协同通信中的若干优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,协同思想在通信领域得到了成功的运用和发展,基于中继的协作技术已成为现代移动通信和无线接入的关键技术之一,并在多种通信标准中出现。运用协同通信理论,可以获得分集增益、提高传输速率、扩展网络覆盖、节省终端功耗。可以预见,随着以宽带化、异构化、自组织化和个性化为特征的物联网兴起和发展,协同将在通信领域得到更为广泛的应用。
     本文结合未来移动通信中协作和中继的典型应用场景,围绕“如何提高能量效率”,“如何提高系统容量”,“如何降低中断概率”等三个关键问题展开研究。论文的主要工作和创新点如下:
     1、在源节点和协作节点功率总和受限,且各自峰值功率受限条件下,将非对称解码转发协作的遍历容量优化问题等效为一个极大极小问题,给出了这个极大极小问题的解。通过对节点位置、功率分配和时隙分配的联合优化,设计了中断概率的优化算法,提出了一种简化的功率参数和时隙参数分配方法。理论分析和数值仿真表明,这种简化的参数优化方法较好的逼近了联合优化方法性能,且二者相对于对称解码转发协作而言,均有明显的分集增益。
     2、提出了一种基于顺序统计量的协作节点选择方法,解决了单个节点功率和处理能力受限条件下的多个协作伙伴的选择问题。分析了节点选择数量与系统中断概率之间的关系表达式,设计了最佳节点数量确定算法。针对中断概率表达式复杂的问题,运用顺序统计量的分布特性,给出了中断概率的上界解析式和下界解析式。
     3、在低信噪比条件下,引出了中断容量比率的概念,从而建立了协作通信的功率利用率与中断容量之间的关系。提出了一种基于反馈的新型中继方案,其核心是根据节点的状态反馈,动态调整协作策略,克服了解码转发易因协作节点译码错误而浪费能量开销的缺陷。理论分析和仿真表明,新型方案达到了多点协作的中断容量比率界,有效改善了低信噪比条件下解码转发协作的中断概率和吞吐量性能。
     4、分析比较了不同协作方式在蜂窝网中的应用效果,研究表明,相比于多用户协作方式,多中继协作方式在改善网络容量、中断概率和能量效率等方面更有优势。在多中继协作的蜂窝通信中,网络效用最大化是一个包括中继节点选择、功率分配和业务质量配置等在内的跨层设计问题。基于这一问题的非凸特性,研究了穷举搜索注水法和机会式功率均分法,分别求得了最优解和近似解。针对穷举搜索注水法复杂度高、难以直接应用,而机会式功率均分法性能又太差的问题,提出了一种分布式执行的逐层分解凸优化方法,在求得次优解的同时,将算法复杂度降低为与用户数成线性关系。
     5、研究了一种增强型的放大转发中继方案,证明了采用矩阵奇异值分解时,前向信道矩阵、反向信道矩阵和转发矩阵的特征值应当满足的排列关系,给出了采用放大转发中继时基站和用户之间互信息最大的理论依据。
Recently, the idea of cooperation is successfully applied and developed in the field of communication. Technology based on relay cooperation has become one of the key technologies of modern mobile communication and wireless access, and has emerged in several communication standards. By using cooperative communication theory,we can acquire more diversity gain, higher transmission rate, extended network coverage and less terminal power consumption. It could be predicted that cooperation is going to be widely applied in the field of communication along with the rise and development of the Internet of things, which has the characteristics of broadband, heterogeneity, slef-organization and individuality.
     Together with the typical cooperation and relay applications in the future mobile communication, this paper researches the following three key problems: how to enhance the utilization of energy, how to improve the capacity of system and how to decrease the outage probability of system. The paper's main contents and innovation are as follows:
     1 When the total power and own peak power of source and cooperative nodes are limited, equate the question of optimizing asymmetry decode-and-forward cooperative ergodic capacity with the max-min question, further the solution are given. Aiming at joint optimization of nodes’relative location, power allocation and slot allocation, an optimized algorithm of outage probability is designed, and a method of simplified power and slot parameters allocation is bought forward. The theoretical analysis and numerical simulation reveal that this simplified parameters optimization method approaches the performance of joint optimization method, and both methods have distinct diversity gain relativing to symmetry decode-and-forward cooperation.
     2 A method of cooperative nodes selection based on order statistics is come up, which solve the problem of selecting multiple cooperative partners when the power and processing capability of single node is limited. After analyzing the relation expression between node number and outage probability of system, a decided algorithm of optimal node number is put forward and the upper and lower bound analytic expression of outage probability is worked out using the distributing characteristic of order statistics.
     3 The concept of outage capacity ratio is put forward in low SNR, based on which the relation of energy utilization and outage capacity in cooperative communication is founded. A new joint relay scheme based on feedback is brought forward, which adjusts the cooperative strategy dynamically based on the feedback state of nodes, and this scheme overcomes the problem that decode-and-forward is prone to cause waste of energy because of the cooperative nodes’decoding errors. The theoretical analysis and numerical simulation reveal that the new method achieves the outage capacity ratio bound of multi-node cooperation and improves the performance of decode-and-forward’s outage probability and throughput in low SNR.
     4 The application effect of different modes of cooperation are analyzed and compared in cellular network. The research shows that multi-relay cooperation has better performance than multi-user cooperation in aspects of network capacity, outage probability and energy efficiency. In the cellular communication of multi-relay cooperation, maximum utilization of the network is a cross-layer design problem, which contains relay selection, power allocation and quality of service configuration. Exhaustion search water-filling method and opportunistic equal power method are researched based on the non-convex characteristic of this problem, and the optimal solution and approximate solution are extracted. Aiming at the complexness of exhaustion search water-filling method and poor performance of opportunistic equal power method, a hierarchical decomposable convex optimization based on distributed execution method is proposed, which gets the suboptimal solution at the same time the algorithm complexness is reduced to linear relation of users’number.
     5 An enhanced amplify-and-forward relay scheme is researched, and eigenvalues’sequences of the forward channel matrix, reverse channel matrix and relay matrix are demonstrated when singular value decomposition is used, which gives the theoretical basis of maximizing the mutual information between base stations and users.
引文
[1] Frank H.P. Fitzek, Marcos D.Katz. Cooperation in Wireless Networks: Principles and Applications [M]. 2006: 1-5.
    [2] K.J.Ray Liu, Ahmed K.sadek, Weifengsu, Andresk Wasinski. Cooperative Com- munication and networking [M]. London: Cambridge University Press, 2009:10-25.
    [3] Yan Zhang, Hsiao-Hwa Chen, Mohsen Guizani. Cooperative Wireless Communications [M]. London: CRC Press, 2009: 27-29.
    [4] Sendonaris A, Erkip E, Aazhang B. User cooperation diversity-part I: system description [J]. IEEE Transactions on Communications, 2003, 51(11): 1927-1938.
    [5]殷勤业,张莹,丁乐,孟银阔.协作分集:一种新的空域分集技术[J].西安交通大学学报, 2005, 15(6): 552-557.
    [6]赵睿,俞菲,杨绿溪.中继辅助协同通信网[J].中兴通讯技术, 2008, 14(3):34-38.
    [7] IST-4–027756 WINNER II. D6.13.7 Test scenarios and calibration issue 2 [S]. WINNER, 2006.
    [8] 3GPP. TR 25. 814. Physical Layer Aspect s for Evolved UTRA [S]. Palm Spring: 3GPP, 2006.
    [9] Haykin S. Cognitive Radio: Brain-Empowered Wireless Communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
    [10] Boirse, D.Muck, M.Simon. End-to-end reconfigurability (E2R II): management and control of adaptive communication systems [S]. 2006.
    [11] E. C. van der Meulen. Three-terminal communication channels [J]. Adv. Appl. Probab., 1971, 3(1): 120-154.
    [12] T. M. Cover, A. A. El Gamal. Capacity theorems for the relay channel [J]. IEEE Transactions on Information Theory, 1979, 25(5): 572-584.
    [13] Nechiporenko T., Phan K.T., Tellambura C., Nguyen H.H.. On the capacity of Rayleigh fading cooperative systems under adaptive transmission [J]. IEEE Transactions on Wireless Communications, 2008, 8(4): 1626-1631.
    [14] Michael Katz, Shlomo Shamai. Cooperative schemes for a source and an occasional nearby relay in wireless networks [J]. IEEE Transactions on Information Theory, 2009, 55(11): 5138-5160.
    [15] Kyungchun Lee, Lajos Hanzo. Optimal decoding for hard-decision forwarding aided cooperative spatial multiplexing systems [J]. IEEE Transactions on Wireless Communications, 2009, 8(9): 4411-4416.
    [16] A. H?st-Madsen, J. Zhang. Capacity bounds and power allocation for wireless relay channels [J]. IEEE Transactions on Information Theory, 2005, 51(6): 2020-2040.
    [17] G. Kramer, M. Gastpar, P. Gupta. Cooperative strategies and capacity theorems for relay networks [J]. IEEE Transactions on Information Theory, 2005, 51(9): 3037-3063.
    [18] Y. Liang, V. V. Veeravalli. Cooperative relay broadcast channels [J]. IEEE TransactionsInformation Theory, 2007, 53(3): 900-928.
    [19] Y. Liang. Multiuser CommunicationsWith Relaying and User Cooperation [C]. Ph.D. dissertation, Dept. Elec. Comp. Eng., Univ. Illinois at Urbana-Champaign, Urbana, IL, 2005.
    [20] Y. Liang, V. V. Veeravalli. The impact of relaying on the capacity of broadcast channels [A]. IEEE International Symposium on Information Theory , Chicago, 2004.
    [21] Yingbin Liang, Gerhard Kramer.Rate Regions for Relay Broadcast Channels [J].IEEE Transactions on Information Theory, 2007 53(10): 3517-3535.
    [22] R. Dabora, S. Servetto. Broadcast channels with cooperating receivers: A downlink for the sensor reachback problem [A]. IEEE International Symposium on Information Theory, Chicago, 2004.
    [23] R. Dabora, S. D. Servetto. Broadcast channels with cooperating decoders [J]. IEEE Transactions Information Theory, 2006, 52(12): 5438-5454.
    [24] L. Sankaranarayanan, G. Kramer, N. B. Mandayam. Capacity theorems for the multiple-access relay channel [A]. 42nd Annu. Allerton Conference Communication, Control and Computing, Monticello, IL, 2004: 1782-1791.
    [25] J. N. Laneman, G. W. Wornell, D. N. C. Tse. Cooperative diversity in wireless networks: efficient protocols and outage behavior [J]. IEEE Transactions on Information Theory, 2004.50(12): 3062-3080.
    [26] J. N. Laneman, G. W. Wornell. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks [J]. IEEE Transactions on Information Theory, 2003, 49(12): 2415-2425.
    [27] C.Hausl, J.Hagenauer. Relay communication with hierarchinal modulation [J]. IEEE Communication Letters, 2007, 11(1): 64-66.
    [28] BAO Xingkai, LI Jing. On the outage properties of adaptive network coded cooperation(ANCC) in large wireless networks [C]. Proc IEEE ICASSP. Toulouse, France: IEEE. 2006: IV-57-IV-60.
    [29] CHEN Yingda, Kishore S, LI Jing. Wireless diversity through network coding[C]. Proc IEEE WCNC. Las Vegas, NVz IEEE. 2006: 1681-1686.
    [30] IBRAHIM A S, SADEK A K, WEI F. Cooperative communications with relay-selection: when to cooperate and whom to cooperate with [J]. IEEE Transactions on Wireless Communications, 2008, 7(7): 2814-2827.
    [31] Qian Zhang, Juncheng Jia, Jin Zhang. Cooperative relay to improve diversity in cognitive radio networks [J]. IEEE Communications Magazine, 2009, 47(2): 111-117.
    [32] Fan Jiang, Hui Tian, Haibo Xu, Ping Zhang. An Adaptive Cooperative Relay Selection Algorithm for Fixed Relay Based Cellular Networks [J]. Journal of Communications, 2009, 4(3): 186-192.
    [33] L. Sankar. Relay Cooperation in Multiaccess Networks [C]. Ph.D. dissertation, Rutgers, The State University of New Jersey, New Brunswick, NJ, 2007. [Online]. Available: http://www.winlab.rutgers.edu/$\sim$lalitha.
    [34] D. G¨und¨uz, E. Tuncel, J. Nayak , Rate regions for the separated two-way relay channel[A]. 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2008.
    [35] I. Maric, A. Goldsmith, M. M′edard. Information-theoretic relaying for multicast in wireless networks [A]. Processing IEEE Military Communications Conference (MILCOM) [C]. Orlando, FL, 2007.
    [36] S. I. Bross, A. Lapidoth, M. A. Wigger. The Gaussian MAC with conferencing encoders [A]. IEEE International Symposium on Information Theory (ISIT2008) [C]. Toronto, Ontario, Canada, 2008.
    [37] K.L. Baum, T.A.Kostas, P.J.Sartori, B.K.A.Classon. Performance characteristics of cellular systems with different link adaptation strategies [J]. IEEE Transactions on Vehicular technology, 2003, 52(6): 767-789.
    [38] Yingbin Liang, Venugopal V. Veeravalli, H. Vincent Poor. Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution [J]. IEEE Transactions on Information Theory, 2007, 53(10): 3432-3453.
    [39] M. O. Hasna, M.-S. Alouini. Optimal power allocation for relayed transmissions over Rayleigh fading channels [J]. IEEE Transactions on Wireless Communications, 2004, 3(6): 1999- 2004.
    [40] E.G. Larsson, Y. Cao. Collaborative transmit diversity with adaptive radio resource and power allocation [J]. IEEE Communications Letters, 2005, 9(6): 511- 513.
    [41] N. Ahmed, M.A. Khojastepour, B. Aazhang. Outage Minimization and Optimal Power Control for the Fading Relay Channel [A]. IEEE ITW, San Antonio, TX, 2004.
    [42] D. Gunduz, E. Erkip. Opportunistic cooperation by dynamic resource allocation [J]. IEEE Transactions on Wireless Communications [J]. 2007, 6(4): 1446-1454.
    [43] H. Ochiai, P. Mitran, V. Tarokh. Variable rate two phase collaborative communication protocols for wireless networks [J]. IEEE Transactions on Information Theory, 2006, 52(9): 4299-4313.
    [44] M.N. Khormuji, E. G. Larsson. Finite-SNR Analysis and Optimization of Decode-and-Forward Relaying over Slow Fading Channels [J]. IEEE Transaction on Vehicular Technology, 2009, 58(8): 4292-4305.
    [45] M.N. Khormuji, E. G. Larsson. Cooperative Transmission Based on Decode-and-Forward Relaying with Partial Repetition Coding [J]. IEEE Transactions on Wireless Communications, 2009, 8(4): 1-10.
    [46] A. Bletsas, H. Shin, M. Z. Win. Outage-optimal cooperative communications with regenerative relays [A]. CISS 2006: 632-637.
    [47] A. Bletsas, A. Khisti, M.Z. Win. Opportunistic Cooperative Diversity with Feedback and Cheap Radios [J]. IEEE Transactions on Wireless Communications (TWC), 2008, 7(5): 1823-1827.
    [48] A. Bletsas, H. Shin, M.Z. Win. Cooperative Communications with Outage-Optimal Opportunistic Relaying [J]. IEEE Transactions on Wireless Communications (TWC), 2007, 6(9): 3450-3460.
    [49] A. Bletsas, H. Shin, M.Z. Win. Outage Analysis for Cooperative Communication with Multiple Amplify-and-Forward Relays [J]. Electronics Letters (ELL), 2007, 43(6).
    [50] A. Bletsas, H. Shin, M.Z. Win. Outage Optimality of Amplify-and-Forward Opportunistic Relaying [J]. IEEE Communications Letters (CL), 2007, 11(3): 261-263.
    [51] A. Bletsas, A. Khisti, D.P. Reed, A. Lippman. A Simple Cooperative Diversity Method based on Network Path Selection [J]. IEEE Journal on Selected Areas of Communication (JSAC), Special Issue on 4G Wireless Systems (non-invited submission), 2006, 24(3): 659-672.
    [52] A. Bletsas, H. Shin, M.Z. Win, Outage-Optimal Cooperative Communications with Regenerative Relays [A]. 40th Conference on Information Sciences and Systems (CISS 2006) . Princeton, 2006.
    [53] A. Bletsas, H. Shin, M.Z. Win, A. Lippman, To Relay or Not To Relay? Cooperative Diversity with Opportunistic Relaying [A]. IEEE Wireless Communications and Networking Conference (WCNC 2006) . Las Vegas, 2006.
    [54] A. Bletsas, A. Lippman, D.P. Reed, A Simple Distributed Method for Relay Selection in Cooperative Diversity Wireless Networks, based on Reciprocity and Channel Measurements[A]. Proceedings of IEEE 61st Vehicular Technology Conference (VTC-Spring 2006) . Stockholm, Sweden, 2005.
    [55] Virag Shah, Neelesh B. Mehta, Raymond Yim. Analysis, Insights and Generalization of a fast decentralized relay selection mechanisms [A]. IEEE International Conference on Communications (ICC). Dresden, Germany, 2009.
    [56] Virag Shah, Dilip Bethanabhotla, Neelesh B. Mehta. Fast Distributed Multiple Access Based Selection with Imperfect Parameter Knowledge [A]. National Conference on Communications (NCC) . Guwahati, India, 2009.
    [57] Virag Shah, Neelesh B. Mehta, Raymond Yim. The Relay Selection and Data Transmission Throughput Tradeoff in Cooperative Systems [A]. IEEE Globecom. Hawaii, USA, 2009.
    [58] Ananda Theertha S., Neelesh B. Mehta, Virag Shah. On Optimal Timer-Based Distributed Selection For Rate-Adaptive Multi-user Diversity Systems [A]. National Conference on Communications (NCC), Chennai, India, 2010.
    [59] Elzbieta Beres, Raviraj Adve. Selection Cooperation in Multi-Source Cooperative Networks [J]. IEEE Transactions on Wireless Communications, 2008, 7(1): 11-127.
    [60] Y. Zhao, R. Adve, T. J. Lim. Improving amplify-and-forward relay networks: optimal power allocation versus selection [A]. IEEE International Symposium on Information Theory, 2006 (ISIT 06) [C]. Seattle, WA, 2006.
    [61] F. A. Onat, A. Adinoyi, Y. Fan, H. Yanikomeroglu, J. S. Thompson. Optimum threshold for SNR-based selective digital relaying schemes in cooperative wireless networks [A]. IEEE Wireless Communications & Networking Conference (WCNC 2007). 2007: 969-974.
    [62] D. S. Michalopoulos, G. K. Karagiannidis. Performance analysis of single relay selection in Rayleigh fading [J]. IEEE Transactions on Wireless Communications, 2008, 7(10):3718-3724.
    [63] D. S. Michalopoulos, G. K. Karagiannidis. Two relay distributed switch and stay combining (DSSC) [J]. IEEE Transactions on Communications, 2008, 56(11): 1790-1794.
    [64] D. S. Michalopoulos, G. K. Karagiannidis. Distributed switch and stay combining (DSSC) with a single decode and forward relay [J]. IEEE Communications Letters, 2007, 11(5): 408-410.
    [65] H. Suraweera, D. S. Michalopoulos, G. K. Karagiannidis. Performance of Distributed Diversity Systems with a Single Amplify-and-Forward Relay [J]. IEEE Transactions on Vehicular Technology, 2009, 58(5): 2603-2608.
    [66] S. Ikki, M. H. Ahmed. Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel [J]. IEEE Communications Letters, 2007, 11(4): 334-336.
    [67] N. C. Beaulieu. Switching rates of dual selection diversity and dual switch-and-stay diversity [J]. IEEE Transactions Communications, 2008, 56(9): 1409-1413.
    [68] Madan, R.Mehta, N.Molisch, A.Jin Zhang. Energy-Efficient Cooperative Relaying over Fading Channels with Simple Relay Selection [J]. IEEE Transactions on Wireless Communications, 2008, 7(8): 3013-3025.
    [69] R. Tannious, A. Nosratinia. Spectrally efficient relay selection protocols in wireless networks [A]. IEEE International. Conference on Acoustics, Speech and Signal Processing (ICASSP) . Las Vegas, NV, 2008.
    [70] C. L. Wang, S. J. Syue. An efficient relay selection protocol for cooperative wireless sensor networks [A]. 2009 IEEE Wireless Communications and Networking Conference (WCNC 2009) . 2009: 1-5.
    [71] N. Zlatanov, Z.Hadzi-Velkov, G. K. Karagiannidis. An Efficient Approximation to the Correlated Nakagami-m Sums and its Application in Equal Gain Diversity Receivers [J]. IEEE Transactions on Wireless Communications, 2010, 9(1): 302-310.
    [72] H. Suraweera, G. K. Karagiannidis, P. J. Smith. Performance Analysis of the Dual-hop Asymmetric Fading Channel [J]. IEEE Transactions on Wireless Communications, 2009, 8(6): 2783-2788.
    [73] Feng Xu, Qing F. Zhou, Francis C. M. Lau. Dian-Wu Yue, Sau F. Hau. Performance analysis of serial cooperative communications with decode-and-forward relaying and blind-EGC reception under Nakagami fading channels [J]. IEEE Transactionson on Wireless Communications, 2009, 8(11): 5455-5460.
    [74] Momin Uppal, Zhixin Liu, Vladimir Stankovic, Zi xiang Xiong. Compress-forward coding with BPSK modulation for the half-duplex Gaussian relay channel [J]. IEEE Transactions on Signal Processing, 2009 ,57(11):4467-4481.
    [75] L. Zheng, D. Tse. Diversity and multiplexing: A fundemental tradeoff in multiple antenna channels [J]. IEEE Transactions on Information Theory, 2003, 49(5): 1073-1096.
    [76] Erik Stauffer, O¨zgu¨r Oyman, Ravi Narasimhan, Arogyaswami Paulraj. Finite-SNR Diversity-Multiplexing Tradeoffs in Fading Relay Channels [J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 245-255.
    [77] A. Salman Avestimehr, David N. C. Tse. Outage Capacity of the Fading Relay Channel in the Low SNR Regime [J]. IEEE Transactions on Information Theory, 2007, 53(4): 1401-1415.
    [78] STAUFFER E, OYMAN O, NARASIMHAN R. Finite-SNR Diversity-Multiplexing Tradeoffs in Fading Relay Channels [J]. IEEE Journal on Selected Areas in Communications. 2007, 25(2): 245-257.
    [79] Z. Zhou, S. Zhou, S. Cui, J.-H. Cui. Energy-efficient cooperative communication in a clustered wireless sensor network [J]. IEEE Transactions on Vehicular Technology, November 2008, 57(6): 3618-3628.
    [80] A. El Gamal, M. Mohseni, S. Zahedi. Bounds on capacity and minimum energy-per-bit for AWGN relay channels [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1545-1561.
    [81] Xiaodong Cai, Yingwei Yao, Giannakis G.B. Achievable rates in low-power relay links over fading channels [J]. IEEE Transactions on Communications, 2005 53(1): 184-194.
    [82] Yingwei Yao, Xiaodong Cai, Giannakis G.B. On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime [J]. IEEE Transactions on Wireless Communications, 2005, 4(6): 2917-2927.
    [83] George Atia, Masoud Sharif, Venkatesh Saligrama. On optimal outage in relay channels with general fading distributions [J]. IEEE Transactions on Information Theory, 2007, 53(10): 3786-3797.
    [84] Ketan Rajawat, Adrish Banerjee. Selection Relaying at Low Signal to Noise Ratios [A]. Wireless Personal Multimedia Communications. Jaipur, 2007.
    [85] T. Renk, H. J¨akel, F. K. Jondral, D. Gunduz, A. Goldsmith. Outage of Incremental Relaying at Low Signal-to-Noise Ratios [A]. VTC[C]. Anchorage, Alaska, 2009.
    [86] D. Hui, V. Lau. Cross-Layer Design for OFDMA Wireless Systems With Heterogeneous Delay Requirements [J]. IEEE Transactions on Wireless Communications, 2007, 6(8): 2872-2880.
    [87] Shuguang Cui, Andrea J. Goldsmith. Cross-layer Design of Energy-constrained Networks Using Cooperative MIMO Techniques [J]. EURASIP’S Signal Processing Journal, 2006, 86(8): 1-8
    [88] Guocong Song, Ye (Geoffrey) Li. Cross-Layer Optimization for OFDM Wireless Networks—Part I: Theoretical Framework [J]. IEEE Transactions on Information Communications, 2005, 4(2): 614-624.
    [89] Guocong Song, Ye (Geoffrey) Li. Cross-Layer Optimization for OFDM Wireless Networks—Part II: Algorithm Development [J]. IEEE Transactions on Information Communications, 2005, 4(2): 625-634.
    [90] M. Chiang. Balancing transport and physical layers in wireless multihop networks: jointly optimal congestion control and power control [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(1): 104-116.
    [91] O. Simeone, O. Somekh, G. Kramer, H. V. Poor, S. Shamai. Throughput of CellularSystems with Conferencing Mobiles and Cooperative Base Stations [J]. EURASIP Journal on Wireless Communications and Networking, Volume 2008.
    [92] W. Nam, W. Chang, S. Y. Chung, Y. H. Lee. Transmit optimization for relay-based cellular OFDMA systems . IEEE International Conference on Communications (ICC) [C]. Glasgow, Scotland, 2007: 5714-5719.
    [93] O. Oyman. Opportunistic scheduling and spectrum reuse in relay based cellular OFDMA networks. IEEE Global Telecommunications Conference (GLOBECOM) [C]. Washington, DC., USA, 2007: 3699-3703.
    [94] L. Huang, L. Wang, E. Schulz. Resource allocation for OFDMA based relay enhanced cellular networks [A]. IEEE Vehicular Technology Conference (VTC) [C]. Baltimore, USA, 2007: 3160 -3164.
    [95] Ying Cui, Vincent K. N. Lau, Rui Wang. Distributive Subband Allocation, Power and Rate Control for Relay-Assisted OFDMA Cellular System with Imperfect System State Knowledge [J]. IEEE Transactions on Information Communications, 2009, 8(10): 1-11.
    [96] Vincent K. N. Lau, Ying Cui. Delay-Optimal Power and Subcarrier Allocation for OFDMA Systems via Stochastic Approximation [J]. IEEE Transactions on Information Communications, 2010, 9(1): 1-11.
    [97] J. Chu, R. S. Adve, A. W. Eckford. Relay selection for low-complexity coded cooperation using the bhattacharyya parameter [A]. Processing of the 2008 International Conference on Communications [C]. 2008.
    [98] M. Chen, S. Serbetli, A. Yener. Distributed power allocation strategies for parallel relay networks [J]. IEEE Transactions on Wireless Communications, 2008, 7(2): 552-561.
    [99] R. Hu, S. Sfar, G. Charlton, A. Reznik. Protocols and system capacity of relay-enhanced hsdpa systems [A]. Processing of the 2008 Annual Conference on Information Sciences and Systems (CISS). 2008.
    [100] J. Tang, X. Zhang. Quality-of-Service Driven Power and Rate Adaptation over Wireless Links [J]. IEEE Transactions on Wireless Communications, 2007, 6(12): 3059-3068.
    [101] M. J. Neely. Order optimal delay for opportunistic scheduling in multiuser wireless uplinks and downlinks [J]. IEEE/ACM Transactions Networking, 2008, 16(5): 1188-1199.
    [102] NI W, SHEN G, JIN S. Cooperative Relay Approaches in IEEE 802.16j [R]. IEEE 802.16 Broadband Wireless Access Working Group, 2007.
    [103] C. K. Lo, S. Vishwanath, R. W. Heath, Jr.. Rate Bounds for MIMO Relay Channels Using Precoding [C]. Processing IEEE GLOBECOM, 2005, St. Louis, MO.
    [104] M. Gastpar. On capacity under receive and spatial spectrum-sharing constraints [J]. IEEE Transactions on Information Theory, 2007, 53(2): 471-487.
    [105] M. Gastpar. Capacity under received-signal constraints [A]. Processing Allerton Conference Communications[C]. Control, Computing., Monticello, IL, 2004: 1322-1331.
    [106] W. Guan, H.-W. Luo, W. Chen. Linear Relaying Scheme for MIMO Relay System with QoS Requirements [J]. IEEE Signal Processing Letters, 2008, 15: 697-700.
    [107] Olga Mu?oz, Josep Vidal, Adrián Agustín. Linear transceiver design in non regenerativerelays with channel state information [J]. IEEE Transactions on Signal Processing.2007, 55(6): 2593-2604.
    [108] Alireza Shahan Behbahani, Ricardo Merched, Ahmed M. Eltawil. Optimizations of a MIMO Relay Network [J]. IEEE Transactions On Signal Processing, 2008, 56(10): 5062-5073.
    [109] Yijia Fan, John Thompson. MIMO Configurations for Relay Channels: Theory and Practice [J]. IEEE Transactions on Wireless Communications, 2007, 6(5): 1774-1786.
    [110] Steven W. Peters, Robert W. Heath. Nonregenerative MIMO Relaying With Optimal Transmit Antenna Selection [J]. IEEE Signal Processing Letters, 2008, 15: 421-424.
    [111] Xiaojun Tang, Yingbo Hua. Optimal design of non-regenerative MIMO wireless relays[J]. IEEE Transactions on Communications, 2007, 6(4): 1398-1407.
    [112] Tetsushi Abe, Hui Shi, Takahiro Asai, Hitoshi Yoshino. Relay Techniques for MIMO Wireless Networks with Multiple Source and Destination Pairs [J]. EURASIP Journal on Wireless Communications and Networking.
    [113] H. Shi, T. Abe, T. Asai, and H. Yoshino. A relaying scheme using QR decomposition with phase control for MIMO wireless networks [A]. Processing International Conference on Communications[C]. 2005: 2705-2711.
    [114] H. Shi, T. Abe, T. Asai, H. Yoshino. Relaying schemes using matrix triangularization for MIMO wireless networks [J]. IEEE Transactions on Communications, 2007, 55(9): 1683-1688.
    [115] KANG T, RODOPLU V. Algorithm for the MIMO single relay channel [J]. IEEE Transactions on Communications, 2007, 6(5): 1596-1600.
    [116] R. H. Y. Louie, Y. Li, B. Vucetic. Performance analysis of beamforming in two hop amplify and forward relay networks [A]. IEEE International Conference Communications (ICC) [C]. 2008: 4311-4315.
    [117] V. Havary-Nassab, S. Shahbazpanahi, A. Grami, Z.-Q. Luo. Distributed beamforming for relay networks based on second-order statistics of the channel state information [J]. IEEE Transactions Signal Processing, 2008, 56(9): 4306-4316.
    [118] K.Jitvanichphaibool, Y.-C.Liang, R. Zhang. Beamforming and Power Control for Multi-Antenna Cognitive Two-Way Relaying [C]. IEEE WCNC, 2009: 1-6.
    [119] C. Chae, T. Tang, R. W. Heath, Jr., S. Cho. MIMO Relaying With Linear Processing for Multiuser Transmission in Fixed Relay Networks [J]. IEEE Transactions on Signal Processing, 2008, 56(2): 727-738.
    [120] O. Oyman, A. J. Paulraj. Design and Analysis of Linear Distributed MIMO Relaying Algorithms [J]. IEEE Proceedings Communications, 2006, 153(4): 565-572.
    [121] S. Shamai, O. Somekh, O. Simeone, A. Sanderovich, B. Zaidel, H. Poor. Cooperative multi-cell networks: Impact of limited-capacity backhaul and inter-users links [A]. Joint Workshop on Coding and Communications[C]. Durnstein, Austria, 2007.
    [122] P. Marsch, G. Fettweis. On base station cooperation schemes for downlink network MIMO under a constrained backhaul [A]. IEEE Global Communications Conference [C].New Orleans (LA), USA, 2008.
    [123] V. Chandrasekhar, J. Andrews, A. Gatherer. Femtocell networks: A survey [J]. IEEE Communications Magazine, 2008, 46(9): 59–67.
    [124] R. Etkin, D. Tse, H. Wang. Gaussian interference channel capacity to within one bit [J]. IEEE Transactions on Information Theory, 2008, 54(12): 5534-5562.
    [125] C. Chae, T. Tang, R. W. Heath, Jr., S. Cho. MIMO Relaying With Linear Processing for Multiuser Transmission in Fixed Relay Networks [J]. IEEE Transactions on Signal Processing, 2008, 56(2): 727-738.
    [126] W. Guan, H.-W. Luo, W. Chen. Linear Relaying Scheme for MIMO Relay System with QoS Requirements [J]. IEEE Signal Processing Letters, 2008, 15: 697-700.
    [127] K. Jitvanichphaibool, Y.-C. Liang, R. Zhang. Beamforming and Power Control for Multi-Antenna Cognitive Two-Way Relaying [A]. IEEE WCNC 2009: 1-6.
    [128] H. V. Poor. An Introduction to Signal Detection and Estimation, 2nd edition [M]. New York: Springer-Verlag, 1994.
    [129] M. Janani, A. Hedayat. T. E. Hunter, et al. Coded cooperation in wireless communications: space-time transmission and iterative decoding [J]. IEEE Transactions on Signal Processing, 2004, 52(2): 362-371.
    [130] E. Beres, R. Adve. Outage probability of selection cooperation in the low to medium SNR regime [J]. IEEE Communications Letters, 2007, 11(8): 589-591.
    [131] Y. Zhao, R. S. Adve, T. J. Lim, Outage probability at arbitrary SNR in cooperative diversity networks [J]. IEEE communications Letters, 2005, 9(8): 700-702.
    [132] H. A. David, H. N. Nagaraja. Order Statistics: Third Edition [M]. John Wiley, 2003.
    [133] S. Verd′u. Spectral efficiency in the wideband regime [J]. IEEE Transactions on Information Theory, 2002, 48(6): 1319-1343.
    [134] Lizhong Zheng, David N. C. Tse. Muriel Medard. Channel Coherence in the Low-SNR Regime [J]. IEEE Transactions on Information Theory, 2007 53(3): 976-997.
    [135] CAIRE G, TARICCO G, BIGLIERI E. Optimum power control over fading channels [J]. IEEE Transactions on Information Theory, 1999, 45(5): 1468-1489.
    [136]彭木根,王文博等.协同无线通信原理与应用[M].北京:机械工业出版社.2009: 40-42.
    [137] Zhiquan Luo, Wei Yu. An Introduction to Convex Optimization for Communications and Signal Processing [J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1426-1438.
    [138] S. Boyd, L. Vandenberghe. Convex Optimization [D]. Cambridge University Press, 2004.
    [139] J. Yuan. Optimization Techniques for Wireless Networks, Ph.D. dissertation [D]. University of Toronto, Department of Electrical and Computer Engineering, 2007.
    [140] W. Yu, R. Lui. Dual methods for nonconvex spectrum optimization of multicarrier systems [J]. IEEE Transactions on Communications, 2006, 54(7): 1310-1322.
    [141] X. R. Cao. Stochastic Learning and Optimization: A Sensitivity-Based Approach, 1st edition [M]. New York: 2007.
    [142] D. P. Palomar, M. Chiang. A tutorial on decomposition methods for network utillity maximization [J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1439-1451.
    [143] S. Vishwanath, N. Jindal, A. Goldsmith. Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels [J]. IEEE Transactions on Information Theory, 2003, 49(10): 2658-2668.
    [144] L. Xiao, M. Johansson, S. Boyd. Simultaneous routing and resource allocation via dual decomposition [J]. IEEE Transactions on Communications, 2004, 52(7): 1136-1144.
    [145] Sachin Kadloor, Raviraj Adve. Relay Selection and Power Allocation in Cooperative Cellular Networks [EB/OL].2009, http://arxiv.org/abs/0903.2426.
    [146] Jin Yuan Sun, Lian Zhao, Alagan Anpalagan. Cross-Layer Design and Analysis of Downlink Communications in Cellular CDMA Systems [J]. EURASIP Journal on Wireless Communications and Networking, 2008.
    [147] Sachin Adlakha, Xiaoqing Zhu, Bernd Girod, Andrea J. Goldsmith. Joint Capacity, Flow and Rate Allocation for Multiuser Video Streaming over Wireless Ad-Hoc Networks. Communications, 2007. ICC '07 [A]. IEEE International Conference on Glasgow[C]. 2007: 24-28.
    [148] Jun Yuan, Wei Yu. Joint Source Coding, Routing and Power Allocation in Wireless Sensor Networks [J]. IEEE Transactions on Communications, 2008 56(6): 886-896.
    [149] Truman Chiu-Yam Ng, Wei Yu. Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks [J]. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 328-339.
    [150] Jingping Ji, Wei Yu. Bandwidth and Routing Optimization in Wireless Cellular Networks with Relays [A]. The 5th workshop on Resource Allocation, Cooperation and Competition in Wireless Networks (RAWNET/WNC3) [C]. Seoul/South Korea, 2009.
    [151] V. K. Lau, W. K. Ng, D.S.W. Hui. Asymptotic tradeoff between cross-layer goodput gain and outage diversity in OFDMA systems with slow fading and delayed CSIT [J]. IEEE Transactions on Wireless Communications, 2008, 9(7): 2732–2739.
    [152] G. Caire, R. Muller, R. Knopp. Hard fairness versus proportional fairness in wireless communications: the single-cell case [J]. IEEE Transactions on Information Theory, 2007, 53(4): 1366-1385.
    [153] Wessam Mesbah, Timothy N. Davidson. Power and Resource Allocation for Orthogonal Multiple Access Relay Systems [J]. EURASIP Journal on Advances in Signal Processing.
    [154] D. Park, D. Gesbert. How much feedback is multi-user diversity really worth [A]. International Symposium on Information Theory (ISIT) [C]. Toronto, Canada, 2008: 2036 -2040.
    [155] M. Grant, S. Boyd. CVX: Matlab software for disciplined convex programming [EB/OL]. web page and software, http://stanford.edu/ boyd/cvx, 2008:
    [156] A. Paulraj, R. Nabar, D. Gore. Introduction to Space-Time Wireless Communications [M]. Cambridge University Press, 2003.
    [157] IST-4–027756 WINNER II.D6.11.2 key scenarios and implications for WINNER II [S]. 2006:
    [158] Yu Zhang, Hanwen Luo, Wen Chen. Efficient Relay Beamforming Design with SIC Detection for Dual-Hop MIMO Relay Networks [EB/OL]. http://arxiv.org/abs/0912.1023.
    [159] J. K. Zhang, A. Kavcic, K. M. Wong. Equal-diagonal QR decomposition and its application to precoder design for successive-cancellation detection [J]. IEEE Transactions Information Theory, 2005, 51(1): 154-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700