedback inWireless Communication Systems[J]. IEEE Journal on Selected Areas inCommunications,2008,26(8):1341-1365.
    [57] Namyoon L, Heath R W. Space-Time Interference Alignment andDegree-of-Freedom Regions for the MISO Broadcast Channel with PeriodicCSI Feedback[J]. IEEE Transactions on Information Theory,2014,60(1):515-528.
    [58] Rao X, Lau V K N. Interference Alignment with Partial CSI Feedback inMIMO Cellular Networks[J]. IEEE Transactions on Signal Processing,2014,62(8):2100-2110.
    [59] Xiongbin R, Liangzhong R, Lau V K N. CSI Feedback Reduction for MIMOInterference Alignment[J]. IEEE Transactions on Signal Processing,2013,61(18):4428-4437.
    [60] Rao X, Ruan L, Lau V K N. Limited Feedback Design for InterferenceAlignment on MIMO Interference Networks with Heterogeneous Path Lossand Spatial Correlations[J]. IEEE Transactions on Signal Processing,2013,61(10):2598-2607.
    [61] Jin-Sung K, Sung-Hyun M, Sang-Rim L, et al. A New Channel QuantizationStrategy for MIMO Interference Alignment with Limited Feedback[J]. IEEETransactions on Wireless Communications,2012,11(1):358-366.
    [62] Cho S, Huang K, Kim D, et al. Interference Alignment for Uplink CellularSystems with Limited Feedback[J]. IEEE Communications Letters,2012,PP(99):1-4.
    [63] Cho S, Huang K B, Kim D Y, et al. Feedback-Topology Designs forInterference Alignment in MIMO Interference Channels[J]. IEEE Transactionson Signal Processing,2012,60(12):6561-6575.
    [64] Jin J, Lihua L, Hui T, et al. New Feedback Topology Designs with ReducedCSI Overhead for MIMO Interference Alignment[J]. IEEE Signal ProcessingLetters,2014,21(2):176-179.
    [65] Krishnamachari R T, Varanasi M K. Interference Alignment under LimitedFeedback for MIMO Interference Channels[J]. IEEE Transactions on SignalProcessing,2013,61(15):3908-3917.
    [66] Jung Hoon L, Wan C. Opportunistic Interference Aligned User Selection inMultiuser MIMO Interference Channels[C]//GLOBECOM. Miami, FL,United states.IEEE,2010:1-5.
    [67] Bagheri S, Scaglione A. Opportunistic Interference Alignment Effects inCooperative Broadcast of Multiple-Source[C]//2010Conference Record ofthe Forty Fourth Asilomar Conference on Signals, Systems and Computers(ASILOMAR). Pacific Grove, CA, United states.IEEE ComputerSociety,2010:1607-1611.
    [68] Jung Hoon L, Wan C. Interference Alignment by Opportunistic User Selectionin3-User MIMO Interference Channels[C]//IEEE International Conferenceon Communications. Kyoto, Japan.IEEE,2011:1-5.
    [69] Perlaza S M, Debbah M, Lasaulce S, et al. Opportunistic InterferenceAlignment in MIMO Interference Channels[C]//IEEE19th InternationalSymposium on Personal, Indoor and Mobile Radio Communications(PIMRC).Poznan, Poland.IEEE,2008:1-5.
    [70] Perlaza S M, Fawaz N, Lasaulce S, et al. From Spectrum Pooling to SpacePooling: Opportunistic Interference Alignment in MIMO CognitiveNetworks[J]. IEEE Transactions on Signal Processing,2010,58(7):3728-3741.
    [71] Chung L, Dimitrov E, Moghaddamnia S, et al. Performance Investigation ofMMSE-Based Interference Alignment for Multiuser MIMO UWB[C]//2011IEEE International Conference on Ultra-Wideband (ICUWB). Bologna,Italy.IEEE,2011:170-174.
    [72] Irmer R, Droste H, Marsch P, et al. Coordinated Multipoint: Concepts,Performance, and Field Trial Results[J]. IEEE Communications Magazine,2011,49(2):102-111.
    [73]3GPP. Tr25.814Physical Layer Aspects for Evolved UTRA.[M].2007.
    [74] Schreck J, Wunder G. Iterative Interference Alignment for CellularSystems[C]//International ITG Workshop on Smart Antennas (WSA).2011:1-8.
    [75] Ruan L Z, Lau V K N. Interference Alignment Algorithm for Quasi-StaticMIMO Cellular System[J]. IEEE Global Telecommunications Conference(Globecom),2011,
    [76] Schreck J, Wunder G. Iterative Interference Alignment for Cellular Systemswith User Selection[C]//IEEE International Conference on Acoustics, Speechand Signal Processing (ICASSP).2012:2833-2836.
    [77] Hsin-Jui C, Jen-Ming W, Jen-Yuan H, et al. Iterative Interference Alignmentfor Joint Degrees of Freedom and Sum Capacity Optimization[C]//20138thInternational ICST Conference on Communications and Networking in China(CHINACOM).2013:680-684.
    [78] Changho S, Ho M, Tse D N C. Downlink Interference Alignment[J]. IEEETransactions on Communications,2011,59(9):2616-2626.
    [79] Bayesteh A, Mobasher A, Yongkang J. Downlink Multi-User InterferenceAlignment in Two-Cell Scenario[C]//201112th Canadian Workshop onInformation Theory (CWIT).2011:182-185.
    [80] Zhuang B N, Berry R A, Honig M L. Interference Alignment in Mimo CellularNetworks[J].2011IEEE International Conference on Acoustics, Speech, andSignal Processing,2011,3356-3359.
    [81] Jie T, Lambotharan S. Interference Alignment Techniques for MIMOMulti-Cell Interfering Broadcast Channels[J]. IEEE Transactions onCommunications,2013,61(1):164-175.
    [82] Rezaee M, Guillaud M, Lindqvist F. CSIT Sharing over Finite CapacityBackhaul for Spatial Interference Alignment[C]//IEEE InternationalSymposium on Information Theory Proceedings (ISIT).2013:569-573.
    [83] Tresch R, Guillaud M. Clustered Interference Alignment in Large CellularNetworks[C]//IEEE20th International Symposium on Personal, Indoor andMobile Radio Communications.2009:1024-1028.
    [84] Sujie C, Cheng R S. Clustering for Interference Alignment in a MultiuserInterference Channel[C]//IEEE75th Vehicular Technology Conference (VTCSpring).2012:1-5.
    [85] Chen S, Cheng R S. Clustering for Interference Alignment in MultiuserInterference Network[J]. IEEE Transactions on Vehicular Technology,2014,PP(99):1-12.
    [86] Ben Halima S, Saadani A. A Reduced Complexity Clustering Algorithm forthe K-User MIMO Interference Channel[C]//2012IEEE13th InternationalWorkshop on Signal Processing Advances in Wireless Communications(SPAWC).2012:284-288.
    [87] Bang Chul J, Won-Yong S. Opportunistic Interference Alignment forInterference-Limited Cellular TDD Uplink[J]. IEEE Communications Letters,2011,15(2):148-150.
    [88] Pandey P, Hajimirsadeghi M, Pompili D. Region of Feasibility of InterferenceAlignment in Underwater Sensor Networks[J]. IEEE Journal of OceanicEngineering,2014,39(1):189-202.
    [89] Cadambe V R, Jafar S A, Maleki H, et al. Asymptotic Interference Alignmentfor Optimal Repair of MDS Codes in Distributed Storage[J]. IEEETransactions on Information Theory,2013,59(5):2974-2987.
    [90] Changho S, Ramchandran K. Exact-Repair MDS Codes for DistributedStorage Using Interference Alignment[C]//2010IEEE InternationalSymposium on Information Theory Proceedings (ISIT),.2010:161-165.
    [91] Shah N B, Rashmi K V, Kumar P V, et al. Interference Alignment inRegenerating Codes for Distributed Storage: Necessity and CodeConstructions[J]. IEEE Transactions on Information Theory,2012,58(4):2134-2158.
    [92] Gollakota S, Perli S D, Katabi D. Interference Alignment and Cancellation[J].Sigcomm2009,2009,159-170.
    [93] El Ayach O, Peters S W, Heath R W. Real World Feasibility of InterferenceAlignment Using MIMO-OFDM Channel Measurements[C]//2009IEEEMilitary Communications Conference. Boston, MA, Unitedstates.IEEE,2009:1-6.
    [94] El Ayach O, Peters S W, Heath R W. The Feasibility of Interference Alignmentover Measured MIMO-OFDM Channels[J]. IEEE Transactions on VehicularTechnology,2010,59(9):4309-4321.
    [95] Gonza, x, lez O, et al. Experimental Validation of Interference AlignmentTechniques Using a Multiuser MIMO Testbed[C]//2011International ITGWorkshop on Smart Antennas (WSA).2011:1-8.
    [96]马延军.干扰对齐及其在现代无线通信系统中的应用[D];西安电子科技大学,2012.
    [97] Yanjun M, Jiandong L, Qin L, et al. Group Based Interference Alignment[J].Communications Letters, IEEE,2011,15(4):383-385.
    [98] Ma Y, Li J, Chen R, et al. On Feasibility of Interference Alignment for L-CellConstant Cellular Interfering Networks[J]. IEEE Communications Letters,2012,16(5):714-716.
    [99]李建东,马延军,伟刘, et al.多小区mu-Mimo系统中的动态模式切换算法[J].西安电子科技大学学报(自然科学版),2011,38(5):6.
    [100]张晨.干扰对齐预编码设计的关键技术研究[D];中国科学技术大学,2013.
    [101] Tingting L, Chenyang Y. On the Feasibility of Linear Interference Alignmentfor MIMO Interference Broadcast Channels with Constant Coefficients[J].Signal Processing, IEEE Transactions on,2013,61(9):2178-2191.
    [102] Hui S, Bin L, Meixia T, et al. MSE-Based Transceiver Designs for the MIMOInterference Channel[J]. IEEE Transactions on Wireless Communications,2010,9(11):3480-3489.
    [103] Zhengzheng X, Jianhua M, Meixia T. Degrees of Freedom of MIMO Two-WayX Relay Channel[C]//Global Communications Conference (GLOBECOM).IEEE.2012:2420-2425.
    [104]王存祥,邱玲.协作多点传输中一种基于特征子信道的干扰对齐预编码矩阵优化方案[J].信号处理,2011,27(3):5.
    [105] Meng S, Chunming Z, Xiao L, et al. Best-Effort Interference Alignment inOFDM Systems with Finite SNR[C]//IEEE International Conference onCommunications (ICC). Kyoto, Japan.IEEE,2011:1-6.
    [106] Sheng L, Yinggang D. A General Closed-Form Solution to AchieveInterference Alignment Along Spatial Domain[C]//IEEE GlobalTelecommunications Conference(GLOBECOM) Miami, FL, Unitedstates.IEEE,2010:1-5.
    [107] Sang Won C, Jafar S A, Sae-Young C. On the Beamforming Design forEfficient Interference Alignment[J]. IEEE Communications Letters,2009,13(11):847-849.
    [108]章扬,周正,石磊, et al.蜂窝网络下行链路单反馈干扰对齐算法研究[J].电子与信息学报,2012,12(2816-2822.
    [109] Gupta P, Kumar P R. The Capacity of Wireless Networks[J]. IEEETransactions on Information Theory,2000,46(2):388-404.
    [110] Etkin R H, Tse D N C, Hua W. Gaussian Interference Channel Capacity towithin One Bit[J]. IEEE Transactions on Information Theory,2008,54(12):5534-5562.
    [111] Annapureddy V S, Veeravalli V V. Gaussian Interference Networks: SumCapacity in the Low-Interference Regime and New Outer Bounds on theCapacity Region[J]. IEEE Transactions on Information Theory,2009,55(7):3032-3050.
    [112] Shang X, Chen B, Gans M J. On the Achievable Sum Rate for MIMOInterference Channels[J]. IEEE Transactions on Information Theory,2006,52(9):4313-4320.
    [113] Host-Madsen A. Capacity Bounds for Cooperative Diversity[J]. IEEETransactions on Information Theory,2006,52(4):1522-1544.
    [114] Lizhong Z, Tse D N C. Diversity and Multiplexing: A Fundamental Tradeoffin Multiple-Antenna Channels[J]. IEEE Transactions on Information Theory,2003,49(5):1073-1096.
    [115] Tse D, Viswanath P. Fundamentals of Wireless Communication [M].Cambridge University Press,2005.
    [116] Cadambe V R, Jafar S A. Interference Alignment and the Degrees of Freedomof Wireless X Networks[J]. IEEE Transactions on Information Theory,2009,55(9):3893-3908.
    [117] Tse D N C, Viswanath P, Lizhong Z. Diversity-Multiplexing Tradeoff inMultiple-Access Channels[J]. IEEE Transactions on Information Theory,2004,50(9):1859-1874.
    [118] Vishwanath S, Jindal N, Goldsmith A G. Duality, Achievable Rates, andSum-Rate Capacity of Gaussian MIMO Broadcast Channels[J]. IEEETransactions on Information Theory,2003,49(10):2658-2668.
    [119] Viswanath P, Tse D N C. Sum Capacity of the Vector Gaussian BroadcastChannel and Uplink-Downlink Duality[J]. IEEE Transactions on InformationTheory,2003,49(8):1912-1921.
    [120] Wei Y, Cioffi J M. Sum Capacity of Gaussian Vector Broadcast Channels[J].Information Theory, IEEE Transactions on,2004,50(9):1875-1892.
    [121] Tiangao G, Jafar S A. Degrees of Freedom of the K User M X N MIMOInterference Channel[J]. IEEE Transactions on Information Theory,2010,56(12):6040-6057.
    [122] Changho S, Tse D. Interference Alignment for Cellular Networks[C]//46thAnnual Allerton Conference on Communication, Control, and Computing.2008:1037-1044.
    [123] Peters S W, Heath R W. Interference Alignment Via AlternatingMinimization[C]//IEEE International Conference on Acoustics, Speech, andSignal Processing. Taipei, Taiwan.Institute of Electrical and ElectronicsEngineers Inc,2009:2445-2448.
    [124] Peters S W, Heath R W. Cooperative Algorithms for MIMO InterferenceChannels[J]. IEEE Transactions on Vehicular Technology,2011,60(1):206-218.
    [125] Xu W, Dong X D, Lu W S. Joint Precoding Optimization for MultiuserMulti-Antenna Relaying Downlinks Using Quadratic Programming[J]. IEEETransactions on Communications,2011,59(5):1228-1235.
    [126] Antoniou A, Wu-Sheng L. Practical Optimization: Algorithms andEngineering Applications [M]. New York: Springer,2007.
    [127] Boyd S, Vandenberghe L. Convex Optimization [M]. New York: CambridgeUniversity Press,2004.
    [128] Bogale T E, Vandendorpe L, Chalise B K. Robust Transceiver Optimizationfor Downlink Coordinated Base Station Systems: Distributed Algorithm[J].IEEE Transactions on Signal Processing,2012,60(1):337-350.
    [129] Tsipouridou D, Liavas A P. On the Sensitivity of the Transmit MIMO WienerFilter with Respect to Channel and Noise Second-Order StatisticsUncertainties[J]. IEEE Transactions on Signal Processing,2008,56(2):832-838.
    [130] Taesang Y, Eunchul Y, Goldsmith A. MIMO Capacity with ChannelUncertainty: Does Feedback Help?[C]//IEEE Global TelecommunicationsConference(GLOBECOM).2004:96-100Vol.101.
    [131] Tsipouridou D, Liavas A P. On the Sensitivity of the MIMOTomlinson-Harashima Precoder with Respect to Channel Uncertainties[J].IEEE Transactions on Signal Processing,2010,58(4):2261-2272.
    [132] Larsson E G, Stoica P. Space-Time Block Coding for WirelessCommunications [M]. U.K.; Cambridge Univ. Press.2003:174.
    [133] Biglieri E, Calderbank R, Constantinides A, et al. MIMO WirelessCommunications [M]. U.K.; Cambridge Univ. Press.2007:93.
    [134] Jiaheng W, Palomar D P. Worst-Case Robust MIMO Transmission withImperfect Channel Knowledge[J]. IEEE Transactions on Signal Processing,2009,57(8):3086-3100.
    [135] Lorenz R G, Boyd S P. Robust Minimum Variance Beamforming[J]. IEEETransactions on Signal Processing,2005,53(5):1684-1696.
    [136] Pascual-Iserte A, Palomar D P, Perez-Neira A I, et al. A Robust MaximinApproach for MIMO Communications with Imperfect Channel StateInformation Based on Convex Optimization[J]. IEEE Transactions on SignalProcessing,2006,54(1):346-360.
    [137] Horn R A. Topics in Matrix Analysis [M]. New York: Cambridge UniversityPress,1991.
    [138] Vucic N, Boche H, Shi S Y. Robust Transceiver Optimization in DownlinkMultiuser MIMO Systems[J]. IEEE Transactions on Signal Processing,2009,57(9):3576-3587.
    [139] Eldar Y C, Merhav N. A Competitive Minimax Approach to Robust Estimationof Random Parameters[J]. IEEE Transactions on Signal Processing,2004,52(7):1931-1946.
    [140] Horn R, R. C. Matrix Analysis [M]. Cambridge University Press,1992.
    [141] Grant M, Boyd S. Graph Implementations for Nonsmooth Convex Programs
    [M]//BLONDEL V, BOYD S, KIMURA H. Recent Advances in Learning andControl. Springer-Verlag Limited.2008:95-110.
    [142] Guillaud M, Slock D T M, Knopp R. A Practical Method for Wireless ChannelReciprocity Exploitation through Relative Calibration[C]//Proceedings of theEighth International Symposium on Signal Processing and Its Applications,2005.2005:403-406.
    [143] Thukral J, Bolcskei H. Interference Alignment with Limited Feedback[J].IEEE International Symposium on Information Theory,2009,1759-1763.
    [144] Ozdemir M K, Arslan H. Channel Estimation for Wireless OFDM Systems[J].IEEE Communications Surveys&Tutorials,2007,9(2):18-48.
    [145] Au-Yeung C K, Love D J. On the Performance of Random VectorQuantization Limited Feedback Beamforming in a MISO System[J]. IEEETransactions on Wireless Communications,2007,6(2):458-462.
    [146] Dai W, Liu Y E, Rider B. Quantization Bounds on Grassmann Manifolds andApplications to MIMO Communications[J]. IEEE Transactions on InformationTheory,2008,54(3):1108-1123.
    [147] Palomar D P, Fonollosa J R. Practical Algorithms for a Family of WaterfillingSolutions[J]. Signal Processing, IEEE Transactions on,2005,53(2):686-695.
    [148] Nguyen D H N, Le-Ngoc T. Sum-Rate Maximization in the Multicell MIMOBroadcast Channel with Interference Coordination[J]. IEEE Transactions onSignal Processing,2014,62(6):1501-1513.
    [149] Shin W, Lee N, Lim J B, et al. On the Design of Interference AlignmentScheme for Two-Cell MIMO Interfering Broadcast Channels[J]. IEEETransactions on Wireless Communications,2011,10(2):437-442.
    [150] Wyner A D. Shannon-Theoretic Approach to a Gaussian CellularMultiple-Access Channel[J]. IEEE Transactions on Information Theory,1994,40(6):1713-1727.
    [151] Pan Z, Wong K K, Ng T S. Generalized Multiuser Orthogonal Space-DivisionMultiplexing[J]. IEEE Transactions on Wireless Communications,2004,3(6):1969-1973.
    [152] Gesbert D, Kountouris M, Heath R W, et al. Shifting the MIMO Paradigm[J].IEEE Signal Processing Magazine,2007,24(5):36-46.
    [153] Aziz D, Mazhar M, Weber A. Performance Enhancement of Multi User MultiCell Interference Alignment with Pair Selection[C]//2013IEEE78thVehicular Technology Conference (VTC Fall),2013:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700