PI-3K/Akt信号转导在树鼩脑缺血及后适应中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】观察树鼩血栓性脑缺血及后适应引起的海马神经元凋亡及超微结构改变及其保护效应,研究缺血后适应对脑缺血保护效应的分子机制,探讨PI-3K/Akt信号转导途径在树鼩脑缺血以及缺血后适应所起的生物学作用。
     【方法】采用光化学反应诱导树鼩血栓性脑缺血,建立脑缺血动物模型,在脑缺血模型成功后立即采用5min夹闭缺血侧颈总动脉5min,再灌注5min,交替进行3个循环以建立缺血后适应模型,应用TUNEL染色法标记脑缺血及缺血后适应的海马CAl区锥体神经元凋亡改变;TTC(2,3,5-triphenyltertrazolium chloride)染色显示动物模型脑梗死范围,电子显微镜下观察不同处理组超微结构改变;应用酶联免疫吸附试验(Enzyme Linked-Immuno-Sorbent Assay,ELISA)定量检测不同处理组在不同时间点磷脂酰肌醇-3激酶(phosphatidylinositol 3-kinase,PI-3K)的重要下游激酶Akt在Akt-Ser-473和Akt-Thr-308位点的活化水平;用免疫组织化学观察Akt[pS473]和Akt[pT308]活化状态及在海马CA1区锥体神经元的定位分布。
     【结果】脑缺血后,缺血组与缺血后适应组的TUNEL阳性细胞数在缺血侧显著多于对照组(P<0.01),而在缺血对侧所有实验组TUNEL阳性细胞数与对照组相比均无显著性差异(P>0.05);在缺血4h时,缺血后适应组TUNEL阳性细胞数较缺血组减少,但无统计学显著差异(P>0.05),而在缺血24h、72h,缺血后适应组TUNEL阳性细胞数较缺血组显著减少(P<0.01)。TTC染色显示:缺血后适应能减小梗死面积。电镜观察显示:缺血后适应期间,海马CA1区神经元线粒体和内质网的病理改变明显减轻,细胞水肿改善。ELISA结果显示:脑缺血4h Akt[pT308]水平较对照组显著增高(P<0.05),但至24h时,Akt[pT308]水平与4h时相比较则显著降低(P<0.05),而缺血后适应组24h、72h Akt[pT308]水平明显高于对照组(P<0.05),且72h时,缺血侧后适应组Akt[pT308]活化水平显著高于脑缺血72h组。在不同实验组以及各实验时间点Akt[pS473]水平与对照组相比无显著性差异(P>0.05)。免疫组化结果显示:海马CA1区锥体神经元可见Akt[pS473]与Akt[pT308]的胞浆、胞膜型表达。【结论】①缺血后适应可减少海马CA1区神经元的凋亡而发挥其神经保护效应。②Akt-Ser-473在脑缺血以及缺血后适应过程中均可活化,而Akt-Thr-308在脑缺血组呈现为一过性活化;缺血后适应组Akt-Thr-308的活化呈现持续、逐渐增强状态,国内外未见报道。由于Akt的活化需Akt-Ser-473与Akt-Thr-308位点的双磷酸化,Akt-Thr-308活化与否决定了PI-3K/Akt途径的激活。③PI-3K/Akt信号转导途径的活化在缺血后适应保护海马CA1区神经元的机制中可能起着重要作用。Akt-Thr-308可能具有作为脑缺血后神经保护药物的作用靶点的潜在价值。
OBJECTIVE:To observe the ultrastructural changes of selectively vulnerable hippocampal CA1 neurons to investigate the influence and neuroprotective effect of ischemic postconditioning after ischemic injury,explore molecular mechanisms of protective effect of ischemic postconditioning after cerebal ischemia,and,to inquire what biological role of PI-3K/Akt signal transduction pathway play after ischemic postconditioning and cerebral ischemia in tree shrews.
     METHODS:Cerebral ischemia was induced by photochemical reaction in tree shrew,and then alternated employed occlusion right common carotid artery 5 min and reperfused 5min at once,carried out 3 circles to establish experimental model of ischemic postconditioning.Using terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling staining(TUNEL)to label apoptosis of pyramid neuron in hippocampus CA1 subfied after cerebral ischemia and ischemic postconditioning,the animal's brian stained by 2,3,5-triphenyltertrazolium chloride (TTC)to show the infarct size of brain.The ultrastractural impairment changes in different groups were observed under the electronmicroscope.The level of Akt-Ser-473 and Akt-Thr-308 phosphorylation which are the downstream kinase of phosphatidylinositol 3-kinase(PI-3K)were detected quantitatively by Enzyme Linked-Immuno-Sorbent Assay(ELISA)during diferrent time of cerebral ischemia and ischemic postconditioning.The activated expression and distribution of Akt[pS473]and Akt[pT308]in pyramid neuron in hippocampus CA1 in different groups and different phase were surveyed by immunohistochemistry
     RESULTS:The counts of TUNEL positive neuron of ipsilateral in hippocampus CA1 subfied in cerebral ischemia group and postconditioning group were more than control group significantly(P<0.01),but the counts of TUNEL positive neuron have no significant difference among all of contralateral groups(P>0.05).After cerebral ischemia 4 hours,the counts of TUNEL positive neuron in postconditioning group and cerebral ischemia group still.have no statistical difference(P>0.05),but the counts of TUNEL positive neuron have shown slightly decreased in postconditioning group.After cerebral ischemia 24 hours and 72 hours,the counts of TUNEL positive neuron were significant decreased in ischemic postconditioning groups than ischemic groups(P<0.01).TTC stained shown that the infarct size of brain was diminished with ischemic postconditioning treatment.The observation with electronmicroscope displayed that the amendment of structure of mitochondria and endoplasmic reticulum in pathological condition of neuron in hippocampus CA1 subfied after ischemic postconditioning.After cerebral ischemia 4 hours,the level of phosphorylation of the Akt protein at threonine residue 308 was significant increased than control group(P<0.05),however,in the group of after cerebral ischemia 24 hours,the level of phosphorylation of the Akt protein at threonine residue 308 was significant decreased than the group of after cerebral ischemia 4 hours(P<0.05).In the groups of after ischemic postconditioning 24 hours and 72 hours,the level of phosphorylation of the Akt protein at threonine residue 308 were significant increased than control group(P<0.05),and the level of phosphorylation of the Akt protein at threonine residue 308 was significant increased in the group of after ischemic postconditioning 72 hours than the group of after cerebral ischemia 72 hours.The level of phosphorylation of the Akt protein at serine residue 473 had not significant difference among all groups(P>0.05).The result of immunohistochemistry shown that the activated expression of Akt[pS473]and Akt[pT308]were clear in endochylema and membrane in pyramid neuron on hippocampus CA1 subfield.
     CONCLUSION:①Ichemic postconditioning generate neuroprotective effect after cerebral ischemia by decreased neuron apoptosis in hippocampus CA1 subfied and disminished the infarct size of brain.②Akt protein would be phosphorylated at serine residue 473 ever after cerebal ischemia or ischemic postconditioning,the Akt protein at threonine residue 308 only took place transient phosphorylation during cerebral ischemia but showed activate persistently and increasingly in the group of after ischemic postconditioning.So far,this is first report about the finding.Since the complete activation of Akt needs both serine residue 473 and threonine residue 308 are phosphorylation,so the phosphorylation threonine residue 308 may determine the Akt avtiation.③The activation of PI-3K/Akt pathway may play an important role in neuroprotective effect after cerebral ischemia postcondining.The threonine residue 308 of Akt protein as an important target point of neuroprotective drug after cerebral ischemia may has potential values,deserved to be further explored.
引文
[1] Taylor TN, Davis PH, Tomer JC, et al. Lifetime cost of stroke in the Unite States. Stroke.1996,27(9): 1459-1466.
    
    [2] Burda J, Danielisova V, Nemethova M, et al. Delayed Postconditionig Initiates Additive Mechanism Necessary for Survival of Selectively Vulnerable Neurons After Transient Ischemia in Rat Brain. Cell Mol Neurobiol. 2006,26:1141-1151
    
    [3] Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci .2003,(26):248-254
    
    [4] Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardialinjury by ischemic postconditioning during reperfusion: comparisonwith ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003, 285:H579.
    
    [5] Tsang A, Hausenloy DJ, Mocanu MM, et al. Postconditioning: a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway.Circ Res. 2004, 95(3):230-232.
    
    [6] Argaud L, Ovize M. How to use the paradigm of ischemic preconditioning to protect the heart? Med Sci (Paris). 2004, 20(5):521-525.
    
    [7] Bopassa JC, Ferrera R, Gateau-Roesch O, et al. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res. 2006,69(1):178-185.
    
    [8] Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med.2005, 15(2):69-75.
    
    [9] Wang C, Neff DA, Krolikowski JG et al. The influence of B-cell lymphoma 2 protein,an antiapoptotic regulator of mitochondrial permeability transition, on isoflurane-induced and ischemic postconditioning in rabbits. Anesth Analg. 2006, 102(5): 1355-1360.
    
    [10] Pagel PS, Krolikowski JG, Neff DA, et al. Inhibition of glycogen synthase kinase enhances isoflurane-induced protection against myocardial infarction during early reperfusion in vivo. Anesth Analg. 2006, 102(5):1348-1354.
    
    [11] Uiodromitis E K, Georgiadis M, Cohen M V, et al. Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardio. 2006,101:502-507.
    
    [12] Hausenloy D J, Yell D. Survival kinases in ischemic preconditioning and postconditioning. (review) Cardiovasc Res. 2006, 70: 240-253
    
    [13] Danielisova V, Nemethova M, Gottlieb M, et al. The changes in endogenous antioxidant enzyme activity after postconditioning. Cell Mol Neurobiol. 2006,26:1179-1189
    
    [14] Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy:ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab.2006, 26:1114-1121
    
    [15] Pignataro G, Meller R, Inoue K,et al. In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J Cereb Blood Flow Metab. 2008,28:232-241 .
    
    [16] Staal SP, Hartley JW, Rowe WP. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci U S A. 1977,74(7):3065-3067.
    
    [17] Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol- 3-OH kinase signal transduction. Nature. 1995,17:599-602
    
    [18] Franke T, Yang S, Chan T, et al. The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell. 1995, 81:727-736
    
    [19] Kohn AD, Kovacina KS, Roth RA. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J. 1995, 14:4288-4295
    
    [20] Dudek H, Datta SR, Frabke TF, et al. Regulation of neuronal survival by the serine/threonine protein kinase Akt. Science. 1997,275: 661 -665.
    
    [21] Kitagawa H, Warita H, Sasaki C, et al. Immnoreactive Akt, PI3 -K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett, 1999,274 (1): 45-48.
    
    [22] Ouyang yi-bing, Ying Tan, M Comb et al. Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C, and Activation of Caspase-Like Proteases. J Cereb Blood Flow Metab. 1999,19:1126-1135.
    
    [23] Yano S, Morioka M, Fukunaga K,et al. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of Gerbil hippocampus. J Cereb Blood Flow Metab.2001,21:351-360[24]Nakajima T,lwabuchi S,Miyazaki H,et al.Preconditioning prevent ischemia-induced neuronal death through persistent Akt activation in the penumbra region of the rat brain.J Vet Med Sci.2004,66(5):521-527
    [25]Saito A,Hayashi T,Okuno S,et al.Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway.J Neurosci.2003,23:1710-1718
    [26]Maitreyi S,Rajala R V S,Rajala RA,et al.Corneal cell survival in adenovirus type 19infection requires phosphoinositide 3-kinase/Akt activation.J Virol.2005,79(19):12332-12341.
    [27]彭燕章,叶智彰,邹如金等.树鼩生物学.第一版.昆明.云南科技出版社,1997.1-11
    [28]李树清,赵文洁,杨琼英.光化学诱导的血栓形成局部脑缺血的动物模型.中国病理生理杂志,1992,8(3):333
    [29]Karasawa Y,Araki H,Otomo S.Changes in locomotor activity and passive avoidance task performance induced by cerebral ischemia in Mongolian gerbils.Stroke.1994,25:645-650.
    [30]Catania MA,Marciano MC,Parisi A,et al.Erythropoietin prevents cognition impairment induced by transient brain ischemia in gerbils.Eur J Pharmacol.2002,437:147-150.
    [31]Cao G,Luo Y,Nagayama T,et al.Cloning and characterization of rat caspase-9:implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia.J Cereb Blood Flow Metab.2002,22:534-546.
    [32]Zhang F,Yin W,Chen J.Apoptosis in cerebral ischemia:executional and regulatory signaling mechanisms.Neurol Res.2004,26:835-845.
    [33]张为龙,钟世镇.临床解剖学丛书头颈部分册.第一版.北京.人民卫生出版社.1996.48
    [34]Lee JM,Grabb MC,Zipfel GJ,et al.Brain tissue responses to ischemia.J Clin Invest.2000,106:723-731
    [35]Franke TF,Hornik CP,Segev L,et al.PI3K/Akt and apoptosis:size matters.Oncogene.2003,22:8983-8998.
    [36]Fresno Vara JA,Casado E,Castro J,et al.PI3K/Akt signalling pathway and cancer.Cancer Treat Rev.2004,30:193-204.
    [37]Brunet A,Datta SR,Greenberg ME.Transcription-dependent and -independent control of neuronal Survival by the PI3K-Akt signaling pathway.Curr Opin Neurobiol.2001,11:297-305.
    [38] Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT—A major therapeutic target. Biochim Biophys Acta. 2004, 1697:3-16.
    
    [39] Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem. 2004,73:87-106.
    
    [40] Thompson JE,Thompson CB. Puting the Rap on Akt.Clin Oncol. 2004,1522(20):4217-4226
    
    [41] Hajduch E, et al. Protein kinase B(PKB/Akt)-a key regulator of glucose transport?FEBS Lett. 2001,492(3): 199-203.
    
    [42] Cross D A, et al. Inhibition of glucogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995, 373:785-789.
    
    [43] Downwrd J. PI3-kinase, Akt and cell survival. Sem in Cell Dev Biol.2004,15(2): 177-182.
    
    [44] Diehl J A, et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12(22):3499-3511.
    
    [45] Nusse R. Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development. 2003, 130:5297-5305.
    
    [46] Zong WX, Edelstein LC, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-1 /Al is a direct transcriptional target of NF-kB that blocks TNF alpha induced apoptosis. Genes Dev. 1999,13(4): 382-387.
    
    [47] Friguls, B, Justicia C, Palla's M.et al. Focal cerebral ischemia causes two temporal waves of Akt activation. NeuroReport. 2001, 12:3381-3384.
    
    [48] Yano S, Tokumitsu H, Soderling TR . Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 1998, 396:584-587
    
    [49]Zhang FX, Rubin R, Rooney TA. N-Methyl-D-aspartate inhibits apoptosis through activation of phosphatidylinositol 3-kinase in cerebellar granule neurons. A role for insulin receptor substrate-1 in the neurotrophic action of n-methyl-D-aspartate and its inhibition by ethanol. J Biol Chem. 1998,273:26596-26602
    
    [50] Meng F, Guo J, Zhang Q, et al. Autophosphorylated calcium/calmodulin-dependent protein kinase II alpha (CaMKII alpha) reversibly targets to and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B) in cerebral ischemia and reperfusion in hippocampus of rats.Brain Res.2003,28:161-169
    [51]Yano S,Morioka M,Kuratsul J,et al.Functional proteins involved in regulation of intracellular Ca2~+ for drug development:role of calcium/calmodulin-dependent protein kinases in ischemic neuronal death.J Pharmacol Sci.2005,97:351-354
    [52]Kamada H,Nito C,Endo H,et al.Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats.J Cereb Blood Flow Metab.2007,27(3):521-33.
    [53]Friguls B,Petegnief V,Justicia C,et al.Activation of ERK and Akt signaling in focal cerebral ischemia:modulation by TGF-alpha and involvement of NMDA receptor.Neurobiol Dis.2002,11:443-456.
    [54]Zhang QG,Wang XT,Han D,et al.Akt inhibits MLK3/JNK3 signaling by inactivating Racl:a.protective mechanism against ischemic brain injury.J Neurochem.2006,98:1886-1898.
    [55]Li X Y,Man K,Ng K T,et al.The influence of phosphatidylinositol-3-kinase/Akt pathway on the ischemic injury during rat liver graft preservation.American Journal of Transplantation.2005,5:1264-1275
    [56]Wang J Y,Shum A Y,Ho YJ.Oxidative neurotoxicity in rat cerebral cortex neurons:synergistic effects of H_2O_2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3.J Neurosci Res.2003,72:508-519.
    [57]张颖,李树清,陈静.树鼩脑缺血后海马线粒体应激与神经元损伤机制研究中风与神经疾病杂志.2007,24(2):140-142
    [58]Hosoi T,Hyoda K,Okuma Y,et al.Akt up- and down-regulation in response to endoplasmic reticulum stress.Brain Res.2007,1152:27-31
    [1]Taylor TN,Davis PH,Torner JC,et al.Lifetime cost of stroke in the Unite States.Stroke.1996,27(9):1459-1466.
    [2]Lipton P.Ischemic cell death in brain neurons.Physiol Rev.1999,79:1431-1568.
    [3]Karasawa Y,Araki H,Otomo S.Changes in locomotor activity and passive avoidance task performance induced by cerebral ischemia in Mongolian gerbils.Stroke,1994,25:645-650.
    [4]Catania MA,Marciano MC,Parisi A et al.Erythropoietin prevents cognition impairment induced by transient brain ischemia in gerbils.Eur J Pharmacol,2002,437:147-150.
    [5]Cao G,Luo Y,Nagayama T,et al.Cloning and characterization of rat caspase-9:implications for a role in mediating caspase-3 activation and hippocampal cell death after transient cerebral ischemia.J Cereb Blood Flow Metab,2002,22:534-546.
    [6]Zhang F,Yin W,Chen J.Apoptosis in cerebral ischemia:executional and regulatory signaling mechanisms.Neurol Res,2004,26:835-845.
    [7]Staal SP,Hartley JW,Rowe WP.Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma.Proc Natl Acad Sci U S A,1977,74(7):3065-3067.
    [8]Datta SR,Brunet A,Greenberg M E.Cellular survival:a play in three Akts.(review)Genes & Dev,1999,13:2905-2927
    [9]Franke TF,Hornik CP,Segev L,et al.PI3K/Akt and apoptosis:size matters.Oncogene,2003,22:8983-8998.
    [10]Fresno Vara JA,Casado E,de Castro J,et al.PI3K/Akt signalling pathway and cancer.Cancer Treat Rev,2004,30:193-204.
    [11]Burgering BM,Coffer PJ.Protein kinase B(c-Akt)in phosphatidylinositol-3-OH kinase signal transduction. Nature, 1995, 17:599-602
    
    [12] Franke T, Yang S, Chan T, et al. The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell ,1995,81:727-736
    
    [13] Kohn AD, Kovacina KS, Roth RA .Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J ,1995,14:4288-4295
    
    [14] liang J, Slingerland JM. Multiple roles of the PI3K/PKB(Akt) pathway in cell cycle progression.Cell Cycle,2003,2(4):339-345
    
    [15] Radu A, Neubauer V, Akagi T,et al. PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell boil ,2003,23( 17):6139-6149
    
    [16]Thompson JE,Thompson CB.Puting the Rap on Akt.Clin Oncol ,2004 ,1522(20):4217-4226
    
    [17] Feng J,Tamaskkovic R,Yang Z,et al. Stabilization of Mdm-2 via decrease ubquitination is mediated by protein kinase B/Akt dependent phosphorylation. Biol Chem, 2004, 279(34):35510-35517
    
    [18] Zhou HL, Li XM, Meinkoth J .et al. Akt Regulates Cell Survival and Apoptosis is at a Postmitochondrial Level.Cell Biol, 2000,151(3):483-494
    
    [19] Cardone, M. H, Roy N, Stennicke, H. R, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998,282:1318-1321.
    
    [20] Brunet A, Datta SR, Greenberg ME.Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol,2001,11:297-305.
    
    [21] Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT—A major therapeutic target.[J] Biochim Biophys Acta, 2004,1697:3-16.
    
    [22] Graham SH, Chen J . Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab,2001,21:99-109.
    
    [23] Abid M R, Schoots IG., Spokes K C,et al.Vascular Endothelial Growth Factor-mediated Induction of Manganese Superoxide Dismutase Occurs through Redox-dependent Regulation of Forkhead and IκB/NF-κB .J Bio Chem,2004, 279(42): 15, 44030-44038.
    
    [24] Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem 2004,73:87-106.
    
    [25] ZongWX, Edelstein LC, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-1 /Al is a direct transcriptional target of NF-kB that blocks TNF alpha2 induced apoptosis. Genes Dev, 1999,13(4): 382-387.
    
    [26]Hajduch, E. et al.Protein kinase B(PKB/Akt)-a key regulator of glucose transport? FEBS Lett. 2001,492 (3) , 199-203.
    
    [27] Cross, D.A. et al. Inhibition of glucogen synthase kinase-3 by insulin mediated by protein kinase B .Nature 1995, 373, 785-789.
    
    [28] Downwrd J .PI3-kinase ,Akt and cell survival . Sem in Cell Dev Biol.2004,15(2): 177-182.
    
    [29]Diehl, J.A. et al.Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998,12(22), 3499-3511..
    
    [30] Bhat RV, Shanley J, Correll MP, et aRegulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci USA. 2000,97:11074 -11079.
    
    [31]Nusse R . Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development .2003, 130:5297-5305.
    
    [32] Owada, Y, Utsunomiya, A, Yoshimoto, T, et al. Expression of mRNA for Akt,serine-threonine protein kinase, in the brain during development and its transient enhancement following axotomy of hypoglossal nerve. J. Mol. Neurosci. 1997,9, 27-33.
    
    [33] Kang, J.Q, Chong, Z.Z, Maiese, K. Critical role for Aktl in the modulation of apoptotic phosphatidylserine exposure and microglial activation. Mol. Pharmacol. 2003,64, 557-569.
    
    [34] Chong, Z.Z, Kang, J.Q, Maiese, K... Aktl drives endothelial cell membrane asymmetry and microglial activation through Bcl-x(L) and caspases 1, 3, and 9. Exp. Cell Res. 2004,296,196-207.
    
    [35] Dudek H, Datta SR , Frabke TF, et al. Regulation of neuronal survival by the serine2 threonine protein kinase Akt. Science, 1997 , 275 : 661 -665.
    
    [36] Philpott, K.L, McCarthy, M.J, Klippel, A, et al. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J. Cell Biol. 1997,139:809-815.
    
    [37] Datta, S.R, Dudek, H, Tao, X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell .1997, 91:231-241.
    
    [38] Crowder, R.J., Freeman, R.S.Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons.JNeurosci. 1998,18:2933-2943.
    
    [39] Jin G, Omori N, Li F, et al. Protection against ischemic brain damage by GDNF affecting cell survival and death signals. Neurol Res 2003,25:249-253.
    
    [40] Limbourg FP, Huang Z, Plumier JC, et al. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J Clin Invest. 2002,110:1729 -1738.
    
    [41] Kitagawa H, Warita H, Sasaki C, et al. Immnoreactive Akt, PI3 -K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett. 1999, 274 (1): 45 248.
    
    [42] Ouyang YB, Tan Y, Comb M, et al. Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt, release of cytochrome C and Activation of caspase-like proteases. J Cereb Blood Flow Metab. 1999, 19(10): 1126-1135
    
    [43] Nakajima T, Iwabuchi S, Miyazaki H, et al. Preconditioning Prevent Ischemia-Induced Neuronal Death Through Persistent Akt Activation in the Penumbra Region of the Rat Brain. J Vet Med Sci.2004,66(5)521-527.
    
    [44] Friguls, B, Justicia, C, Palla's, M,et al. Focal cerebral ischemia causes two temporal waves of Akt activation. Neuro Report. 2001,12: 3381-3384.
    
    [45] Yano S, Morioka M, Fukunaga K,et al. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab. 2001,21:351-360.
    
    [46] Weise J, Sandau R, Schwarting S,et al. Deletion of Cellular Prion Protein Results in Reduced Akt Activation, Enhanced Postischemic Caspase-3 Activation,and Exacerbation of Ischemic Brain Injury. Stroke. 2006,37:1296-1300
    
    [47] Chan, P. H. Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke. Ann. N.Y. Acad Sci. 2005,1042:203-209.
    
    [48] Kinouchi H, Epstein CJ, Mizui T,et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci U S A. 1991,88:11158-11162.
    
    [49] Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973,134:707-716.
    [50] Saito A, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway. J Neurosci. 2003,23: 1710-1718.
    
    [51] Fujimura M, Morita-Fujimura Y, Noshita N, et al. The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci. 2000; 20:2817-2824.
    
    [52] Noshita N, Sugawara T, Hayashi T,et al. Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. J Neurosci. 2002,22:7923-7930.
    
    [53] Noshita N, Sugawara T, Lewen A, et al. Copper-zinc superoxide dismutase affects Akt activation after transient focal cerebral ischemia in mice. Stroke. 2003,34:1513-1518.
    
    [54] Saito A, Hayashi T, Okuno S, et al. Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin-proteasome system during reperfusion after stroke: role of oxidative stress. J Cereb Blood Flow Metab. 2005,25:267-280
    
    [55]Saito A, Hayashi T, Okuno S, et al. Oxidative stress affects the integrin-linked kinase signaling pathway after transient focal cerebral ischemia .Stroke. 2004,35:2560-2565
    
    [56] Chong Z Z, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol. 2005,75:207-246
    
    [57] Taylor J M, Ali U , Iannello, R C, et al. Iminished Akt phosphorylation in neurons lacking glutathione peroxidase- 1 (Gpxl) leads to increased susceptibility to oxidative stress-induced cell death. J Neurochem. 2005,92:283-293
    
    [58] Xia C F, Yin H, Borlongan C V, et al. Adrenomedullin gene delivery protects against cerebral ischemic injury by promoting astrocyte migration and survival. Hum. Gene Then 2004,15:1243-1254
    
    [59] Takadera T, Ohyashiki T. Glycogen synthase kinase-3 inhibitors prevent caspase-dependent apoptosis induced by ethanol in cultured rat cortical neurons. Eur. J. Pharmacol. 2004,499:239-245
    
    [60] Endo H, Nito C, Kamada H, et al. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling.J Cereb Blood Flow Metab,2007,27(5):975-982
    [61]Saito A,Narasimhan P,Hayashi T,et al.Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke:relationships with nerve growth factor.J Neurosci.2004,24:1584-1593.
    [62]Kovacina KS,Park GY,Bae SS,et al.Identification of a proline-rich Akt substrate as a 14-3-3 binding partner.J Biol Chem.2003,278:10189-10194.
    [63]Saito A,Takeshi H,Okuno S,et al.Modulation of Proline-Rich Akt Substrate Survival Signaling Pathways by Oxidative Stress in Mouse Brains After Transient Focal Cerebral Ischemia.Stroke.2006,37:513-517
    [64]Ankarcrona M,Dypbukt J.M,Bonfoco E,et al.Glutamate-induced neuronal death:a succession of necrosis or apoptosis depending on mitochondrial function.Neuron.1995,(15):961-973
    [65]Chan PH.Mitochondria and Neuronal Death/Survival Signaling Pathways in Cerebral Ischemia.Neurochemical Research.2004,29(11):1943-1949
    [66]Wang J Y,Shum A Y,Ho Y J.Oxidative neurotoxicity in rat cerebral cortex neurons:synergistic effects of H_2O_2 and NO on apoptosis involving activation of p38 mitogen-activated protein kinase and caspase-3.J Neurosci Res.2003,72:508-519
    [67]张颖,李树清,陈静.树鼩脑缺血后海马线粒体应激与神经元损伤机制研究.中风与神经疾病杂志.2007,24(2):140-142
    [68]Shi,Y.A structural view of mitochondria-mediated apoptosis.Nat.Struct.Biol.2001,8:394-401.
    [69]Merry D E,Korsmeyer S J.Bcl-2 gene family in the nervous system.Annu Rev Neurosci.1997,20:245-267
    [70]Martinou J C,Dubois-Dauphin M,Staple J K,et al.Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia.Neuron.1994,13:1017-1030.
    [71]Plesnila N,Zinkel S,Le D A,et al.BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia.Proc Natl Acad Sci.USA.2001,98:15318-15323
    [72] Hata R, Gillardon F, Michaelidis T M, et al. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis. 1999, 14:117-124
    
    [73] Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2,displaces Bax and promotes cell death. Cell. 1995,80:285-291
    
    [74] Abe T, Takagi N, Nakano M,et al. Altered Bad localization and interaction between Bad and Bcl-xL in the hippocampus after transient global ischemia. Brain Research 2004,1009: 159-168
    
    [75] Zha J, Harada H, Yang E J, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL, Cell. 1996, (87) :619-628.
    
    [76] Yoshimoto T, Uchino H, He Q P, et al. Cyclosporin A, but not FK506, prevents the downregulation of phosphorylated Akt after transient focal ischemia in the rat, Brain Res. 2001,899:148-158.
    
    [77] Yoshimoto T, Kanakaraj P, Ma J Y,et al. NXY-059 maintains Akt activation and inhibits release of cytochrome C after focal cerebral ischemia.Brain Research .2002, 947: 191-198
    
    [78] White B C, Sullivan J M, DeGracia, et al. Brain ischemia and reperfusion: Molecular mechanisms of neuronal injury. J Neurol Sci. 2000, 179:1-33
    
    [79] Gonzalez-Zulueta M, Feldman A B, Klesse L J,et al. Requirement for nitric oxide activation of p21ras/extracellular regulated kinase in neuronal ischemic preconditioning. Proc Natl Acad Sci USA .2000, 97:436-441
    
    [80] Goyal L. Cell death inhibition: keeping caspases in check. Cell. 2001, 104:805- 808
    [81] Kamada H, Nito C, Endo H, et al. Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2007, 27(3):521-533
    
    [82] Zhang Q G, Wang X T, Han D, et al. Akt inhibits MLK3/JNK3 signaling by inactivating Racl: a protective mechanism against ischemic brain injury.J Neurochem. 2006,98:1886-1898
    
    [83] Hosoi T, Hyoda K, Okuma Y, et al. Akt up- and down-regulation in response to endoplasmic reticulum stress. Brain Res. 2007,1152:27-31
    
    [84] Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated Apoptosis in pancreatic beta-cells. Apoptosis. 2002,7:335-345
    
    [85] Gallo V, Kingsbury A, Balazs R, et al. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci. 1987, 7:2203-2213
    
    [86] Koike T, Martin DP, Johnson EM Jr. Role of Ca2~+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2~+ determine nerve growth factor dependence of sympathetic ganglion cells.Proc Natl Acad Sci USA. 1989, 86:6421-6425.
    
    [87] Hara T, Hamada J, Yano S, et al. CREB is required for acquisition of ischemic tolerance in gerbil hippocampal CA1 region. J Neurochem. 2003, 86:805-814.
    
    [88]Yano S, Tokumitsu H, Soderling TR. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 1998, 396:584-587.
    
    [89] Yano S, Morioka M, Kuratsu J, et al. Functional proteins involved in regulation of intracellular Ca2~+ for drug development: role of calcium/calmodulin-dependent protein kinases in ischemic.neuronal death. J Pharmacol Sci 2005, 97: 351 - 354
    
    [90] Annunziato L, Pignataro G, Boscia F, et al. ncxl, ncx2, and ncx3 gene product expression and function in neuronal anoxia and brain ischemia . Ann N Y Acad Sci. 2007 ,1099:413-426
    
    [91] Maier CM, Hsieh L, Crandall T, et al. A new approach for the investigation of reperfusion-related brain injury. Biochem Soc Trans. 2006, 34:1366-1369.
    
    [92] Kilic E, Kilic U, Wang YM, et al. The phosphatidylinositol-3 kinase /Akt pathway mediates VEGFs neoroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia .The FASEB Journal. 2006 ,20: 1185-1187
    
    [93] Zhang Y, Park TS, Gidday JM. Hypoxic Preconditioning protects human brain endothelium from ischemic apoptosis by Akt-dependent surviving activation. Am J Physiol Heart Circ Physiol. 2007,292(6):H2573-2581
    
    [94] Luo Z, Fujio Y, Kureishi Y, et al. Acute modulation of endothelial Akt/ PKB activity alters nitric oxide-dependent vasomotor activity in vivo. J Clin Invest. 2000,106: 493-499
    
    [95] Namura S, Nagata I, Kikuchi H,et al. Serine-threonine protein kinase Akt does not mediate ischemic tolerance after global ischemia in the gerbil. J Cereb Blood Flow Metab. 2000,20(9):1301-1305.
    
    [96] Hashiguchi A, Yano S, Morioka M, et al. Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab . 2004, 24:271-279
    
    [97] Wick A, Wick W, Waltenberger J, et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neuroscience.2002, 22( 15):6401-6407
    
    [98] Zhao H. Shimohata T, Wang Jade Q,et al. Akt Contributes to Neuroprotection by Hypothermia against Cerebral Ischemia in Rats. J Neuroscience. 2005, 25(42):9794-9806
    
    [99] Hillion J A, Li Y X, Maric D, et al. Involvement of Akt in preconditioning-induced tolerance to ischemia in PC12 cells. J Cereb Blood Flow Metab. 2006, 26:1323-1331
    
    [100] Adhami F, Liao G, Morozov YM et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006,169(2):566-583
    
    [101] Kitano H, Young JM, Cheng J et al, Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb.Blood Flow Metab. 2007,188:378-386
    
    [102]Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA .2005,293:90-95.
    
    [103] Zhang F, Armando P S, Zhou Z G, et al. Erythropoietin Protects CA1 Neurons Against Global Cerebral Ischemia in Rat: Potential Signaling Mechanisms. Journal of Neuroscience Research. 2006, 83:1241-1251
    
    [104] Nurmi A, Lindsberg P J, Koistinaho M, et al. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke. 2004, 35:987-991
    
    [105] Nurmi A, Vartiainen N, Goldsteins G, et al. Pyrrolidine dithiocarbamate inhibits activation of nuclear factor kappa-B in neurons and protects against brain ischemia with a wide therapeutic time window. J Neurochem. 2004, 91:755—765
    
    [106] Shen W H, Zhang C Y, Zhang G Y. Modulation of IkappaB kinase autophosphorylation and activity following brain ischemia. Acta Pharmacol Sin. 2003,24:311-315
    
    [107] Nurmi A, Goldsteins G , Narvainen J, et al. Antioxidant pyrrolidine dithiocarbamate activates Akt-GSK signaling and is neuroprotective in neonatal hypoxia-ischemia. Free Radical Biology & Medicine 2006,40:1776-1784
    
    [108] Matchett G A, Calinisan J B, Matchett G C, et al. The effect of granulocyte-colony stimulating factor in global cerebral ischemia in rats. Brain Res. 2007,1136(1):200-207
    [109] Joo J Y, Uz T, Manev H. Opposite effects of pinealectomy and melatonin administration on brain damage following cerebral focal ischemia in rat. Restor Neurol Neurosci.1998,13:185-191
    
    [110] Kilic E, Ozdemir Y G, Bolay H, et al. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab.1999,19:511-516
    
    [111] Cuzzocrea S, Costantino G, Gitto E, et al. Protective effects of melatonin in ischemic brain injury. J Pineal Res. 2000, 29:217-227
    
    [112] Sun FY, Lin X, Mao LZ, et al. Neuroprotection by melatonin against ischemic neuronal injury associated with modulation of DNA damage and repair in the rat following a transient cerebral ischemia. J Pineal Res. 2002, 33:48-56
    
    [113] Cheung RT. The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion. J Pineal Res. 2003,34:153-160
    
    [114] Pei Z, Fung PC, Cheung RT. Melatonin reduces nitric oxide level during ischemia but not blood-brain barrier breakdown during reperfusion in a rat middle cerebral artery occlusion stroke model. J Pineal Res. 2003, 34:110-118
    
    [115] Kilic E, Kilic U, Yulug B, et al. Melatonin reduces disseminate neuronal death after mild focal ischemia in mice via inhibition of caspase-3 and is suitable as an add-on treatment to tissue-plasminogen activator. J Pineal Res. 2004, 36:171-176
    
    [116] Andrabi SA, Sayeed I, Siemen D, et al. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J .2004, 18:869-871
    
    [117] Jou MJ, Peng TI, Reiter RJ, et al. Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res. 2004, 37:55-70
    
    [118] Kilic U 1, Kilic E, Reiter RJ, et al. Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice. J Pineal Res. 2005,38(1):67-71.
    
    [119] Friguls B, Petegnief V, Justicia C,et al. Activation of ERK and Akt signaling in focal cerebral ischemia: modulation by TGF-alpha and involvement of NMDA receptor. Neurobiol Dis. 2002,11:443-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700