星天牛对弗栎的危害及弗栎耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了弗吉尼亚栎(简称弗栎)引种后的虫害情况并对其害虫星天牛的防治提出建议,同时探讨了弗栎的耐盐机制。确定星天牛为严重危害栎树混交林的虫种之一,对四种栎树混交林中星天牛的危害习性进行了林间调查和室内选择性试验,初步探讨了四种栎树挥发物组成与害虫危害程度的关系;另外,采用Hoagland溶液砂培方法对弗栎在高盐浓度(150mmol/L)和低盐浓度(50mmol/L)胁迫下叶片生理指标的动态变化以及处理2个月后的部分形态学参数进行研究,探讨其耐盐机制,主要结论如下:
     1.通过在浙江省富阳市新登、三桥林场,杭州市长乐林场和上海市松江林场的调查发现弗栎易被作为星天牛的补充营养寄主;在富阳地区,星天牛成虫补充营养的八种寄主植物中,星天牛的喜好程度从大到小依次为河桦>复叶槭>银槭>柳叶栎>弗栎>纳塔栎>水栎>洋白蜡;在室内将上述八种寄主树种枝条作为选择材料供试,测量比较星天牛对其的取食面积并用各种枝条对星天牛进行生测实验,发现星天牛对植物枝条的喜好程度与林间调查结果一致。进而提出降低星天牛危害弗栎的方法:在弗栎林中,适量的混栽河桦、复叶槭、银槭等树种,引诱星天牛取食,达到保护弗栎,降低星天牛对其为害的目的。
     2.利用固相微萃取方法分析了四种栎树枝条挥发物的化学成分及其相对含量,发现栎树枝条中烷烃类和酯类物质的总含量从多到少依次为柳叶栎、弗栎、水栎、纳塔栎;而醇类和醛类物质总含量从多到少依次为水栎、弗栎、柳叶栎、纳塔栎。综合各类物质的相对含量发现,易感星天牛栎树释放更多的烷类及酯类物质,而相对危害较小的栎树则释放较多的醇、醛类物质。
     3.在不同盐浓度胁迫2个月后,弗栎植株均能够正常生长。弗栎叶片脯氨酸对盐胁迫做出的适应性反应出现在胁迫处理21天以后,而且对高盐浓度也能适应;整个盐胁迫过程中弗栎叶片叶绿素含量在高盐胁迫下均高于对照组;弗栎叶片在低盐浓度处理35d内及高盐对理21d时MDA含量均低于对照组;对叶片抗氧化系统的测定结果表明弗栎在盐胁迫初期已经感受到盐胁迫并积极调动抗氧化系统以适应逆境,且在高盐胁迫下积极响应。盐胁迫2个月后发现弗栎根冠比随着盐浓度的增加而增大;Na~+、Cl~-在弗栎根系的含量高于地上部,K~+/Na~+从小到大的顺序为根、茎、叶。对根系形态学参数的研究发现,低盐胁迫显著促进弗栎根系发育。
     通过实验发现弗栎在沿海地区引种后,受到星天牛等害虫的危害,但是我们可以通过配制星天牛的嗜食树种从而降低其被害率;植物的挥发性物质与虫害程度之间存在着响应的关系,这对进一步研究林木与害虫的相互关系以寻求更好的防治虫害方法提供了理论支持。另外,弗栎作为盐碱地优势树种对盐胁迫具有极强的适应性,其响应机制主要是通过积累脯氨酸、根系吸收有害离子、扩大根系吸收面积、抗氧化系统积极响应等,以吸收更多的水和养分、维持地上部的正常生长及植株的正常生理代谢。
We studied on the pest situation of Quercus virginiana after introduction and made sugguestions about the pest control of Anoplophora Chinensis. Moreover, we discussed on the salts resistance mechanism of Quercus virginiana. We confirmed that Anoplophora Chinensis is one of pest species which caused serious harm to oak mixed forest ,we also did forest survey and laboratory selective test on its damage habits in four types of oak mixed forest; we preliminary studied the relationship between the composition of four oak volatile and the degree of pest damage; Furthermore, a sand culture of Hoagland experiment was carried out to investigate Quercus virginiana under high (150 mmol/L NaCl) and low (50 mmol/L NaCl) salt stress about the changes including dynamic trend about physiological parameters of leaves and some morphological parameter after 2 months, we investigated its salts resistance mechanism and got following conclusions:
     1.We make the pest-insect survey in Zhejiang Fuyang Xindeng and Sanqiao, Changle, Shanghai Songjiang Forest Farm and found Anoplophora chinensis is one of the very serious pest in mixed forest of oak forests. In the Fuyang area, the preference of A. chinensis adults for 8 host plants in the phase of supplermentary feeding was observed both in field and in laboratory and used various branches to do bioassay experiments. Acceptabilty of A. chinensis adult were Quercus phellos L., Quercus virginiana, Quercus nuttallii Palmer, Quercus nigra L., Fraxinus pennsylvanica ranging from high to low. Therefore infer the approach to decrease Anoplophora chinensis damage to Quercus virginiana is adding proper amount bait-trees,like Betula nigra, Acer negundo, cer saccharinum in oak forests.
     2. We analyzed the relative content and chemical composition of four oak volatile by solid phase micro-extraction method, found that total amount of alkanes and ester matter in oak branches was quercus phellos, Anoplophora Chinensis, water oak , nata oak from more to less;and total amount of alcohols and aldehydes matter was water oak, Q. virginiana, quercus phellos, nata oak from more to less. Synthetic all material relative content we found susceptible Quercus virginiana oak released more alkanes and ester matter while the less harm ones released more alcohols and aldehydes matter.
     3.Two kinds of oak trees under low salt and Q. virginiana under high salt stress could survive, Proline of Q.virginiana leaves adapt to salt stress in 21st day and it also adapt to high salt stress; determination of the whole dynamic process of salt stress in leaves chlorophyll content of Q.virginiana in the high-salt stress were higher than the control; MDA content of Q.virginiana leaves were lower than the control in low-salt within 35 days and high salt in the 21st; Study the resistance to antioxidant activites of the leaves showed the Q.virginiana have a positive reaction to mobilize antioxidation system in order to adapt to salt stress and in the positive response under high salt stress. It was found that:Root-shoot ratio was increase With the increase of salt concentration. The content of Na~+,Cl~- in root were higher than those in aboveground. K~+ /Na~+ in the plants is rootlinity stress significantly promoted Q.virginiana rootdevelopment through our research on root morphological parameters.
     We found after Quercus virginiana introducted in coastal area, it got harm form Anoplophora Chinensis, but we could add proper amount bait-trees in oak forests to decrease Anoplophora chinensis damage to Quercus virginiana. There was responsive relationship between volatile matter of plants and pest damaged extent. It offered theoretical support to research the relationship between forest and pest and find better control pest method. Moreover, Quercus virginiana has higher ability and response to salt stress more positively as saline-alkali soil advantage tree species, its response mechanism mainly through the accumulation of proline, root absorption of harmful ions, the expansion area of root absorption, anti-oxidation system to respond positively so that to absorb more water and nutrients, maintain the normal above-ground plant growth and metabolism in normal physiology.
引文
[1]J.M.Haller.Quercus virginiana:the southern live oak[J].Arbor Age,1992,12(5):30
    [2]A.F.Johnsort,M.G.Barbour.Dunes and maritime forests[J].In:Myers,R.L.and J.J.Ewel,eds.Ecosystems of Florida.University of Central Florida Press.Orlando,FL.pp.1990,430-480
    [3]S.W.Vince,R.Humphrey,R.W.Simons.The ecology of hydric hammocks:a community profile[J].Biological Rep.85(7.26).U.S.Department of the Interior,Fish and Wildlife Service,Research and Development.Washington,D.C.82pp.1989
    [4]Kent D,Halcrow D,Wyatt T,et al.Detecting stress in southern live oak(Quercus virginiana) and sand live oak(Q.virginan-var.geminate)[J].Journal of Arboriculture,2004,3:146-153
    [5]Pegoraro E,Rey A,Greenberg J,et al.Effect of drought on isoprene emission rates from leaves of Quercus virginiana Mill[J].AtmosphericEnvironment,2004,38:6149-6156
    [6]Gilman EF.Effect of nursery production method,irrigation,and inoculation with mycorrhizae-forming fungi on establishment of Quercus virginiana[J].Journal of Arboriculture,2001,27:30-38
    [7]王树凤,陈益泰,孙海菁等.盐胁迫下弗吉尼亚栎生长和生理生化变化[J].生态环境,2008,17(2):747-750
    [8]于晓东,周红章,罗天宏.昆虫与栎树的相互关系及其对栎林更新的影响[J].生物多样性,2002,10(2):225-231
    [9]钦俊德著.昆虫与植物的关系-论昆虫与植物的相互作用及其演化[M].科学出版社,1987(5-9):171-178
    [10]曹赤阳.植物与昆虫的信息联系及其相互作用[M].江苏省昆虫学会.1987(7):2-6
    [11]Bemays EA.Aversion learning and feeding[J].Ecological and Evolutionary Perspectives.1993:1-17
    [12]Bemays EA,Chapman RF.Host Plant Selection by Phytophagous Insects[J].Chapman &Hall.1994:312
    [13]Bemays EA,Lee JC.Food aversion learning in the polyphagous grasshopper Schistocerca americana[J].Physiol Entomol.1988(13):131-137
    [14]Sehoonhoven LM,Jermy T.Insect-Plant Biology[J].From Physiology to Evolution.1998:409
    [15]徐福元.南京地区松褐天牛牛成虫发生[J].补充营养和防治.林业科学研究1984,7(2):215-219
    [16]张世渊.松褐天牛成虫补充营养取食研究[J].浙江林业科技,1998,(4):44-48
    [17]梁潇予,杨伟,杨远亮,等.云斑天牛对补充营养寄主的选择性[J].昆虫知识.2008.45(1):78-82
    [18]王志刚.桑天牛在不同树种或品种间选择性试验[J].河北林学院学报.1994(10):66-69
    [19]陈培昶,李永胜,李跃忠等.两种星天牛对引种槭树的危害及治理[J].植物保护,2008,34(4):158-161
    [20]梁中贵,于海洋,徐广艳等.光肩星天牛研究进展[J].中国植保导刊,2005,25(6):11-14
    [21]Borden JH.,Savoie A.,Wilson I,M,Responses to green leaf volatiles in two biogeoclimatic zones by striped ambrosia beetle,Trypodendton lineatum.Journal of Chemical Ecology[J].1997.23(11):2479-2491
    [22]Higgs MD and Evans DA.1978.Chemical mediators in the oviposition behaviour of the house longhorn beetle Hylotrupes bajulus[J],Experientia.,34:46-07
    [23]Dixon R.A products and plant disease resistance[J].Nature.2001.411:843-847
    [24]Du J.W.Current and future prospects for insect behavior modifying chemicals in China,Agric.Chem[J].Biotechnol.2000.43(4):222-229.
    [25]Turlings T.C.J,Tumlinson H.Systemic release of chemicals signals by herbivore-injured corn.Proc[J].Natl.A-cad.Sci.USA.1992.89:8399-8402.
    [26]Agrawal A A.Induced responses to herbivory and increased plant performance[J].Science,1998.279:1201-1202
    [27]Arimura G,Ozawa R,Nishioka T,Boland W,Koch T,Kilhnemann F,Takabayashi J.Herbivore -induced volatiles induce the emission of ethylene in neighboring lima bean plants[J].Plant J,2002,29:87-98
    [28]杜家纬.昆虫信息素及其应用[J].北京:中国林业出版社,1988
    [29]郑浩,杨长举,华红霞.与昆虫有关的植物挥发性次生物质的研究方法[J].2002,39(1):9-13
    [30]严善春,张丹丹,迟德富.植物挥发性物质对昆虫作用的研究进展[J].应用生态学报.2003,14(2):310-313
    [31]赵红艺.杨树天牛防治技术[J].青海农林科技,2005,(4):62-63
    [32]中国林业科学研究院.中国森林昆虫[M].北京:中国林业出版社,1983,260-262
    [33]蒋书楠.中国天牛幼虫[M].重庆:重庆出版社,1989,36-37
    [34]萧刚柔.中国森林病虫(第二版)[M].北京:中国林业出版社,1992
    [35]蔡振声,史先鹏,徐培河.青海经济昆虫志[M].西宁:青海人民出版社,1994,133-147
    [36]张宗花,张培花.互助县黄斑星天牛虫害防治探讨[J].青海农林科技,2008,4:29-30
    [37]林燕春,章富忠,张迁西.星天牛在紫薇上的发生为害观察及其防治技术研究[J].中国植保导刊,2009(1):25-27
    [38]周祖基.川硬皮肤肿腿峰研究概述[J].四川林业科技,1999,20(3):59-61
    [39]杜开书,周祖基.川硬皮肿腿蜂防治柳树星天牛试验初报[J].安徽农业科学,2006,34(13):3104-3105
    [40]杜开书,周祖基,杨伟.川硬皮肿腿蜂防治柳树星天牛试验初报[J].安徽农业科学,2006,34(13):3104-3105
    [41]孙巧云.云斑天牛初步研究[J].1991(2):22-25
    [42]孙金钟,赵忠懿,茹桃芹等.栽植苦楝隔离带和糖槭诱饵树防治光肩星天牛试验[J].森林病虫通讯.1990(2):10-12
    [43]贾隽,李红彦.几种混交林对黄斑星天牛的抗虫性研究[J].西部林业科学,2008,37(1):82-85
    [44]张克斌.抗黄斑星天牛的树种及其机制的研究初探[J].西北农学院学报,1984,(3),87-91
    [45]李孟楼.生物多样性与林分抗虫性的评判[J].西北农林科技大学学报,2004,32(3):81-83
    [46]骆有庆,李建光.控制杨树天牛灾害的有效措施.多树种合理配置[J].森林病虫通讯,1999(3):46-48
    [47]周嘉熹.黄斑星天牛成虫行为及其对树种的选择性[J].西北林学院学报,1984(1):119-127
    [48]王福贵.混交林中黄斑星天牛选择寄主的行为与寄主抗虫性关系的研究[J].林业科学,2001,36(1):58-65
    [49]周嘉熹,刘铭汤,逻玉中等.黄斑星天牛的初步研究[J].林业科学,1981(4):413-418
    [50]杨雪彦,燕新华,周嘉熹.杨树对黄斑星天牛的抗性研究[J].西北林学院学报,1991,6(2):30-38
    [51]壬希泉,张真.杨树对黄斑星天牛抗性的初步研究[J].林业科学,1987,(1)95-99
    [52]杨莺彦,燕新华,同嘉矗等.杨树对黄斑星天牛的抗性研究[J].西北转学院学报,1991,6(2):30-38
    [53]陈丽.星天牛对杨树的危害研究[J].安徽农学通报,2008,14(7):185-186
    [54]杨月红.孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学,2002,27(11):1-2
    [55]Munns R,Termaat A.Whole plant responses to salinity[J].Aust Plant Physiol,1986,13:93-123
    [56]李景生,黄韵珠.浅滩植物的耐盐生理[J].植物学通报,1995,12(3):15-19
    [57]Hason J B.Ion uptake by soybean Root Tissue Depleted of calcium by Ethycenediamine tetraacetic.Acid[J].Plant physiol.,1960,39:450-460
    [58]李加宏,俞仁培.水-土壤-植物系统中盐分的迁移和植物耐盐性研究进展[J].土壤学进展,1995,23(6):9-20
    [59]刘祖祺,张石诚.植物抗性生理学[M].北京:中国农业出版社,1994
    [60]江香梅.植物抗盐碱、耐干旱基因工程研究进展[J].南京农业大学学报,2001,25(5):57-62
    [61]Ziska LH.The influence of root zone temperature on photosynthetic acclimation to elevated carbon dioxide concentrations[J].Annals of Botany,1998(81 ):717-721
    [62]刘友良,汪良驹.植物生理与分子生物学:植物对盐胁迫的反应和耐盐性[M].北京:中国农业出版社,1999
    [63]Levitt DG.Kinetics of movements in narrow channels[J].Current Topics In Membranes And Transport,1984(21):181 - 197
    [64]Hasegawa,P.M.,Bressan,R.A.,Zhu,J.-K,et al.Plant cellular and molecular responses to high salinity[J].Annual Review of Plant Physiology and Plant Molecular Biology,2000(51):463-499
    [65]李合生,陈翠莲等.植物生理生化实验原理和技术[M].武汉:华中农业大学规划教材.1998,136-137
    [66]汪良驹,刘友良,马凯.钙在无花果细胞盐诱导脯氨酸积累中的作用[J].植物生理学报,1999,25(1):38-42
    [67]汪良驹,马凯,姜卫兵,等.NaCl胁迫下石榴和桃植株Na+、K+含量与耐盐性研究[J].园艺学报,1995,22(4):336-340
    [68]张福锁.植物营养生态生理学和遗传学IM].中国科技出版社,1993.
    [69]Gorham J,Wynjones R S,Mcdonnell E.Some mechanisms of salt tolerance in crop plants[J].Plant and Soil,1985,89:15-40
    [70]Epstein E.Crops tolerant of salinity and other minerals stress[A].In:Better Crops for Food(Ciba Foundation Simposium 97)[C].London:Pitman,1983:61-62
    [71]廖详儒,贺普超.盐胁迫对葡萄叶H_2O_2消除系统的影响[J].1996,23(4):389-391
    [72]陈少裕.膜质过氧化对植物细胞的伤害[J].植物生理学通讯.1991,27(2):84-90
    [73]曹锡清.脂质过氧化对细胞与机体的作用[J].生物化学与生物物理进展,1986,(2):17-23
    [74]Singh N K.Proteins associated with adaptation of culture tobacco cells to NaCl[J].Plant Physiol,1987,84(2):324-331
    [75]Ramagopal S.Salinity stress induced tissue-specific proteins in barley seedlings[J].Plant Physiol,1987,84(2):324-331
    [76]林栖风,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20-25
    [77]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,88-89
    [78]现代植物生理学实验指南[M].北京科学出版社:95-96
    [79]李忠光,李江鸿,杜朝昆等.在单一提取系统中同时测定五种植物抗氧化酶[J].云南师范大学学报,2002,22(6):44-48
    [80]赵氏杰等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯.1994,30(3):207-210
    [81]Giannopolitis CN,Ries SK.Superoxide dismutase.I.occurrence in high plants[J].PlantPhysiol,1977,59:309-314
    [82]ChanceB,MaehlyAC.Assay of catalaseand peroxidase[J].Methodsin Enzymology,1955,2:764-775
    [83]Aebi H.Catalase in vitro[J].Methods in Enzymology.1984,105:121 - 126
    [84]郭世荣.营养液溶氧浓度对黄瓜和番茄根系呼吸强度的影响[J].园艺学报,2000,27(2):141一142
    [85]Jia YB,Feng Y.Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency[J].Journal of Zhejiang University.B,2008,9(5):427-434
    [86]段九菊,郭世荣,康云艳等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响[J].应用生态学报,2008,(1):57-64
    [87]米海莉,郑国琦,许兴等.NaCl胁迫对宁夏枸杞幼苗根系质膜和液泡膜H+-ATPase活性的影响[J].西北植物学报,2006,26(4):748-752
    [88]Mohammadi H,Poustini K,Ahmadi A.Root nitrogen remobilization and ion status of two alfalfa (Medicago sativa L.) cultivars in response to salinity stress[J].Journal of agronomy and crop science,2008,194(2):126-134
    [89]赵文飞,王迎,王华田等.不同季节麻栎树干贮水量的动态变化[J].林业科学,2007,43(4):115-120
    [90]李鲁华,李世清,翟军海等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报,2001,21(1):1-7
    [91]隋德宗,王保松,施士争.盐胁迫对5个柳树无性系幼苗根系生长发育的影响[J].江苏林业科技,2007,34(4):5-8
    [92]Lynch JP.Root architecture and plant productivity[J].Plant Physiology,1995,109:7-13
    [93]姚静,施卫明.盐胁迫对番茄根形态和幼苗生长的影响[J].土壤,2008,40(2):279-282
    [94]朱钟麟,卿明福.蓑草根系特征及蓑草经济植物埂的水土保持功能[J].土壤学报,2006,43(1):164-167
    [95]王素平,郭世荣,李璟等.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J].应用生态学报,2006,17(10):1883-1888
    [96]刘丽娜,徐程扬,段永宏等.北京市3种针叶绿化树种根系结构分析[J].北京林业大学学报,2008,30(1):34-40
    [97]常君,姚小华,杨水平等.美国山核桃不同品种接穗对嫁接苗木根系生长发育影响的研究[J].西南大学学报,2007,29(10):104-105
    [98]权伟,徐侠,王丰等.武夷山不同海拔高度植被细根生物量及形态特征[J].生态学杂志,2008,27(7):1095-1103
    [99]Jackson RB,Mooney HA and Schulze ED.A global budget for fine root biomass,surface area,and nutrient contents[J].Proceedings of the National Academy of Sciences of USA,1997,94:7362-7366
    [100]He XJ,Mu RL,Cao WH,et al.AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J].The Plant Journal,2005,44:903-916
    [101]Munns R.Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J].Plant,Cell & Env,1993,16:15-24
    [102]杨敏生,李艳华,粱海永等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):22-28
    [103]Ramoliya PJ,Patel HM,Pandey AN.Effect of salinization of soil on growth and macro- and micronutrient accumulation in seedlings of Salvadora persica(Salvadoraceae)[J].Forest Ecology and Management,2004,202:181 - 193
    [104]Khan M A,Ungar I A,Showalter A M.The effeet of salinity on the growth,water status,and ion content of a leaf succulent perennial halophyte Suaeda fruticosa(L.)Forssk[J].J Arid Environ,2000,45:73-84
    [105]王波,宋凤斌.燕麦对盐碱胁迫的反应和适应性[J].生态环境,2006,15(3):625-629
    [107]刘祖祺.植物抗性生理学[M].北京:中国农业出版社,1993:237-291
    [106]吕芝香,乙引.NaCl胁迫对小麦叶片脯氨酸氧化酶活性和游离脯氨酸积累的影响[J].植物生理学报,1991,18(4):376-382
    [108]李彩霞.张掖地区四翅滨藜引种抗盐适应性研究[学位论文].兰州:甘肃农业大学,2007
    [109]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [110]章文华.植物的抗盐生理和盐害的防治[J].植物生理学通讯,1997,33(6):479-485
    [111]汤章城,逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,(1):15-21
    [112]Chen Shao liang,Wang Sha sheng,Arie Altman,et al.Stomatal and Non-stomatal Control of Photosynthesis in Poplar Genotypes in Response to Water Stress[J].Journal of Beijing Forestry University(English Ed.),1996,15(2):63-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700