海带工业中甘露醇的纳滤膜渗滤纯化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳滤(NF)是介于反渗透(RO)与超滤(UF)之间的一种压力驱动型膜分离技术,是20世纪70年代末期开始发展起来的一种高新技术。根据NF膜的特点和性能,NF膜技术的主要应用是水软化、水净化、相对分子质量在百级的物质的分离、分级和浓缩等。随着社会发展的需求不断增加,NF在饮用水净化、水质软化,抗生素、多糖、多肽等化工和生物工程产物的分级和浓缩,脱色和去异味,以及废水处理和资源回收等方面都有越来越明显的作用。
     海带工业废水中甘露醇(M)的含量较高,约1.0 wt%。显然,开发海带加工过程中的M回收利用技术,具有重大的经济效益。以海藻资源综合利用为背景,进一步发展海带食品和海带化工系列产品生产的节能减排工艺和资源高效利用技术,已列为国家科技支撑计划项目。由于废水成分复杂,污染物浓度高,经预处理工艺去除悬浮物、蛋白、糖胶等大分子有机物后,仍残留含量较高的无机盐类杂质,其中主要的无机盐为氯化钠(NaCl).传统方法脱除NaCl难度较大,普遍存在着能耗高、环境污染大的问题。本文面向海带加工废水中M的提取技术的开发,在选用的两种聚酰胺(PA)卷式NF膜组件、设计制作的总膜面积为6.8 m2的成套化中试装置上,以去除NaCl为主要杂质成分,进行中M混合物水溶液中M的纯化实验。实验设计膜分离用的废水为以M、NaCl为海带废水中的主要成分,进行了M水溶液以及M-NaCl-水混合物的膜性能及其工艺参数的大量实验。结果表明,影响NF膜分离的主要工艺参数是料液中的M浓度和NaCl浓度以及操作压力(P)和操作温度(T);比较两支NF膜组件的渗透性和选择性,1#优于2#。NF分离单组分M水溶液体系时,渗透通量(J)较高,M截留率(RM)大于80%。NF分离M-NaCl混合物水溶液体系时,RM值稳定在75-80%,J值稳定在13 L/m2·h;当初始料液中NaCl浓度(Cf,NaCl)分别为0.2 wt%和0.8 wt%时,NaCl透过率(SNaCl)分别约达50%和70%。提出的优先渗透和空间位阻的集成效应传质现象解释了M-NaCl水溶液体系的NF膜分离机理。
     基于NF膜对M-NaCl水混合物的集成效应传质机理及其分离效果的初步研究结果,进一步利用已优选出的1#NF膜组件,组合NF膜过程与DF操作模式,提出了能够达到脱盐和浓缩目的的预浓缩(CⅠ)-连续恒容渗滤(CCVD)-后浓缩(CⅡ)组合工艺过程,即膜渗滤(MDF)法。着重研究了主要工艺参数,即截留液中的M和NaCl的浓度,预浓缩因子(CF),CCVD操作时间(t),渗滤溶剂(去离子水)消耗量(VW)及组合工艺的净化因子(PF)对MDF的影响。结果表明,在CCVD操作前进行适当的预浓缩是必要的,在CF为2.0-2.5之间,料液中的NaCl去除率约90%,M质量浓度约为初始料液浓度的3倍,PF达40。DF过程耗用的去离子水量小。本文在相关理论研究及本实验料液体系特点的基础上,推导出下列计算公式,以期预测MDF工艺过程中M、NaCl质量浓度及渗滤溶剂消耗量的变化:
     浓缩阶段:(?)
     渗滤阶段:(?)(?)
     研究获得的这种新型的去除NaCl和浓缩M的双重效果的NF工艺可行,技术合理。实验结果为建设海带加工中M的NF膜纯化和浓缩工程应用提供了理论基础。
Nanofiltration (NF) is a new type of pressure-driven membrane technology located between reverse osmosis (RO) and ultrafiltration (UF), and developed in the late 1970s as a new kind of high technology. Based on NF membrane performance, NF technology has been mainly used in water softening, water purification, and separation, grading & concentration of the substance with Mw 100-1000, and so on. With the fast-growing demands of social development, NF technology become more and more obvious effects in the application of drinking water purification, water softening, grading & concentration, decolorization & removing foreign taste from the products of chemical industry and bioengineering, such as antibiotics, polysaccharoses, polypeptides, and wastewater treatment & resource recovery.
     The mannitol (M) concentration is about 1.0 wt%, and is relatively high in kelp process industry. Obviously, development of recycling technology in the kelp process is significant economic benefit. Based on the background of comprehensive utilization of kelp resources, developping the technologies of energy saving and efficient utilization of nature resource in the production of kelp food and a series of chemical products from kelp has been listed as National Key Technology R&D Program. Because of the complexity of wastewater constituents, there is still residual high inorganic salts impurity after removed suspended substance, protein, glucide and other macromolecules organic by pretreatment process, especially, the main salt is NaCl. It is difficult to reject NaCl by conventional process, and is common to be high energy consumption, serious environmental pollution. Present dissertation face to the development of extraction technology of mannitol in kelp processing wastewater. For the purpose of removing the main impurity NaCl, the purification experiments of M in mixtures solution were studied by means of a setup pilot scale device equipped two kinds of polyamide (PA) spiral wound NF membrane modules with total effective area of 6.8 m2. The experiments were designed M & NaCl as the main impurity in kelp wastewater, and studied the membrane performance and process parameters in M aqueous solution and M-NaCl mixtrues solution. The results show that effect parameters on NF membrane separation performances were mainly the concentrations of M and NaCl in the feed, operation pressure (P) and temperature (T). The 1# membrane module was preferred the 2# membrane module in terms of permeate flux (J) and selectivity. The J was higher, and the M retention (RM) was more than 80% when separating M aqueous solution system. The RM of 75-80% and J of 13 L/m2-h were stable when separating M-NaCl mixture aqueous solution system. The NaCl penetration (SNacl) was about 50% and 70%, when NaCl concentration (Cf,NaCl) in the initial feed was 0.2 wt% and 0.8 wt%, respectively. The transport model of integrate effect considered preference penetration and space hinder was developed and successfully used to interpret the mechanisms of NF membrane separation of M-NaCl mixture aqueous solution system.
     In present dissertation, with the preferable 1# NF membrane, this work combined the NF process and DF operation mode, and brought forward the combined process of Pre-concentration (CⅠ)-Continuous Constant Volume Diafiltration (CCVD)-Post-concentration (CⅡ) to meet the need of desalination and concentration of M, namely MDF technique. The effects of main process parameters namely the concentration of M and NaCl in the retention, the pre-concentration factor (CF), the operation time (t) of (CCVD), the consumption of diafiltration solvent (deionized water) (Vw), and purification factor (PF) of membrane diafiltration (MDF) were discussed. The experimental results showed that the suitable process of pre-concentration before CCVD was necessary, and the rejection of NaCl in the feed was about 90%, the concentration of mannitol rose to about 3 times of initial feed concentration, PF come up to 40, the consumption of deionized water was lower when CF was between 2.0 and 2.5. In order to predict M/NaCl concentration and consumption of diafiltration solvent (deionized water) in MDF technological process, present dissertation deduced the following formula based on the related theories research and the characteristics of M/NaCl solution system:
     Concentration stage:(?)
     Diafiltration stage:(?) Vw(?)
     This work reveals the feasibility of new double effect NF process of NaCl penetration and M retention. The result provides the theoretical basis for constructing the engineering application of purification and concentration of M in kelp processing by means of NF membrane.
引文
[1]国家药典委员会编.中华人民共和国药典2005年版(二部)[M].北京:化学工业出版社,2005:71-72.
    [2]詹天荣,宋金明.甘露醇的药用研究进展[J].中国海洋药物,2003,3:57-61.
    [3]陈敏章主编.国家基本药物临床手册:西药[M].北京:华夏出版社,1999:155-156.
    [4]赵克健主编.中国化学药品大全[M].北京:新时代出版社,1999:155-156.
    [5]金骏,林美娇主编.海藻利用与加工[M].北京:科学出版社,1993:1-16;70-131;248-250;265-267.
    [6]王箴.化工辞典(第四版)[M].北京:化学工业出版社,2000:286-287.
    [7]Ly K A, Milgrom P, Rothen M. Xylitol, sweeteners, and dental caries. Pediatric Dentistry[C],2,(28), 2006.
    [8]纪明侯编著.海藻化学[M].北京:科学出版社,1997:345-352.
    [9]黄志斌主编.水产品综合利用工艺学[M].北京:中国农业出版社,1996:113.
    [10]五四八三一部队,中科院海洋研究所.电渗析技术应用于甘露醇生产初报[J].水处理技术,1975,02:5-11.
    [11]刘茉娥,蔡邦肖,陈益棠编著.膜技术在污水治理及回用中的应用[M].北京:化学工业出版社,2005:229-243.
    [12]薛德明,王炳南,周萍,等.从海带浸泡液中提取甘露醇的方法:中国,94109352[P].2000-06-28.
    [13]Michiel H, Bayha R, Fulger C V, et al. Mannitol and higher mannosaccharide alcohols[J]. General Foods Corp.,1984,563-568.
    [14]Tadra M L, Malek J, Process for D-mannitol production [J].1987,1:883-884.
    [15]应伟丽.电化学法合成甘露醇的研究[D].南宁:广西大学化学化工学院,2005:4-8.
    [16]唐亚贤,刘幽燕,张运明,等.蔗汁水解加氢制甘露醇在山梨醇的研究[J].甘蔗糖业,1998,27(2):41-44.
    [17]金树人.以白糖为原料生产山梨醇与甘露醇[J].木薯精细化工,1996,1:14-18.
    [18]谷才恩,叶志云.葡萄糖循环异构制甘露醇的研究[J].淀粉与淀粉糖,2000,3:15-17.
    [19]张海军,施磊.S2082-/TiO2型固体酸催化合成肉桂酸正丁酯[J].精细石油化工进展,2003,4(10):37-39.
    [20]Smiley K L, Cadmus M C, Rogovin S P. Shortened fermentation process for D-mannitol:U.S.patent, US3427224[P].1969-02-11.
    [21]El-Kady I A, Moubasher M H, Mostafa M E. Accumulation of sugar alcohols by filamentous fugi[J]. Folia Microbiol,1995(40):481-486.
    [22]Onishi H, Suzuki T. Production of D-mannitol and glycerol by yeasts[J]. Application Microbial,1968, 16:1847-1852.
    [23]Iwamoto H, Ozawa M, D-mannitol:Japanese patent, JP48091275[P].1973-11-28.
    [24]Wisselink H W, Weusthuis R A, Eggink G, et al. Mannitol production by lactic acid bacteria:a review[J]. International Dairy Journal,2002,12:151-161.
    [25]高以恒,叶凌碧编著.膜分离技术基础[M].北京:科学出版社,1989:1-11.
    [26]王湛,周翀主编.膜分离技术基础(第二版)[M].北京:化学工业出版社,2006:1-8;45;171.
    [27]Marcel Mulder著.膜技术基本原理(第二版)[M].李琳,译.北京:清华大学出版社,1999:7.
    [28]华耀祖编著.超滤技术与应用[M].化学工业出版社,2004:165-172.
    [29]王晓琳,丁宁编著.反渗透和纳滤技术与应用[M].北京:化学工业出版社,2005:26-76;107-138.
    [30]Goulas A K, Kapasakalidis P G, Sinclair H R, et al. Purification of oligosaccharides by Nanofiltration [J]. Journal of Membrane Science,2002,209(1):321-335.
    [31]Feng Y M, Chang X L, Wang W H, et al. Separation of Galacto-Oliosacchairdes Mixture by Nanofiltration[J]. Journal of the Taiwan Institute of Chemical Engineers,2009,40:326-332.
    [32]韩少卿,慈龙剑,陈贵锐,等.膜法酵母提取海藻糖应用初探[J].中国调味品,2004,9:21-25.
    [33]Tessier L, Bouchard P, Rahni M. Separation and purification of benzylpenicillin produced by fermentation using coupled ultrafiltration and nanofiltration technolugies[J]. Journal of Biotechnology, 2005,116:79-87.
    [34]Wang X L, Ying A L, Wang W N. Nanofiltration of L-phenylalanine and L-aspartic acid aqueous solutions[J]. Journal of membrane science,2002,196:59-67.
    [35]Hong S U, Bruening M L. Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes[J]. Journal of Membrane Science,2006,280:1-5.
    [36]Samhaber W, Kovacs Z. Nanofiltration of concentrated amino acid solution[J]. Desalination,2009, 240:78-88.
    [37]Butylina S, Luque S, Nystrom M. Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration[J]. Journal of Membrane Science,2006,280:418-426.
    [38]Kelly J, Kelly P. Desalination of acid casein whey by nanofiltration[J]. International Diary Journal, 1995,5(3):291-303.
    [39]Roman A, Wang J M, Csanadi J, et al. Partial demineralization and concentration of acid whey by nanofiltration combined with diafiltration[J]. Desalination,2009,241:288-295.
    [40]Luo J Q, Ding L H, Chen X R, et al. Desalination of soy sauce by nanofiltration[J]. Separation and Purification Technology,2009,66(3):429-437.
    [41]Wang X L, Zhang C H, Ping O Y. The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode[J]. Journal of membrane science,2002,204:271-281.
    [42]Vandanjon L, Jaouen P, Rossignol N, et al. Concentration and desalination by membrane processes of a natural pigment produced by the marine diatom Haslea ostrearia Simonsen[J]. Journal of Biotechnology, 1999,70:393-402.
    [43]Kang S H, Chang Y K. Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration[J]. Journal of Membrane Science,2005,246:49-57.
    [44]Anne C O, Trebouet D, Jaouen Pascal M, et al. Nanofiltration of seawater:fractionation of mano-and multi-valent cation[J]. Desalination,2001,140:67-77.
    [45]Rajindar S. Hybrid Membrane Systems for Water Purification. Technology, Systems Design and Operation[M]. UK:Elsevier Ltd,2006:138-157.
    [46]Schafer A I, Fane A G, Waite T D. Nanofiltration-Principles and Applications[M]. UK:Elsevier Ltd, 2006:89-167,305-324,479-512.
    [47]邱实,吴礼光,张林,等.纳滤分离机理[J].水处理技术,2009:35(1):15-19.
    [48]Bowen W R, Mukhtar H. Cheracterization and prediction of separation performance of nanofiltration membrabes[J]. Journal of Membrane Science,1996,112:263-274.
    [49]Bowen W R, A. Mohammad W, Hilai N. Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy [J]. Journal of Membrane Science, 1997,126:91-105.
    [50]Machado D R, Hasson D, Semiat R. Effect of solvent properties on permeate flow through nanofiltration membranes. Part I:investigation of parameters affecting solvent flux[J]. Journal of Membrane Science,1999,163(1):93-102.
    [51]Machado D R, Hasson D, Semiat R. Effect of solvent properties on permeate flow through nanofiltration membranes:Part Ⅱ:Transport model[J]. Journal of Membrane Science,2000,166(1): 63-69.
    [52]蒋华,陈卫,赵建新,等.分光光度法测定乳酸菌发酵体系中的甘露醇含量[J].食品工业与发酵,2005,31(4):105-107.
    [53]钟立人主编.有机化学选论[M].杭州:杭州出版社,2002:2-84.
    [54]董元彦,李宝华,路福绥主编.物理化学(第三版)[M].北京:科学出版社,2004:106-119.
    [55]王伟,鲁东霞.水中全盐量的电导法测定[J].中国环境监测,1996,12(5):26-27.
    [56]Straatsma J, Bargeman G, van der Horst H C, et al. Can nanofiltration be fully predicted by a model?[J]. Journal of Membrane Science,2002,198 (1-2):273-284.
    [57]He X M, Xie Q L, Xia H P, et al. Application of nanofiltration process in 5'-GMP production[J]. Desalination,2008,225(1-3):322-328.
    [58]Boussu K, Vandecasteele C, Van der Bruggen B. Relation between membrane characteristics and performance in nanofiltration[J]. Journal of Membrane Science,2008,310(1-2):51-65.
    [59]Chalatip R, Chawalit R, Nopawan R. Removal of haloacetic acids by nanofiltration[J]. Journal of Environmental Sciences,2009,21(1):96-100.
    [60]Verliefde A R D, Cornelissen E R, Heijmana S G J, et al. The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration[J]. Journal of Membrane Science, 2008,322(1):52-66.
    [61]Meylan S, Hammes F, Traber J, et al. Permeability of low molecular weight organics through nanofiltration membranes[J]. Water Research,2007,41(17):3968-3976.
    [62]Pontalier P-Y, Ismail A, Ghoul M. Specific model for nanofiltration[J]. Journal of Food Engineering, 1999,40(3):145-151.
    [63]Pontalier P-Y, Ismail A, Ghoul M, Mechanisms for the selective rejection of solutes in nanofiltration membranes, Separation and Purification Technology,1997,12 (2):175-181.
    [64]Ahmad A L, Tan L S, Shukor S R A. Modeling of the retention of atrazine and dimethoate with nanofiltration[J]. Chemical Engineering Journal,2009,147(2-3):280-286.
    [65]Eriksson P. Nanofiltration extends the range of membrane filtration[J]. Envirenmental Progress,1988, 7(1):58-62.
    [66]Sjoman E, Manttari M, Nystrom M, et al. Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions[J]. Journal of Membrane Science,2007,292(1-2):106-115.
    [67]张显球,张林生,吕锡武,等.一种求得纳滤膜截留分子量的方法[J].东南大学学报(自然科学版),2007,37(5):883-886.
    [68]Liu Y R, Cai B X, Chen Y M, et al. Concentrating xylose solution by reverse osmosis with cellulose acetate dry membrane[J]. Desalination,1987,62:193-201.
    [69]Murthy G S, Sridhar S, Sunder M S,et al. Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol[J]. Separation and Purification Technology,2005,44(3): 205-211.
    [70]Mandale S, Jones M. Interaction of electrolytes and non-electrolytes in nanofiltration[J], Desalination, 2008,219(1-3):262-271.
    [71]Bargeman G, Vollenbroek J M, Straatsma J, et al. Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention[J]. Journal of Membrane Science,2005,247(1):11-20.
    [72]Manttari M, Pihlajamaki A, Nystrom M. Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH[J]. Journal of Membrane Science,2006, 280(1-2):311-320.
    [73]Causa A, Vanderhaegenb S, Braeken L, et al. Integrated nanofiltration cascades with low salt rejection for complete removal of pesticides in drinking water production[J]. Desalination,2009,241(1-3):111-117.
    [74]Cuartas-Uribe B, Alcaina-Miranda M I, Soriano-Costa E, et al. A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration[J]. Desalination,2009,241(1-3):244-255.
    [75]Suarez E, Lobo A, Alvarez S, et al. Demineralization of whey and milk ultrafiltration permeate by means of nanofiltration[J]. Desalination,2009,241(1-3):272-280.
    [76]Atra R, Vatai G, Bekassy-Molnar E, et al. Investigation of ultra-and nanofiltration for utilization of whey protein and lactose[J]. Journal of Food Engineering,2005,67(3):325-332.
    [77]Catarino I, Minhalma M, Beal L L, et al. Assessment of saccharide fractionation by ultrafiltration and nanofiltration[J]. Journal of Membrane Science,2008,312(1-2):34-40.
    [78]Weng Y H, Wei H J, Tsai T-Y, et al. Separation of acetic acid from xylose by nanofiltration[J]. Separation and Purification Technology,2009,67(1):95-102.
    [79]Gyura J, Seres Z, Eszterle M. Influence of operating parameters on separation of green syrup colored matter from sugar beet by ultra-and nanofiltration[J]. Journal of Food Engineering,2005,66(1):89-96.
    [80]Jarusutthirak C, Mattaraj S, Jiraratananon R. Factors affecting nanofiltration performances in natural organic matter rejection and flux decline[J]. Separation and Purification Technology,2007,58(1):68-75.
    [81]Timmer J M K, Horst H C van der, T Robbertsen. Transport of lactic acid through reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science,1993,85(2):205-216.
    [82]Benko K, Pellegrino J, Mason L W and Price K. Measurement of water permeation kinetics across reverse osmosis and nanofiltration membranes:Apparatus development[J]. Journal of Membrane Science, 2006,270(1-2):187-195.
    [83]Beatriz D-R, Andres M, Herminia D, et al. Ultra-and nanofiltration of aqueous extracts from distilled fermented grape pomace[J]. Journal of Food Engineering,2009,91(4):587-593.
    [84]Frares N B, Taha S and Dorange G, Influence of the operating conditions on the elimination of zinc ions by nanofiltration[J]. Desalination,2005,185(1-3):245-253.
    [85]Sharma R R, Agrawal R, Chellam S, Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes:pore size distributions and transport parameters, Journal of Membrane Science,2003,223(1-2):69-87.
    [86]Manttari M, Pihlajamaki A, Kaipainen E, et al. Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes[J]. Desalination,2002,145(1-3):81-86.
    [87]Laurent Vandanjon, Ragnar Johannsson, Maryse Derouiniot, et al. Concentration and purification of blue whiting peptide hydrolysates by membrane processes[J]. Journal of Food Engineering,2007,83(4): 581-589.
    [88]Madsen R F. Design of sanitary and sterile UF-and diafiltration plants [J]. Separation and Purification Technology,2001,22-23:79-87.
    [89]Lipnizki F, Boelsmand J, Madsen R F. Concepts of industrial-scale diafiltration systems[J]. Desalination[J],2002,144:179-184.
    [90]Cheryan M. Ultrafiltration and Microfiltration Handbook[M].USA:Technomic Publishing Company Inc,1998:113-170,293-344.
    [91]Grandison A S, Lewis M J. Sepraration Process in the Food and Biotechnology Industries[M]. UK: Woodhead Publishing Ltd,1996:116-119.
    [92]Bowen W R, Welfoot J S. Modelling the Performance of Membrane Nanofiltration-Critical Assessment and Model Development[J]. Chemical Engineering Science,2002,57:1121-1137.
    [93]Bowen W R, Welfoot J S. Modelling of Membrane Nanofiltration-Pore Size Distribution Effects[J]. Chemical Engineering Science,2002,57:1393-1407.
    [94]Oatley D L, Cassey B, Jones P, et al. Modelling the Performance of Membrane Nanofiltration-Recovery of a High-Value Product from a Process Waste Stream[J]. Chemical Engineering Science,2005, 60:1953-1964.
    [95]张澄洪,王晓琳,欧阳平凯.糖-盐水溶液的纳滤膜分离特性[J].南京化工大学学报,2000,22(3):1-5.
    [96]Capelle N, Moulin P, Charbit F, et al. Purification of heterocyclic drug derivatives from concentrated saline solution by nanofiltration[J]. Journal of Membrane Science,2002,196:125-141.
    [97]Schirg P, Widmer F. Characterisation of nanofiltration membranes for the separation of aqueous dye-salt solutions[J]. Desalination,1992,89(1):89-107.
    [98]李翔宇,颜涌捷,张素平,等.纳滤分离木糖-盐水溶液[J].太阳能学报,2006,27(3):242-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700