新型网络结构下MIMO信道测量与建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足IMT-Advanced系统高数据率传输的需要,首先需要为IMT-Advanced系统寻找足够的频谱,其次需要使用MIMO等高频谱利用率的物理层传输技术,最后则需要采用新的网络结构。基于中继的通信系统与传统蜂窝网络相比,具有降低功耗、改善覆盖、提高数据率和增强分集增益的优点,被认为是最有效的IMT-Advanced候选方案之一无线信道的测量和建模是传输技术研究与评估、通信系统实现与部署的基础,因此在IMT-Adavanced分配或者候选频段内,以及在新型网络结构下,进行信道测量和建模是非常必要的。本论文主要围绕中继系统的宽带MIMO信道测量和建模,按照实地测量、统计分析、模型建立的思路,理论分析与实地测量相结合完成研究工作。论文的主要工作和创新点包括:
     (1)基于实测数据的信道性能分析方法和框架:MIMO和中继性能的研究吸引了广泛的关注,但是目前的理论研究所假设的信道状况较为理想,导致理论预测的性能与系统在真实传播环境中所能达到的实际性能存在偏差。现场测量获得的信道包含了传播环境的细节,因此基于实测信道进行的性能分析和预测具有较高的准确性,但是关于如何从实测信道获得系统的性能,目前还没有完整的方法和框架。为了对MIMO和中继在实际传播环境中的性能进预测和验证,提出并建立了基于实测信道进行性能分析的方法和框架,推导了重要信道性能的表达式,从信道增益、信号相关性、特征值分布、容量、分集复用折中等角度对实测信道的性能进行分析。基于建立的性能分析框架,研究了室内热点和室外中继场景信道的统计特性和性能,比较了三种传输方案(直接传输、放大转发和解码转发)在实际传播环境的信噪比、空间分集和容量,分析了传播环境对于系统性能的影响。
     (2)倾斜极化天线阵列的空间和互极化联合相关性研究:倾斜极化天线阵列利用了空间和互极化带来的解相关效果,可以有效降低信号相关性,提高系统性能。但是由于目前尚没有相应的理论表达式,倾斜极化天线阵列不同天线的信号相关性只能通过仿真或者测量得到,信道参数对相关性的影响也未完全明确。针对MIMO系统使用倾斜极化天线阵列的情况,基于3GPP SCM模型,推导了任意天线倾角和间距时,由空间相关性和互极化性联合贡献的信号相关性的表达式,并给出了大角度扩展和小角度扩展时的低复杂度近似表达式。推导了信号相关性随天线配置(间距、倾角)和信道参数(角度扩展、交叉极化鉴别率)变化的表达式。通过仿真验证了表达式的正确性,分析了准确表达式和近似表达式的应用范围,研究了不同天线配置信号相关性的变化规律。最后推导了天线倾角与天线间距的等效关系。
     (3)中继信道统计特性研究:中继天线一般低于基站天线,高于移动台天线。天线高度的改变导致传播环境不同于传统的基站与移动台链路。但是目前还没有在IMT-Advanced频段内进行MIMO中继信道测量的结果。对于MIMO中继系统性能有着重要影响的极化和空间特性还没有相关研究,因此,基于传统的基站与移动台链路获得的信道参数统计特性的适用性,以及中继信道参数的新特性值得深入探讨。根据实测数据和信道参数估计的结果,比较了中继信道三条链路的空间和极化特性,使用最小二乘估计获得交叉极化鉴别率和角度功率谱的分布。提出了使用多簇拉普拉斯分布描述角度功率谱。给出了交叉极化鉴别率随距离变化的经验公式。推导了信号相关性关于多簇拉普拉角度功率谱和交叉极化鉴别率的公式。根据推导的公式和实测获得的参数值,分析了不同链路的天线配置在实际传播环境中的信号相关性,为基站、中继和移动台的天线配置提供了指导。
     (4)簇内统计统计特性和传播机制研究以及簇识别和簇跟踪方法的改进:目前主要的信道模型均基于簇,最新的信道模型根据传播机制对不同类型的簇分配不同的参数。但现有的测量和研究尚未涉及RS(?)MS链路的簇内统计特性和传播机制。因此,根据信道参数估计的结果,对多经分量进行簇识别和簇跟踪。基于簇分析了RS(?)MS链路的簇内统计特性和传播机制。提出了多维距离簇心初始化方法,使用归一化正交距离作为距离的量度。提出了基于反射机制和自动跟踪相结合的簇跟踪算法。本部分工作为基于簇的信道建模和参数化提供基础。
     本文涉及室内热点场景和室外中继场景的测量结果分别被ITU-R和3GPP-LTE+组织接受,提出的方法可以广泛应用于信道测量和建模工作,测量和分析结果可以为IMT-Advanced性能评估和系统部署提供参考。以上研究工作可以为中国未来IMT-Advanced系统的仿真、评估和网络规划提供可靠的研究基础。
To meet the requirement of high data rate transmission, adequate fre-quency bands should be allocated to the IMT-Advanced system. Moreover, more effords should be devoted to the reformation of the network structure and the improvement of the transmission technique. Relay is considered as one of the most promising candidate techniques because of its various advantages over the conventional cellular system regarding the enhancement of coverage range, diversity, and achievable rates. Since the channel measurement and modeling are vital for the research of the transmission technology and the deployment of the communication system, it is very necessary to carry out the channel mea-surement and modeling in the frequency bands that have been or probably will be allocated to the IMT-Advanced, as well as in the emerging network struc-ture. The research in this paper mainly focuses on the channel measurement and modeling in relay system. The main line of the research consists of three steps, namely field measurement, parameter estimation and statistics, as well as modeling. The main contributions are as follows.
     (1) The performances of MIMO and relay have been attracting a wide range of concerns. However, most of current theoretical literature hypothesize relatively simple channel conditions, resulting in a deviation between the the-oretically predicted performance and the actual performance that system can achieve in the real propagation environment. The field measurement can ac-quire details from the propagation environment, so the performance analysis and prediction based on the measured channel can achieve high accuracy. Nev-ertheless there are no complete methodology and framework on how to assess the system performance from the measured channel at present. A framework for the performance evaluation based on the measured channel is established. The expressions for performance indices of the measured channel are derived. Based on the framework, the performances of the measured channel in indoor hotspot and outdoor relay scenarios are analyzed in terms of channel gain, channel correlation, eigenvalue statistics, capacity and diversity-multiplexing tradeoff. The achievable signal-to-noise ratio, spatial diversity and capacity of three transmission schemes, i.e., direct transmission, amplify-and-forward and decode-and-forward relaying, are investigated. The impact of the propagation environment on the performance is also analyzed.
     (2) The slant polarized array can utilize the decorrelation effect introduced by both the space and orthogonal polarization, thus can reduce the signal cor-relation and improve system performance. However, because currently there is no corresponding theoretical solution, the signal correlation in the slant po-larized array can only be gotten by measurement or simulatin. The influence of the channel parameters on the correlation is not entirely clear. For the case where the slant polarized arrays are used, the solution of the correlation con-tributed by both the spatial and cross-polarization correlation with arbitrary an-tenna spacing and slant angle is derived. The approximations for the large and small angular spread are also given to reduce the simulation complexity. The derivative of channel correlation on the angular spread, slant angle and cross-polarization descrimination are obtained. The application scope of exact and approximate expressions are validated by simulation. Finally, the equivalent relationship between the antenna spacing and slant angle is revealed.
     (3) Generally, the antenna of relay is lower than that of the base station, and higher than that of the mobile station. A change in antenna height makes the propagation environment different from the traditional link between base station and mobile station. However, there are no related measurement re-sults on MIMO relay channel measurement in frequency bands allocated to the IMT-Advanced system. Moreover, the polarization and spatial characteristics, which have an important impact on the system performance are not revealed. Therefore, the applicability of channel properties obtained from the traditional base station and mobile station link and new features of the relay channel pa- 北京邮电大学博士学位论文rameters need to be examined. The spatial and polarization characteristics in the three link constituting the relay channel are compared. The distributions for fitting the cross-polarization descrimination and power azimuth spectrum are obtained by the least-square estimation. The expression of channel corre-lation is extended to the case where the power azimuth spectrum follows the multi-cluster Laplacian distribution. Substituting the measured values describ-ing the statistics of channel parameters into the derived expression, the channel correlation of different antenna configurations is studied in the real propagtion environment.
     (4) Most of the popular channel models are based on the cluster, and the latest models assign different parameters to the clusters generated by differ-ent propagation mechanisms. However, existing measurements and research have not covered the statistical characteristics and propagation mechanisms in RS(?)MS link. For the propgation mechanism in the RS(?)MS link, the cluster identification and tracking are carried out based on the results of parameter esti-mation. Based on the clustering results, the statistics in cluster and correspond-ing propagation mechanisms are investigated. The methods for improving the cluster identification and tracking are also presented.
     The analysis and modelling methods proposed in this thesis can be applied widely to channel measurements and modeling. The presented measurement and analysis results can provided references and guidelines for performance evaluation and deployment of the IMT-Advanced system. The measurement results in indoor hotspot and outdoor relay scenarios are adopted by the ITU-R and 3GPP-LTE+ standardization, respectively. All the contributions in this the-sis provide a reliable research base for the simulation, evaluation and network planning of IMT-Advanced system in China.
引文
[1]ITU-R WP8F. Recommendation ITU-R M.1645:Framework and overall objectives of the future development of IMT 2000 and systems beyond IMT 2000 [S].2003.
    [2]ITU-R WP8F. Resolution ITU-R 56:Framework and overall objectives of the future development of IMT 2000 and systems beyond IMT 2000 [S].2007.
    [3]ITU-R. Invitation for submission of proposals for candidate radio interface technologies for the terrestrial components of the radio interface(s) for IMT-Advanced and invitation to participate in their subsequent evaluation [S].2008.
    [4]ITU-R. Report ITU-R M.2134:Requirements related to technical performance for IMT-Advanced radio interface(s) [S].2008.
    [5]ITU. Radio Regulations [M].2008th ed. ITU electronic bookshop.
    [6]Industry Canada. Radio Spectrum allocations in Canada. http://www.ic.gc.ca/eic/site/smt-gst.nsf/vwapj/spectallocation-08.pdf/$FILE/spectallocation-08.pdf2008.
    [7]ITU-R. Spectrum for IMT. http://www.itu.int/ITU-D/imt-2000/DocumentsIMT2000/Spectrum-IMT.pdf2007.
    [8]Digital Land Mobile Radio Communications:Final Report [M]. Luxembourg,1989.
    [9]ITU-R. Recommendation ITU-R M.1225:Guideline for evalatuion of radio transmission technolo-gies for IMT-2000 [S].1997.
    [10]Godara L C. Applications of antenna arrays to mobile communications part Ⅰ:Performance improve-ment, feasibility, and system considerations [J]. Proceedings of the IEEE.1997,85 (7):1031-1060.
    [11]Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J]. Wireless Personal Communications.1998,6:311-335.
    [12]Alamouti S M. A simple transmit diversity technique for wireless communications [J]. IEEE Journal on Selected Areas in Communications.1998,16 (8):1451-1458.
    [13]Telatar I E. Capacity of multi-antenna Gaussian channels [J]. European Transactions on Telecom-munications.1999,10:585-595.
    [14]Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas [J]. Bell Labs Techical Journal.1996, Autumn:41-59.
    [15]Zheng L, Tse D. Diversity and multiplexing:a fundamental tradeoff in multiple-antenna channels [J]. IEEE Transactions on Information Theory.2003,49 (5):1073-1096.
    [16]Weinstein S, Ebert P. Data transmission by frequency-division multiplexing using the discrete fourier transform [J]. IEEE Transactions on Communications.1971,19 (5):628-634.
    [17]Peled A, Ruiz A. Frequency domain data transmission using reduced computational complexity algorithms [C]. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'80).1980:964-967.
    [18]Willink T, Wittke P. Optimization and performance evaluation of multicarrier transmission [J]. IEEE Transactions on Information Theory.1997,43:426-440.
    [19]Cover T, Gamal A E. Capacity theorems for the relay channel [J]. IEEE Transactions on Information Theory.1979,25 (5):572-584.
    [20]Sendonaris A, Erkip E, Aazhang B. User cooperation diversity Part Ⅰ:System description [J]. IEEE Transactions on Communications.2003,51 (11):1927-1938.
    [21]Nosratinia A, Hunter T, Hedayat A. Cooperative communication in wireless networks [J]. IEEE Communications Magazine.2004,42 (10):74-80.
    [22]Pabst R, Walke B, Schultz D, et al. Relay-based deployment concepts for wireless and mobile broad-band radio [J]. IEEE Communications Magazine.2004,42 (9):80-89.
    [23]Host-Madsen A, Zhang J. Capacity bounds and power allocation for wireless relay channels [J]. IEEE Transactions on Information Theory.2005,51 (6):2020-2040.
    [24]Host-Madsen A. Capacity bounds for cooperative diversity [J]. IEEE Transactions on Information Theory.2006,52 (4):1522-1544.
    [25]Patel C, Stuber G, Pratt T. Statistical properties of amplify and forward relay fading channels [J]. IEEE Transactions on Vehicular Technology.2006,55 (1):1-9.
    [26]Carleial A. Multiple-access channels with different generalized feedback signals [J]. IEEE Transac-tions on Information Theory.1982,28 (6):841-850.
    [27]Schein B, Gallager R. The Gaussian parallel relay network [C]. In Proc. IEEE International Sympo-sium on Information Theory (ISIT'2000).2000:22.
    [28]Borade, Zheng L, Gallager. Amplify-and-forward in wireless relay networks:Rate, diversity, and network Size [J]. IEEE Transactions on Information Theory.2007,53 (10):3302-3318.
    [29]Maric I, Yates R. Forwarding strategies for Gaussian parallel-relay networks [C]. In Proc. Interna-tional Symposium on Information Theory (ISIT'04).27 2004:269.
    [30]Nabar R, Bolcskei H, Kneubuhler F. Fading relay channels:performance limits and space-time signal design [J]. IEEE Journal on Selected Areas in Communications.2004,22 (6):1099-1109.
    [31]Wang T, Cano A, Giannakis G, et al. High-performance cooperative demodulation with decode-and-forward relays [J]. IEEE Transactions on Communications.2007,55 (7):1427-1438.
    [32]Li Q, Li K, Teh K. An achievable rate region of cooperative multiple-access channels with hybrid CF and DF cooperation [J]. IEEE Communications Letters.2009,13 (8):591-593.
    [33]Simoens S, Muoz-Medina O, Vidal J, et al. Compress-and-forward cooperative MIMO relaying with full channel state information [J]. IEEE Transactions on Signal Processing.2010,58 (2):781-791.
    [34]Salehkalaibar S, Ghabeli L, Aref M. An achievable rate for relay networks based on compress-and-forward strategy [J]. IEEE Communications Letters.2010,14 (4):279-281.
    [35]Ichitsubo S, Tsunekawa K, Ebine Y. Multipath propagation model of spatio-temporal dispersion observed at base station in urban areas [J]. IEEE Journal on Selected Areas in Communications. 2002,20(6):1204-1210.
    [36]Fukushige M, Imai T. Analysis of polarization diversity gain at base station in W-CDMA system [J]. IEICE Transactiion on Communications.2007, E90-B (9):2360-2368.
    [37]Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (Rel.6) [R].2003.
    [38]P Almers, E Bonek, A Burr, et al. Survey of channel and radio propagation models for wireless MIMO systems [J]. EURASIP Journal on Wireless Communications and Networking.
    [1]Chung H K, Vloeberghs N, Kwon H K, et al. MIMO channel sounder implementation and effects of sounder impairment on statistics of multipath delay spread [C]. In Proc. IEEE 62nd Vehicular Technology Conference (VTC'05-Fall).28-25 2005:349-353.
    [2]Elektrobit. Propsound multidimensional channel sounder. http://www.propsim.com.
    [3]Kolmonen V-M, Almers P, Salmi J, et al. A dynamic dual-link wideband MIMO channel sounder for 5.3 GHz [J]. IEEE Transactions on Instrumentation and Measurement.2010,59 (4):873-883.
    [4]Kuroda K, Sakaguchi K, Takada J, et al. FDM based MIMO spatio-temporal channel sounder [C]. In Proc. The 5th International Symposium on Wireless Personal Multimedia Communications,2002. 27-30 2002:559-562 vol.2.
    [5]Kim M, Kim S, Lee H, et al. Performance Comparison of Some Codes in Code Division Multi-plexing based MIMO Channel Sounder Architecture [C]. In Proc.10th International Conference on Advanced Communication Technology (ICACT'08).17-202008:1343-1346.
    [6]Ullah M H, Bari M N, Priantoro A U. FPGA implementation of LS Code generator for CDM based MIMO channel sounder [J]. Journal of Computing.2010,2.
    [7]Wonsop K, Park J J, Kim M-D, et al. Time-Division Multiplexing Based MIMO Channel Sounder Using Loosely Synchronous Codes [C]. In Proc. IEEE 66th Vehicular Technology Conference (VTC'07-Fall). sept.2007:897-901.
    [8]Lin M, Wassell I. Impact of channel sounder frequency offsets on the estimation of channel pa-rameters [C]. In Proc. IEEE 64th Vehicular Technology Conference (VTC'06-Fall).25-28 2006:1-5.
    [9]Pirkl R, Durgin G. How to build an optimal broadband channel sounder [C]. In Proc. IEEE Antennas and Propagation Society International Symposium,2007.9-15 2007:601-604.
    [10]Taparugssanagorn A, Alatossava M, Holappa V-M, et al. Impact of channel sounder phase noise on directional channel estimation by space-alternating generalised expectation maximisation [J].IET Microwaves, Antennas Propagation,.2007,1 (3):803-808.
    [11]SATIMO. Datasheet of SG 128 antenna measurement system [EB/OL]. http://www.satimo. com/content/products/sg-128.
    [12]Babtlett M S. Smoothing periodograms from time-series with continuous spectra [J]. Nature.1948, 161:686-687.
    [13]Krolik J. The performance of matched-field beamformers with Mediterranean vertical array data [J]. IEEE Transactions on Signal Processing.1996,44 (10):2605-2611.
    [14]Li J, Stoica P, Wang Z. On robust Capon beamforming and diagonal loading [J]. IEEE Transactions on Signal Processing,.2003,51 (7):1702-1715.
    [15]Elnashar A, Elnoubi S, El-Mikati H. Further study on robust adaptive beamforming with optimum diagonal loading [J]. IEEE Transactions on Antennas and Propagation.2006,54 (12):3647-3658.
    [16]Wong K T, Zoltowski M. Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace [J]. IEEE Transactions on Antennas and Propagation.2000,48 (8):1235-1245.
    [17]Sooknuan T, Suleesathira R. Joint estimation of DOA and angular spread using polarimetric com-plex MUSIC [C]. In Proc. International Symposium on Circuits and Systems (ISCAS'04).23-26 2004:Ⅲ-113-16 Vol.3.
    [18]Haardt M, Nossek J. Unitary ESPRIT:how to obtain increased estimation accuracy with a reduced computational burden [J]. IEEE Transactions on Signal Processing.1995,43 (5):1232-1242.
    [19]Picheral J, Spagnolini U. Parametric estimation of space-time channels with spatially correlated noise by JADE-ESPRIT [C]. In Proc.7th International Symposium on Signal Processing and Its Applications,2003.1-42003:415-418 vol.2.
    [20]Han Y, Wang J, Song X, et al. Direction of arrival estimation of coherently distributed sources based on unitary ESPRIT in MIMO channel models [C]. In Proc. IEEE International Symposium on Communications and Information Technology (ISCIT'05).12-14 2005:370-373.
    [21]Weber R, Huang Y. Analysis for Capon and MUSIC DOA estimation algorithms [C]. In Proc. IEEE Antennas and Propagation Society International Symposium (APSURSI'09).1-5 2009:1-4.
    [22]Tan C, Beach M, Nix A. Multi-dimensional DFT beamspace SAGE super-resolution algorithm [C]. In Proc. Sensor Array and Multichannel Signal Processing Workshop,2002.4-6 2002:475-479.
    [23]Zamiri-Jafarian H, Pasupathy S. EM-based recursive estimation of channel parameters [J]. IEEE Transactions on Communications.1999,47 (9):1297-1302.
    [24]Nissila M, Pasupathy S. EM-based estimators for ARMA parameters of multipath fading channels [C]. In Proc. IEEE 3rd International Symposium on Signal Processing and Information Technology (ISSPIT'03).14-172003:399-402.
    [25]Fleury B, Jourdan P, Stucki A. High-resolution channel parameter estimation for MIMO applications using the SAGE algorithm [J].2002:30-1-30-9.
    [26]Matthaiou M, Razavi-Ghods N. Characterization of an Indoor MIMO channel in Frequency Domain using the 3D-SAGE Algorithm [C]. In Proc. IEEE International Conference on Communications ICC'07.24-282007:5868-5872.
    [27]Haneda K, Takada J-I. An application of SAGE algorithm for UWB propagation channel estimation [C]. In IEEE Conference on Ultra Wideband Systems and Technologies,2003.16-19 2003:483-487.
    [28]Tschudin M, Brunner C, Kurpjuhn T, et al. Comparison between unitary ESPRIT and SAGE for 3-D channel sounding [C]. In IEEE 49th Vehicular Technology Conference (VTC'99). jul 1999:1324-1329 vol.2.
    [29]Chong C, Laurenson D, Tan C, et al. Joint detection-estimation of directional channel parameters using the 2-D frequency domain SAGE algorithm with serial interference cancellation [C]. In Proc. IEEE International Conference on Communications (ICC'02).2002:906-910 vol.2.
    [30]Fleury B, Jourdan P, Stucki A. High-resolution channel parameter estimation for MIMO applications using the SAGE algorithm [C]. In International Zurich Seminar on Broadband Communications, Access, Transmission, Networking,2002.2002:30-1-30-9.
    [31]ITU-R. Recommendation ITU-R M.1225:Guidelines for evaluation of radio transmission tech-nologies for IMT-2000 [S].2009.
    [1]Kafle P, Intarapanich A, Sesay A, et al. Spatial correlation and capacity measurements for wideband MTMO channels in indoor office environment [J]. IEEE Transactions on Wireless Communications. 2008,7(5):1560-1571.
    [2]Forenza A, Love D J, Heath R W. Simplified spatial correlation models for clustered MIMO channels with different array configurations [J]. IEEE Transactions on Vehicular Technology.2007,56 (4): 1924-1934.
    [3]Bhagavatula R, Heath R W. Computing the receive spatial correlation for a multi-cluster MIMO channel using different array configurations [C]. In Proc. IEEE Global Telecommunications Con-ference (GLOBECOM'08). Nov.30 2008-Dec.4 2008:1-5.
    [4]Tse D, Viswanath P. Fundamentals of Wireless Communication [M]. Cambridge University Press, 2005.
    [5]Forenza A, Pandharipande A, Kim H, et al. Adaptive MIMO transmission scheme:exploiting the spatial selectivity of wireless channels [C]. In Proc. IEEE 61th Vehicular Technology Conference (VTC'05-Spring).2005:3188-3192.
    [6]Horn R, Johnson C. Matrix Analysis [M]. Cambridge University Press,1990.
    [7]Shiu D, Foschini G, Gans M, et al. Fading correlation and its effect on the capacity of multielement antenna systems [C]. mar 2000:502-513.
    [8]Paulraj A, Nabar R, Gore D. Introduction to Space-Time Wireless Communications [M]. Cambridge University Press,2003.
    [9]Svantesson T, Wallace J. On signal strength and multipath richness in multi-input multi-output sys-tems [C]. In Proc. IEEE International Conference on Communications 2003 (ICC'03).11-15 May 2003:2683-2687.
    [10]Nishimoto H, Ogawa Y, Nishimura T, et al. Measurement-based performance evaluation of MIMO spatial multiplexing in a multipath-rich indoor environment [J]. IEEE Transactions on Antennas and Propagation.2007,55 (12):3677-3689.
    [11]Zheng L, Tse D. Diversity and multiplexing:a fundamental tradeoff in multiple-antenna channels [J]. IEEE Transactions on Information Theory.2003,49 (5):1073-1096.
    [12]Narasimhan R. Finite-SNR diversity-multiplexing tradeoff for correlated rayleigh and rician MIMO Channels [J]. IEEE Transactions on Information Theory.2006,52 (9):3965-3979.
    [13]Yu M, Li J, Sadjadpour H. Amplify-forward and decode-forward:the impact of location and capac-ity contour [C]. In Proc. IEEE Military Communications Conference 2005 (MILCOM'05).17-20 Oct.2005:1609-1615.
    [14]Kyritsi P, Eggers P, Gall R, et al. Measurement based investigation of cooperative relaying [C]. In Proc. IEEE 64th Vehicular Technology Conference (VTC'06-Fall).2006:1-5.
    [15]Kyritsi P, Popovski P, Eggers P, et al. Cooperative Transmission:a reality check using experimental data [C]. In Proc. IEEE 65th Vehicular Technology Conference (VTC'07-Spring).2007:2281-2285.
    [16]Zetterberg P, Mavrokefalidis C, Lalos A S, et al. Experimental investigation of cooperative schemes on a real-time DSP-based testbed [J]. EURASIP Journal on Wireless Communications and Net-working.
    [17]Agustin A. Relay-assisted transmission and radio resource management for wire-less networks. http://www.tdr.cesca.es/TESIS_UPC/AVAILABLE/TDX-0701108-121341//01Aad01de01.pdf2008.
    [18]Lee S, Han M, Hong D. Average SNR and ergodic capacity analysis for proactive and reactive DF relaying over Rayleigh fading channels [C]. In Proc. IEEE 69th Vehicular Technology Conference (VTC'09-Spring).26-292 009:1-5.
    [19]Munoz O, Vidal J, Agustin A. Non-regenerative MIMO relaying with channel state information [C]. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05). 2005:361-364 Vol.3.
    [1]Rappaport T S. Wireless Communications:Principles and Practice [M].2nd ed. Prentice Hall,2001.
    [2]Tse D, Viswanath P. Fundamentals of Wireless Communications [M]. Cambridge University Press, 2005.
    [3]Suvikunnas P, Salo J, Vuokko L, et al. Comparison of MIMO antenna configurations:methods and experimental results [J]. IEEE Transactions on Vehicular Technology.2008,57 (2):1021-1031.
    [4]Rappaport T. Wireless Communications:Principles and Practice [M].2nd ed. Prentice Hall,2001.
    [5]Vaughan R, Andersen J. Antenna diversity in mobile communications [J]. IEEE Transactions on Vehicular Technology.1987,36(4):149-172.
    [6]Molisch A F. Wireless Communications [M]. John Wiley and Sons,2005.
    [7]Forenza A, Love D J, Heath R W. Simplified spatial correlation models for clustered MIMO channels with different array configurations [J]. IEEE Transactions on Vehicular Technology.2007,56 (4): 1924-1934.
    [8]Pedersen K I, Mogensen P E, Fleury B H. Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance [C]. In Proc. IEEE 48th Vehicular Technology Conference (VTC'98).18-21 May 1998:719-723.
    [9]Bhagavatula R, Heath R W. Computing the receive spatial correlation for a multi-cluster MIMO channel using different array configurations [C]. In Proc. IEEE Global Telecommunications Con-ference (GLOBECOM'08). Nov.30 2008-Dec.42008:1-5.
    [10]Brown T W C, Saunders S R, Stavrou S, et al. Characterization of polarization diversity at the mobile [J]. IEEE Transactions on Vehicular Technology.2007,56 (5):2440-2447.
    [11]Quitin F, Oestges C, Horlin F, et al. Multipolarized MIMO channel characteristics:analytical study and experimental results [J]. IEEE Transactions on Antennas and Propagation.2009,57 (9):2739-2745.
    [12]Valenzuela-Valdes J F, Martinez-Gonzalez A M, Sanchez-Hernandez D A. Accurate estimation of correlation and capacity for hybrid spatial-angular MIMO systems [J]. IEEE Transactions on Vehic-ular Technology.2009,58 (8):4036-4045.
    [13]Wong K, Wu Y. Spatial-polarizational correlation-coefficient function between receiving-antennas in radiowave communications-geometrically modeled, analytically derived, simple, closed-form, explicit formulas [J]. IEEE Transactions on Communications.2009,57 (12):3566-3570.
    [14]Zhang Y, Zhang J, Liu G, et al. Impact of randomized cross-polarization discrimination on channel correlation property of the 3GPP spatial channel model [J]. IEICE Transactions on Communications. 2009, E92.B (4):1300-1307.
    [15]Liang Y, Zhang J, Zhang Y, et al. Investigation of polarization configurations and the impacts on fading correlation characteristics [C]. In Proc. IEEE 70th Vehicular Technology Conference Fall (VTC'09 Fall).20-23 Sept.2009:1-5.
    [16]Gradshteyn I, Ryzhik I. Table of Integrals, Series, and Products [M]. Academic Press,2007.
    [17]Nikiforov A F, Uvarov V B. Special Functions of Mathematical Physics [M]. Birkhauser,1988.
    [18]Lee W C. Mobile Communications Engineering [M]. McGraw-Hill,1982.
    [19]Mtumbuka M, Edwards D. Experimental investigation of a joint dual-spaced diversity and tri-polarised MIMO system for beyond 3G [C]. In Proc. IEE 5th International Conference on 3G Mobile Communication Technologies (3G'04).2004:373-377.
    [1]Nosratinia A, Hunter T, Hedayat A. Cooperative communication in wireless networks [J]. IEEE Communications Magazine.2004,42 (10):74-80.
    [2]Pabst R, Walke B, Schultz D, et al. Relay-based deployment concepts for wireless and mobile broad-band radio [J]. IEEE Communications Magazine.2004,42 (9):80-89.
    [3]Laneman J, Wornell G, Tse D. An efficient protocol for realizing cooperative diversity in wireless networks [C]. In Proc. IEEE International Symposium on Information Theory (ISIT'01).24-29 June 2001:294.
    [4]Nabar R, Bolcskei H, Kneubuhler F. Fading relay channels:performance limits and space-time signal design [J]. IEEE Journal on Selected Areas in Communications.2004,22 (6):1099-1109.
    [5]Paulraj A, Nabar R, Gore D. Introduction to Space-Time Wireless Communications [M]. Cambridge University Press,2003.
    [6]Karasawa Y. Statistical multipath propagation modeling for broadband wireless systems [J]. IEICE Transaction on Communications.2007, E90-B (3):468-484.
    [7]Molisch A, Greenstein L, Shafi M. Propagation Issues for Cognitive Radio [J]. Proceedings of the IEEE.2009,97 (5):787-804.
    [8]Kyritsi P, Eggers P, Gall R, et al. Measurement based investigation of cooperative relaying [C]. In Proc. IEEE 64th Vehicular Technology Conference (VTC'06-Fall).2006:1-5.
    [9]Kyritsi P, Popovski P, Eggers P, et al. Cooperative transmission:a reality check using experimental data [C]. In Proc. IEEE 65th Vehicular Technology Conference (VTC'07-Spring).2007:2281-2285.
    [10]Jiang L, Thiele L, Jungnickel V. Modeling and measurement of MIMO relay channels [C]. In Proc. IEEE 67th Vehicular Technology Conference (VTC 2008-Spring).2008:419-423.
    [11]Haneda K, Kolmonen V-M, Riihonen T, et al. Evaluation of relay transmission in outdoor-to-indoor propagation channels [C]. In Proc. COST2100 2nd Workshop on MIMO and Cooperative Commu-nications.2008.
    [12]Per Zetterberg, Christos Mavrokefalidis, Aris S Lalos, and Emmanouil Matigakis. Experimental investigation of cooperative schemes on a real-time DSP-based testbed [J]. EURASIP Journal on Wireless Communications and Networking.
    [13]Dong D, Zhang J, Zhang Y, et al. Large scale characteristics and capacity evaluation of outdoor relay channels at 2.35 GHz [C]. In Proc. IEEE 70th Vehicular Technology Conference (VTC 2009-Fall). 20-23 2009:1-5.
    [14]WINNER Ⅱ channel model [S].2007.
    [15]Molisch A F. Wireless Communications [M]. John Wiley and Sons,2005.
    [16]Shafi M, Zhang M, Moustakas A, et al. Polarized MIMO channels in 3D:models, measurements and mutual information [J]. IEEE Journal on Selected Areas in Communications.2006,24 (3):514-527.
    [17]Soma P, Baum D, Erceg V, et al. Analysis and modeling of Multiple-Input Multiple-Output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications [C] //2. In Proc. IEEE International Conference on Communications 2002 (ICC'02).2002:272-276.
    [18]Kyritsi P, Cox D, Valenzuela R, et al. Effect of antenna polarization on the capacity of a multiple element system in an indoor environment [J]. IEEE Journal on Selected Areas in Communications. 2002,20 (6):1227-1239.
    [19]Pedersen K, Mogensen P, Fleury B. Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance [C]. In Proc. IEEE 48th Vehicular Technology Conference VTC'98.1998:719-723 vol.2.
    [20]Nie X, Zhang J, Zhang Y, et al. An experimental investigation of wideband MIMO channel based on indoor hotspot NLOS measurements at 2.35 GHz [C]. In Proc. IEEE Global Telecommunications Conference 2008 (GLOBECOM'08).2008:1-5.
    [21]Bengtsson M, Astely D, Ottersten B. Measurements of spatial characteristics and polarization with a dual polarized antenna array [C]. In Proc. IEEE 49th Vehicular Technology Conference (VTC 1999-spring).16-20 May 1999:366-370.
    [22]Arindam P, Chris W, Geoff H, et al. Evaluation of diversity antenna designs using ray tracing, measured radiation patterns, and MIMO channel measurements [J]. EURASIP Journal on Wireless Communications and Networking.
    [23]Spatial channel model for Multiple Input Multiple Output (MIMO) simulations (Rel.6) [R].2003.
    [24]Gradshteyn I, Ryzhik I. Table of Integrals, Series, and Products [M]. Academic Press,2007.
    [1]Calcev G, Chizhik D, Goransson B, et al. A Wideband Spatial Channel Model for System-Wide Simulations [C]. march 2007:389-403.
    [2]Baum D, Hansen J, Salo J. An interim channel model for beyond-3G systems:extending the 3GPP spatial channel model (SCM) [C]. In Vehicular Technology Conference,2005. VTC 2005-Spring. 2005 IEEE 61st.30 2005:3132-3136 Vol.5.
    [3]WINNER Ⅱ interim channel models (IST-4-027756 WINNER Ⅱ D 1.1.1 V1.1). http://www.ero.dk/6799B797-53CC-417E-B6FA-059A8E6AF350?frames=no&.
    [4]WINNER Ⅱ Channel Models (IST-4-027756 WINNER Ⅱ D1.1.2 V1.2). http://www.ero.dk/93F2FC5C-0C4B-4E44-8931-00A5B05 A331B?frames=no&2008.
    [5]Toeltsch M, Laurila J, Kalliola K, et al. Statistical characterization of urban spatial radio channels [J].2002,20 (3):539-549.
    [6]Correia L. Mobile Broadband Multimedia Networks (COST 273 final report) [M]. Elsevier Press, 2006.
    [7]Poutanen J, Haneda K, Liu L, et al. Parameterization of the COST 2100 MIMO Channel Model in Indoor Scenarios [C]. In Proc. COST 2100 10th Management Committee Meeting, COST 2100 TD(10)10066.2010.
    [8]Schneider C, Bauer M, Narandzic M, et al. Clustering of MIMO Channel Parameters-Performance Comparison [C]. In Proc. IEEE 69th Vehicular Technology Conference (VTC'09-Spring).26-29 April 2009:1-5.
    [9]Huang C, Zhang J, Nie X, et al. Cluster Characteristics of Wideband MIMO Channel in Indoor Hotspot Scenario at 2.35GHz [C]. In Proc. IEEE 70th Vehicular Technology Conference (VTC'09-Fall).2009.
    [10]Czink N, Bonek E, Yin X, et al. Cluster Angular Spreads in a MIMO Indoor Propagation Environ-ment [C]. In Personal, Indoor and Mobile Radio Communications,2005. PIMRC 2005. IEEE 16th International Symposium on.11-142005:664-668.
    [11]Czink N, X Y, Ozcelik H, et al. Cluster Characteristics in a MIMO Indoor Propagation Environment [J].2007,6 (4):1465-1475.
    [12]Czink N, Cera P, Salo J, et al. A Framework for Automatic Clustering of Parametric MIMO Channel Data Including Path Powers [C]. In Proc. IEEE 64th Vehicular Technology Conference (VTC'06-Fall).25-28 Sept.2006:1-5.
    [13]Czink N, Bonek E, Hentila L, et al. Cluster-Based MIMO Channel Model Parameters Extracted from Indoor Time-Variant Measurements [C]. In Proc. IEEE Global Telecommunications Conference (GLOBECOM'06). nov.2006:1-5.
    [14]Maulik U, Bandyopadhyay S. Performance evaluation of some clustering algorithms and validity indices [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.2002,24 (12):1650-1654.
    [15]Czink N, Mecklenbrauker C, Del Galdo G. A Novel Automatic Cluster Tracking Algorithm [C]. In Proc. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'06).11-14 Sept.2006:1-5.
    [16]Czink N, Tian R, Wyne S, et al. A Novel Environment Characterization Metric for Clus-tered MIMO Channels Used to Validate a SAGE Parameter Estimator. http://userver.ftw.at/ nczink/publications/2006.
    [17]Hofstetter H, Molisch A F, Czink N. A twin-cluster MIMO channel model [C]. In Proc. European Conference on Antennas and Propagation (EUCAP'06).2006.
    [18]Czink N, Bonek E, Hentil? L, et al. A measurement-based random-cluster MIMO channel model [C]. In Proc. IEEE Antennas and Propagation Symposium 2007.2007.
    [19]Spatial channel model for Multiple Input Multiple Output (MIMO) simulations [R].2007.
    [1]Liu C, Skafidas E, Evans R. Capacity and data rate for millimeter wavelength systems in a short range package radio transceiver [J]. IEEE Transactions on Wireless Communications.2010,9 (3): 903-906.
    [2]Ndikumasabo L. MIMO antenna configuration for Femtocell application [C]. In Antennas Propaga-tion Conference (LAPC'09).16-17 2009:125-128.
    [3]Wang C X, Hong X, Ge X, et al. Cooperative MIMO channel models:A survey [J]. IEEE Commu-nications Magazine.2010,48 (2):80-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700