含氮杂环金属模型化合物的合成、表征及其催化活性的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多酚氧化酶(如酪氨酸酶和儿茶酚氧化酶等)和过氧化氢酶是两类能有效催化氧化酚类化合物的含金属酶,在工业废水的降解中有广泛的应用。由于天然酶的局限性,合成小分子金属配合物来模拟酶的活性,成为开发新型催化剂的一种有效途径。此外,通过对小分子模型化合物的研究,还可以获得许多关于酶催化机理的信息。
     本课题通过化学手段合成了一系列含有类似于多酚氧化酶和过氧化氢酶活性中心结构的模型化合物。主要包括两类金属模型配合物,一类是含苯并咪唑环的系列化合物:[MnⅡ2(bbaa)2(H20)2](ClO4)2(1),[MnⅡ(bba)2](cba)(ClO4)(2),[Mnn(bba)(H20)Cl2](3)及相应的铜化合物[CuⅡ(bbaa)(H20)(N03)](4)和[CuⅡ(bba)Cl2](5);以及氨基酸席夫碱类化合物:[CuⅡ(hppg)Cl](6),[CuⅡ2(hppg)2Cl2](7)及相应的铁化合物[FeⅢ(hppg)Cl2](H20)2(8)和锰化合物[MnⅢ(hppg)]Im4(H20)4(N03)2(9),其中bbaa=N,N-(二(2-苯并咪唑基-甲基)胺基)乙酸,bba=(二(2-苯并咪唑基-甲基))胺,cba=2-氯苯甲酸,hppg=N-(2-羟基苯基)-N-(2-甲基吡啶)甘氨酸。合成的化合物通过元素分析、紫外、单晶衍射等方法表征测定。
     通过对化合物1,3,4和5的结构及催化氧化三种酚类底物的作用的比较,以及反应底物、温度、氧化剂等对于模型化合物的催化活性的影响,我们发现,化合物4的活性最好,能很好的催化氧化苯酚、邻苯二酚和2,6-二甲氧基酚。此外,相比金属铜化合物,金属锰化合物催化氧化酚类的活性低,更容易随反应条件的变化而改变。通过对化合物6,7,8和9的催化氧化条件的研究及相应的催化动力学参数的比较发现,对于不同金属的氨基酸-席夫碱类化合物而言,铁化合物催化氧化2,6-二甲氧基酚的活性最好,与底物的亲和性也最好。另一方面,通过对中间氧化产物的研究,我们对金属酶的催化机理也有了更深入的认识。
Polyphenol oxidase (such as tyrosinase, catechol oxidase, and so on) and catalase are two important metal containing enzymes, which can catalytic oxidize phenolic compounds and are extensively used in the phenolic compounds removal in industry. Synthesizing new enzyme model complexes that mimic the structures of active sites of the enzymes is one of effective method to obtain new catalysts. In addition, we can also gain some insight on the mechanism of enzyme catalytic reaction from the study of model compounds.
     Two groups of model complexes were synthesized, one is benzimidazolyl containing metal compounds:[MnⅡ2(bbaa)2(H2O)2](ClO4)2 (1), [MnⅡ(bba)2](cba)(ClO4) (2) [MnⅡ(bba)(H2O)Cl2] (3), and copper complexes [CuⅡ(bbaa)(H2O)(NO3)] (4) and [CuⅡ(bba)Cl2] (5); the other group is Schiff base containing compounds:[CuⅡ(hppg)Cl](6), [CuⅡ2(hppg)2Cl2] (7), [FeⅢ(hppg)Cl2](H2O)2 (8) and [MnⅢ(hppg)](Im)4(H2O)4(NO3)2 (9). In which, bbaa= N,N-bis(2-benzimidazolyl methyl)amino acetic acid, bba= bis(2-benzimidazolylmethyl) amine, cba= 2-chloro benzoic acid, hppg= N-(2-hydroxybenzyl)-N-(2-picolyl) glycine.
     Through comparing the structures of 1,3,4, and 5, and their relative catalytic activities with three phenolic compounds as substrates, and the effects of substrates, temperature, and oxidants on their oxidation activities, we found that complex 4 was most active in group one, it can oxidize phenol, catechol, and 2,6-dimethoxyphenol as well. Comparing to the copper complexes, manganese complexes are less active. The acitivity of manganese complexes were easy affected by the reaction conditions. In the second group, ferric complex 8 is most active and had higher affinity to 2,6-dimethoxyphenol. Based on the intermediates of the catalytic reactions with these compounds, the oxidation reaction mechanisms of these catalysts were discussed.
引文
[1]欧伶.应用生物化学.2001:141-142
    [2]薛征,王志林,罗勤慧.单核锰配合物对几类氧化还原酶的功能模拟.无机化学学报.2003,19(10):1033-1036
    [3]荆谷,冯静,孔健,马桂荣.微生物金属蛋白酶的研究进展.生物工程进展.2002,22(1):61-64
    [4]王秉,胡质文等.多酚氧化酶模拟酶的构建及其催化性能研究.浙江理工大学学报.2008,25(5):539-542
    [5]杜云平等.多酚氧化酶催化儿茶酚的动力学及机理研究.华南理工大学学报.1991,19(3):117-124
    [6]Alfred M. Mayer. Polyphenol oxidases in plants and fungi:Going places? A review. Phytochemistry.2006,67:2318-2331
    [7]Christoph Eicken et al.Catechol oxidase-structure and activity. Structural Biology.1999,9: 677-683
    [8]Walker J.R.L., Ferrar P.H.. Diphenol oxidases, enzyme-catalysed browning and plant disease resistance. Biotechnol. Genet. Eng. Rev..1998,15:457-497
    [9]Sommer A, Ne'eman E, Steffens J.C.. Import, targeting and processing of a plant polyphenol oxidase. Plant Physiology.1994,105:1301-1311
    [10]Matoba Y. et al. Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase is Flexible during Catalysis. J. Biol. Chem..2006,281:8981-8990
    [11]Katalin Selmeczi et al. Catechol oxidase activity of dicopper complexes with N-donor ligands. Coordination Chemistry Reviews.2003,245:191-201
    [12]Thomas Klabunde et al. Crystal structure of a plant catechol oxidase containing a dicopper center. Naturae structural biology.1998,5(12).1084-1090
    [13]L.G. Fenoll et al. Tyrosinase kinetics:discrimination between two models to explain the oxidation mechanism of monophenol and diphenol substrates. The International Journal of Biochemistry & Cell Biology.2004,36:235-246
    [14]Jose N. R. Lopez et al. Tyrosinase action on monophenols:evidence for direct enzymatic release of o-diphenol. Biocheimica et biophysica_acta.2001,1548:238-256
    [15]Christopher F. Thurston. The structure and function of fungal laccases. Microbiology. 1994,140:19-26
    [16]Petri Widsten and Andreas Kandelbauer. Laccase applications in the forest products industry:A review. Enzyme and microbial technology.2008,42:293-307
    [17]Sivia Garavaglia et al. The structure of Rigidoporus lignosus Laccase containing a full Complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. Journal of Molecular biology.2004,342:1519-1531
    [18]Klaus Piontek, Matteo Antorini, and Thomas Choinowski. Crystal Structure of a Laccase from the Fungus Trametes versicolor at 1.90-A Resolution Containing a Full Complement of Coppers. J. Biol. Chem..2002,277:37663-37669
    [19]Francisco J. Enguita et al. Substrate and dioxygen binding to the endospore coat laccase from bacillus subtilis. Journal of Biological Chemistry.2004,279(22):23472-23476
    [20]Min K. L. et al. Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Aich. Biochem. Biophy..2001,392:279-286
    [21]Palmieri G. et al. A novel white laccase from Pleurotus ostreatus. Biol. chem..1997,272: 31301-31307
    [22]Leontievsky A. A. et al. Blue and yellow laccase of ligninolytic fungi. FEMS Microbio. Lett..1997,156:9-14
    [23]季立才,胡培植.漆酶催化氧化反应研究进展.林产化学与工业.1997,17(1):79-84
    [24]Zhang Kunsheng, Tian huilin. Research and function of catalase in organism. Food Science and Technology.2007,1:8-10
    [25]刘波,潘志权.锰酶及其模拟物研究进展.武汉化工学院学报.2004,26(4):8-11
    [26]Kuwahara M., Gold M. H. et al. FEBS Lett.. Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chryso-sporium.1984,169:247-250
    [27]Poulos T. L., Wariishi H. et al. Crystallographic refinement of lignin peroxidase at 2 A. J. Biol. Chem..1993,268:4429-4440
    [28]Sundaramoorthy M., Gold M. H. et al. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J. Biol. Chem..1994,269:32759-32767
    [29]Boelrijk A. E. M., Dismukes G C. Mechanism of Hydrogen Peroxide Dismutation by a Dimanganese Catalase Mimic. Inorg.Chem..2000,39:3020-3028
    [30]Y. Kono and I. Fridovich. Isolation and characterization of the pseudocatalase of Lacto-bacillus plantarum. J. Biol. Chem..1983,258:6015-6019
    [31]Vincent L., Pecoraco. Monomeric (benzoato)manganese(Ⅱ) complexes as manganese superoxide dismutase mimics. Inorg. Chem..1993,32:1879-1880
    [32]Dismukes G. C. Manganese enzymes with binuclear active sites. Chem. Rew..1996,96: 2909-2929
    [33]Mathur P., Crowder M., Dismukes G. C. Dimanganese(Ⅱ) complexes of a septadentate ligand, functional analogs of the manganese pseudocatalase. J. Am. Chem. Soc.1987,109: 5227-5233
    [34]Luigi Casella and Enrico Monzani.Functional Modeling of tyrosinase.Mechanism of phenol ortho-hydroxylation by dinuclear copper complexes. Inorganic chemistry.1996,35: 7516-7525
    [35]Nursen Sari and Perihan Gurkan. Synthesis, potentiometric and antimicrobial activity studies on 2-pyridinilidene-DL-amino acids and their complexes. Tansition Metal Chemistry. 2003,28:468-474
    [36]Christopher J. Davies, John Fawcett, Richard Shutt and Gregory A. Solan.Substituted N-picolylethylenediamines of the type (ArNHCH2CH2)-{(2-C5H4N)CH2}NR [R=Me, 4-CH2=CH(C6H4)CH2, (2-C5H4N)CH2] and their transition metal(II) halide complexes. J.Chem.Soc., Dalton Trans..2005,2630-2640
    [37]Xiaobai Wang and Jagadese J. Vittal. Nature of the reactants and influence of water on the supramolecular assembly. Inorganic Chemistry.2003,42:5135-5142
    [38]Xiaobai Wang and Jagadese J. Vittal. Self-assembly of a 1D helical coordination polymeric lead (II) complex with Pb…O…Pb scaffoldings. Inorg. Chem. Commun..2003, 6:1074-1077
    [39]Hakan Carlsson, Matti Haukka, and Ebbe Nordlander. Hydrolytically active tetranuclear nickel complexes with structural resemblance to the active site of urease. Inorganic chemistry.2002,41:4981-4983
    [40]Costas M., Mehn M. P., Jensen M. P., and Que L.. Dioxygen Activation at Mononuclear Nonheme Iron Active Sites:Enzymes, Models, and Intermediates. Chem. Rev..2004,104: 939-986
    [41]Thompson L. K., Ramaswamy B. S., Seymour E. A.. Cobalt(Ⅱ) and zinc(Ⅱ) complexes of the'tripod' ligand tris(2-benzimidazylmethyl)amine. Some five-coordinate derivatives and some with mixed stereochemistries. Can. J. Chem..1977,55:878-888
    [42]D. D. Cox et al. Catecholate LMCT bands as probes for the active sites of nonheme iron oxygenases. J. Am. Chem. Soc..1988,110:2026-2032
    [43]Xiao-ping Yang et al. Studies on lanthanide complexes of the tripodal ligand bis(2-benzimidazolylmethyl)(2-pyridylmethyl)amino. Crystal structures and luminescence properties. J. Chem. Soc., Dalton Tran..2000,3235-3260
    [44]Shuangxi Wang, Qinhui Luo. Synthesis, characterization and crystal structure of a new tripodal ligand containing imidazole and phenolate moieties and its iron(III) complexes. Inorganica Chimica Acta.1997,254:71-77
    [45]Jian-Jun zhang, Qin-Hui Luo et al. Sythesis, cyrstal structure and properties of a new dinuclear manganese(III) complex:a mimic for catalase. Journal of Inorganic Biochemistry. 2001,86:573-579
    [46]Mannar R. Maurya et al. Synthesis, characterization, reactivity, and catalytic potential of model Vanadium(Ⅳ,Ⅴ) complexes with benzimidazole-derived ONN donor ligands. Inorganic chemistry.2006,45:5924-5937
    [47]Mannar R. Maurya et al. Oxidation of phenol, styrene and methyl phenyl sulfide with H2O2 catalysed by dioxovanadium(V) and copper(II) complexes of 2-aminomethylbenzim-idazole-based ligand encapsulated in zeolite-Y. Journal of Molecular Catalysis A:Chemical. 2007,263:227-237
    [48]H. P. Berends and D. W. Stephan. Copper(I) and copper(II) complexes of biologically relevant tridentate ligands. Inorg. Chim. Acta..1984,93:173-178
    [49]Hitoshi Likura and Toshi Nagata. Structural variation in manganese complexes:synthesis and characterization of manganese complexes from carboxylate-containing chelating ligands. Inorganic Chemistry.1998,37:4702-4711
    [50]Albert Bloom and Allan R. Day. Preparation of 2-alkylaminobenzimidazoles. J. Org. Chem..1939,4(1):14-19
    [51]霍建中,孙刚,刘晓红,孙云.几种超氧化物歧化酶模型化合物的合成表征及活性测定.河北工业大学学报.2002,31(5):15-18
    [52]Xiaojun Jiang et al. Coordination modes of bridge carboxylates in dinuclear manganese compounds determine their catalyse-like activities. Dal ton Trans..2009,8417-8723
    [53]Xiaogao Meng et al. Dinuclear Copper(Ⅱ)complexes of a polybenzimidazole ligand: their structures and inductive roles in DNA condensation. Inorganic chemistry.2008,47: 6572-6574.
    [54]周庆华,杨频.二(2-苯并咪唑亚甲基)胺合锰(Ⅱ)配合物水解切割DNA.无机化学学报.2005,21(7):960-964
    [55]Weibing Lu and Xiaohai Zhou. Synthesis and crystal structure of a copper(Ⅱ) complex of the tridentate ligand di-(2-benzimidazolylmethyl)imine. Journal of coordination chemistry. 2006,59(12):1371-1377
    [56]Schindler S., Walter O., Pedersen J. Z. and Toftlund H. Synthesis and characterization of a new dinuclear bis(μ-oxo)manganese(Ⅲ)/manganese(Ⅳ) complex. Inorg. Chim. Acta.. 2000,303:215-219
    [57]Gamelin D. R. et al. Electronic Structure and Spectroscopy of Manganese Catalase and Di-.mu.-oxo [MnⅢMnⅣ] Model Complexes. J. Am. Chem. Soc..1994,116:2392-2399
    [58]B. J. Hathaway. The evidence for "out-of-the-plane" bonding in axial complexes of the copper(II) ion. Struct. Bonding (berlin).1984,57:55-57
    [59]Roberto Than, Arnold A. Feldmann and Bernt Krebs. Structural and functional studies on model compounds of purple acid phosphatases and catechol oxidases. Coordination Chemistry Reviews.1999,182:211-241.
    [60]Xiao Feng-ping et al. Synthesis, characterization and in promoting activity for H2O2 disproportionation of Mn(II)-tris(2-benzimidazolmethyl)amine complexes.华中师范大学学报(自然科学).2003,37(4):526-529
    [61]Matthias Pascaly et al. The systematic influence of tripodal ligands on the catechol cleaving activity of iron(Ⅲ) containing model compounds for catechol 1,2-dioxygenases. J. Chem. Soc, Dalton Trans..2001:828-837
    [62]常旭,韩士田,刘彦钦,王涛.N-酰化-α-氨基酸金属配合物的研究进展.河北化工.2009,32(1):8-10
    [63]Michael R. Wagner, F. Ann Walker. Spectroscopic study of 1:1 copper(Ⅱ) complexes with Schiff base ligands derived from salicylaldehyde and L-histidine and its analogs. Inorg. Chem..1983,22:3021-3028
    [64]Lip Lin Koh, John O. Ranford et al. Model for the reduced Schiff base intermediate between amino acids and pyridoxal:copper(II) complexes of N-(2-hydroxybenzyl)amino acids with nonpolar site chains and the crystal structures of [Cu(N-(2-hydroxybenzyl)-D,L-alanine)(phen)]-H2O and [Cu(N-(2-hydroxybenzyl)-D,L-alanine)(imidazole)]. Inorg. Chem..1996,35:6466-6472
    [65]Chang-Tong Yang, Boujemaa Moubaraki, Keith S. Murray and Jagadese J. Vittal. Synthesis, characterization and properties of ternary copper(Ⅱ) complexes containing reduces Schiff base N-(2-hydroxybenzyl)--amino acids and 1,10-phenanthroline. J. Chem. Soc., Dalton Trans..2003,880-889
    [66]Chang-Tong Yang, Jagadese J. Vittal. Synthesis and structural behavior of ternary copper (II) complexes containing reduced Schiff base N-(2-hydroxybenzyl)-4-aminobutyric acid and 1,10-phenanthroline. Inorganica Chimica Acta.2003,344:65-76
    [67]Remy van Gorkum et al. The autoxidation activity of new mixed-ligand manganese and iron complexes with tripodal ligands. Journal of catalysis.2007,252:110-118
    [68]Ylima Gultneh et al. Studies of a dinuclear manganese complex with phenoxo and bis-acetato bridging in the Mn(Ⅱ, Ⅱ) and Mn(Ⅱ, Ⅲ) states:coordination structural shifts and oxidation state control in bridged dinuclear complexes. Inorganic Chemistry.2006, 45(7):3023-3033
    [69]Francesco G Mutti. Biomimetic Modelling of copper Enzymes:synthesis, characterization, EPR analysis and enantioselective catalytic oxidations by a new chiral trinuclear copper(Ⅱ) complex. Eur. J. Inorg. Chem..2009,554-566
    [70]张锦,李圭白,马军.含酚废水的危害及处理方法的应用特点.化学工程师.2001,2:36-37
    [71]赵天亮,宁平,陈芳媛.含酚废水治理技术研究进展.环境与健康杂志.2007,24(8):648-650
    [72]张海涛.我国含酚废水处理技术研究进展.上海环境科学.2001,2(20):60-62
    [73]Janez Levec. Catalytic oxidation of toxic organics in aqueous solution. Applied Catalysis. 1990,63:L1-L5
    [74]谭亚军,蒋展鹏,余刚.湿式空气氧化法的几种改进途径.污染防治技术.1998,11(4):253-256
    [75]Kulkarni U., Dixit S. G… Destruction of phenol from wastewater by oxidation with SO32--O2. Ind. Eng. Chem. Res..1991,30:1916-1920
    [76]文岳中,姜玄珍,刘维屏.高压脉冲放电与臭氧氧化联用降解水中对氯苯酚.环境科学.2002,23(2):73-76
    [77]赵天亮,陈芳媛,宁平,杨群.工业含酚废水治理进展及前景.环境科学与技术.2008,31(6):64-66
    [78]胡春,王怡中,汤鸿霄.Ti02催化氧化苯酚动力学.环境科学.1997,18(4):1-4
    [79]全向春等.固定化氯酚降解菌强化SBR系统治理氯酚废水.中国环境科学.2002,22(2):132-136
    [80]Huban C. M., Plownman R. D. Bioaugmentation:put microbes to work. Chemical Engineering.1997,104(3):74-84
    [81]Klibanov A. M., Alberti B.N., Morris Ed, Felshin L. M.. Enzymatic removal of toxic phenols and anilines from waste waters. J. Appl. Biochem..1980,2414-2421
    [82]Maurya M.R., Titinchi S.J.J., Chand S. Spectroscopic and catalytic activity study of N, N'-bis(salicylidene)propane-1,3-diamine copper(Ⅱ) encapsulated in zeolite-Y Appli. Catal. A:General.2002,228:177-187
    [83]P. S. Subramanian, E. Suresh, P. Dastidar. Model for type 2 Cu (II) oxidase:structure reactivity coorelation studies on some mononuclear Cu(X-Salmeen)Im complexes, where X = H, Cl and Im= Imidazole:molecular association, electronic spectra and ascorbic oxidation. Polyhedron.2004,23:2515-2522
    [84]Zhen-Fen Chen et al. Crystal structure and catecholase-like activity of a mononuclear complex [Cu(EDTB)]2+(EDTB= N, N, N',N'-tetrakis(2'-benzimidazolyl methyl)-1,2-ethane diamine). Journal of Inorganic biochemistry.2004,98:1315-1318
    [85]Tie J.K., Chang W.B., Ci Y. X.. Application of metal-porphyrin in analytic chemistry. Chin. J. Anal. Chem..1994,22:516-522
    [86]Qiu-ying Chen, Dong-hui Li, Qing-zhi Zhu, Hong Zheng, Jin-Gou Xu. The automatic visualisation of carry-over in high-throughput flow injection analysis mass spectrometry. Anal. Chim. Acta..1999,381:175-182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700