纳米硒化物的制备及其电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒化物纳米材料具有良好的光学性质、电学性质、磁学性质、光电及热电性能等,在太阳能电池、红外探测器、光电器件、热电装置、化学传感器等领域有广泛的应用前景。因此,对硒化物纳米材料的合成和性质研究是当前纳米材料研究领域的热点之一。
     本文是以预先合成的三方相t-Se纳米管作为反应模板,分别与不同的金属无机盐反应,利用水热法分别合成了硒化铅纳米管、硒化铋纳米管和硒化锡纳米盘,采用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、X-射线光电子能谱(XPS)、热重分析(TG)等对产物的结构和组成进行了表征,探讨了产物的形成机理,并利用循环伏安法对产物的电化学性质进行了研究。
     论文主要内容如下:
     1.硒化铅纳米管的制备及其电化学性质研究
     首先利用本课题组设计的方法制备t-Se纳米管,然后以t-Se纳米管为反应模板,利用水热合成法将其与Pb(NO3)2反应制备PbSe纳米管。一系列实验结果表明,反应温度和反应物中Pb和Se的不同摩尔比对产物的组成有很大的影响。利用多种表征手段对所得产物的形貌和组成进行了表征,探讨了PbSe纳米管的形成机理。同时,研究了PbSe纳米管在不同介质体系中的电化学性质。
     2.硒化铋纳米管的制备及其电化学性质研究
     以预先制备的硒纳米管作反应模板,以Bi(N03)3为铋源、N2H4·H20为还原剂,利用水热合成法在160℃的条件下制备了六方相的H-Bi2Se3纳米管。利用SEM、XRD、XPS等现代分析测试手段对所得的产物进行了表征,通过一系列实验,研究了反应温度、反应物之间的摩尔比对产物的影响,并对Bi2Se3纳米管的形成机理进行了探讨。利用线性扫描和循环伏安法研究了Bi2Se3纳米管在不同介质中的电化学行为,考察了扫描范围、扫描速度、电解质溶液等因素对Bi2Se3纳米管电化学性质的影响。
     3.硒化锡纳米盘的制备及其电化学性质研究
     利用N2H4·H20的强还原性,在水热条件下将混合溶液中的Se4+,Sn2+分别还原为硒纳米粒子和锡纳米粒子。由于新生成的单质硒纳米粒子和单质锡纳米粒子活性很高,因此同时生成的这两种纳米粒子很容易结合形成SnSe2分子。通过一系列的实验,讨论了反应温度和反应物之间的摩尔比对产物的影响,探讨了SnSe2纳米盘的形成机理。最后,研究了SnSe2纳米盘在不同介质体系中的电化学性质。
Selenide nanomaterials have unique optical, electrical, magnetic, photoelectric and thermoelectric properties, which makes them potential applications in solar cells, infrared detectors, photoelectric device, thermoelectric device and chemical sensors. Therefore, the study for selenide nanomaterials is a hot point in nanomaterial field.
     In this paper, PbSe nanotubes, Bi2Se3 nanotubes and SnSe2 nanoplates were respectively prepared by hydrothermal synthesis, in which the t-Se nanotubes were used as engaged-template that reacted with relevant metal ions. The selenides as-obtained were characterized by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), etc. Furthermore, the formation mechanism of selenide nanomaterials was disscussed, and their electrochemical property was studied by the cyclic voltammetry.
     Our main work as follows:
     1. Synthesis and Electochemical Behavior of PbSe nanotubes
     First, the t-Se nanotubes were synthesized as our report. Then, with the hydrothermal synthesis, the t-Se nanotubes as-obtained were used as template reagent that reacted with Pb(NO3)2 to form PbSe nanotubes. Through a series of experiments, it was found that the reaction temperature and the molar ratio of reactants play an important role in formation of the PbSe nanotubes. The products obtained were characterized by XRD, TEM, SEM, XPS, etc. In addition, the formation mechanism and electochemical property of the PbSe nanotubes were studied.
     2. Synthesis and Electochemical property of Bi2Se3 nanotubes.
     By using the t-Se nanotubes prepared, Bi(NO3)3, and N2H4·H2O as Se source, Bi source and reducing agent respectively, the hexagon Bi2Se3 nanotubes were obtained at 160℃with hydrothermal synthesis. The products as-obtained were characterized by XRD, TEM, SEM, XPS, etc. Based on a series of experiments and characterizations, the effect factors and the formation mechanism of the Bi2Se3 nanotubes were discussed. Furthermore, the electrochemical behavior of the Bi2Se3 nanotubes was studied by the voltammetric technique in different medium, and the effect factors on the cyclic voltammograms of Bi2Se3 nanotubes, such as potential region, scan rate and the acidity of electrolyte solution, were discussed.
     3. Synthesis and Electochemical property of SnSe2 nanoplates.
     Depending on the strong deoxidization of N2H4 H2O, the Se4+ and Sn2+ in solution were respctively reduced to Se and Sn nanoparticles under hydrothermal condition. These fresh elemental nanoparticles, with high reactivity, could react with each other to form SnSe2 nanoparticles. The products as-obtained were characterized by XRD, TEM and SEM. By a series of experiments, the effect of the reaction temperature and the molar ratio of Sn and Se in precursors on the phase and composition of product was studied, and the formation mechanism of the SnSe2 nanoplates was disscussed. Finally, we also studied the electochemical property of the SnSe2 nanoplates.
引文
[1]钱逸泰,谢毅,唐凯斌.非氧化物纳米材料的溶剂热合成[J].中国科学院院刊,2001,16:26-28.
    [2]J.R Barker, S. Roy, A. Asenov. Proceedings of the International Conference on Quantum Devices and Circuits. Singapore,1997.
    [3]H. Zeng, P.M.Rice, S.X., Wang, et al. Shape-Controlled Synthesis and Shape-Induced Texture of MnFe204 Nanoparticles [J]. J. Am. Chem. Soc.,2004, 126(37):11458-11459
    [4]A.D.Yoffe. Low-Dimensional Systems-Quantum-Size Effects and Electronic-Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-2-Dimensional Systems [J]. Adv. Phys.,1993.42(2):173-266.
    [5]H.J. Dai, J. Kong, et al. Controlled chemical routes to nanotube architectures, physics, and devices [J]. J. Phys. Chem. B 1999,103(51):11246-11255.
    [6]Y. D. Li, H.W. Liao, et al. Elemental direct Solvotherma reaction to CdE, E=S, Se, Te) semiconductor nanorod [J]. Inor. Chem.,1999,38(7):1382-1387.
    [7]Y. Kondo, Q. Ru, et al. Thickness induced structural phase transition of gold nanofilm [J]. Phys. Rev. Lett.,1999,82(4):751-754.
    [8]C. Petit, A. Taleb, et al. Cobalt nanosized particles organized in a 2D superlattice: Synthesis, characterization, and magnetic properties [J] J. Phys. Chem. B,1999, 103(11):1805-1810.
    [9]S. Moonsub, G. S. Philippe, et al. n-type colloidal semiconductor nanocrystals. [J]. Nature,2000,407:981
    [10]P. Ball, L. Garwin. Science at the atomic scale [J]. Nature,1992,355(6363): 761-766.
    [11]王大志.纳米材料结构特征[J].功能材料,1993,24(4):303-305.
    [12]W. P. Halperin, et al. Quantum size effects in metal particles. [J]. Rev. Modern Phys.,1986,58:532
    [13]S Moonsub, G.S. Philippe n-type colloidal semiconductor nanocrystals. [J]. Nature,2000,407:981
    [14]P. Hongkun, P. Jiwoong, et al. Nanomechanical oscillations in a single-C60 transistor. [J] Nature,2000,407:57
    [15]I. S. Jawb, C. P. Bean, et al. Irradiation of graphite at liquid helium temperatures. [J]. Phys.Rev.,1955,100:1060.
    [16]A.J. Legget, S. Chakravarty, etal. Dyramics of the Dissipative Two-state System [J]. Rev. Mod. Phys.,1987,59:1.
    [17]林桓.活性炭吸附催化氧化法处理含氰废水的研究[J].黄金,1994,15(4):47-51.
    [18]晏井春,朱岩坤,闫永胜,等.纳米聚合硫酸铁的制备,表征及应用研究[J].无机盐工业,2007,39(11):27-29.
    [19]何绪文.煤气发生站洗冷废水治理研究[J].环境污染与防治,1996,18(5):4-7.
    [20]C. Macilwain, Nanotech thinks big Nature [J].2001,405:730-732.
    [21]张立德编著,严东生,冯瑞主编.材料新星—纳米材料科学[M].长沙:湖南科学技术出版社,1997.
    [22]S. Dai, Y. S. Shin, C. E. Barnes, et al. Enhancement of Uranyl Adsorption Capacity andSelectivity on Silica Sol-Gel Glasses via Molecular Imprinting [J]. Chem.Mater,1997,9:2521-2525.
    [23]谭婷婷,王光寅,潘祖亭,罗运柏.纳米材料在生物检测中的应用[J].2009,26(3):58-61.
    [24]乔宏霞,周茗如,朱彦鹏.纳米材料在建筑材料中的发展和应用[J].2008,4:61-64.
    [25]H.Gleiter. In deformation of polycrystals:mechanisms and mi-crostruetures [M] London:Rosk ilde R is National Lab,1981,125-129.
    [26]R. W. Siege, H. Hahn, et al. In current trends in the physics of materials [M]. Singapore:World Scientific.1987.12:210-215.
    [27]Q. Yang, K. Tang, et al. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires [J]. J.Phys.Chem B,2002,106:9227-9230.
    [28]B Li, Y Xie, et al. Synthesis by solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles [J]. Adv.Mater,1999, 11(17):1456-1459.
    [29]Y. Li, M. Sui, D. Yi, et al. Preparation of Mg(OH)2 nanorods [J] Adv.Mater, 2000,12(11):818-821.
    [30]Y. Li, H. Liao, Y. Ding, et al. Non-aqueous synthesis of CdS nanorod semiconductor [J].Chem.Mater,1998,10(9):2301-2303.
    [31]Y. Li, H. Liao, Y. Ding, et al. Novel solvothermal synthesis of CdE (E=S, Se, Te) semiconductor nanorod [J].Inorg.Chem.,1999,38(7):1382-1387.
    [32]A Vlad, M. Matefi-Tempfli, et al. Controlled growth of single nanowires within a supported alumina template [J]. Nanotechnology,2006,17:4873-4876.
    [33]T. R Kline, M.L Tian, J.G Wang, et al. Template-grown metal nanowires [J]. Inorg. Chem,2006,45:7555.
    [34]Y. F Mei, G. G Siu, et al. Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template [J]. J. Appl. Phys, 2005,97,034305-1~4.
    [35]K.K Zhu, H.Y He, et al. Crystalline WO3 nanowires synthesized by templating method [J]. Chem. Phys. Lett.,2003,377:317.
    [36]陈彰旭,郑炳云,李先学,傅明连等.模板法制备纳米材料研究进展[J].化工进展,2010,29(1):94-99.
    [37]刘爱东.纳米材料的生物模板控制合成[J].云南大学学报:自然科学版,2005,27(3A):190-194.
    [38]周彦昭.微乳液法制备纳米粉体综述[J].陕西科技大学学报,2004,22(5):167-170.
    [39]X.D. Sheng, X.S. Shi, et al. Electrochemical preparation of CdSe nanowires arrays [J]. J Phys Chem,2000,104(21):5061-5063.
    [40]S.K. Batabyal, C Basu, et al. Solvothermal synthesis of bismuth selenide nanotubes. Mater Lett,2006,60:2582-2585.
    [41]Z.Y. Jiang, Z.X. Xie, et al. Conversion of Se nanowires to Se/Ag2Se nanocables and Ag2Se nanotubes[J].Chem. Phys. Lett.,2003,378(3-4):313-316.
    [42]Z.A. Peng, P.X. G eng, et al. Nearly monodisperse and shape-controlled CdSe nanocry stals via alternative routes:nucleation and g rowth [J]. J.Am. Chem. Soc.,2002,124:3343-3353.
    [43]H. Gong, H. Huang, M.Q. Wang, K.P. Liu. Characterization and growth mechanism of ZnSe microspheres prepared by hydrothermal synthesis [J]. Ceramics International,2007,33(7):1381-1384.
    [44]X.Q. Wang, G.C. Xi, Y.K. Liu, Y.T. Qian. Controllable Synthesis of PbSe Nanostructures and Growth Mechanisms [J]. Cryst. Growth Des.,2008,8(4): 1406-1411.
    [45]G.Y. Chen, B. Deng, G.B. Cai, et al. The Fractal Splitting Growth of Sb2S3 and Sb2Se3 Hierarchical Nanostructures [J]. J. Phys. Chem. C,2008,112(3): 672-679.
    [46]Herbert Winnischofer, Tulio C. R. Rocha, Wallace C. Nunes, et al. Chemical Synthesis and Structural Characterization of Highly Disordered Ni Colloidal Nanoparticles [J]. ACS Nano,2008,2 (6):1313-1319.
    [47]Arjan J. Houtepen, Rolf Koole, et al. The Hidden Role of Acetate in the PbSe Nanocrystal Synthesis [J]. J.Am. Chem. Soc,2006,128:6792-6793.
    [1]Y. Li, Y. Ding, et al. A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe [J]. Inorg. Chem,1998,37:2844-2845.
    [2]W.Z. Wang, Y. Geng, et al. A Novel Mild Route to Nanocrystalline Selenides at Room Temperature [J]. J. Am. Chem. Soc.1999,121:4062-4063.
    [3]C.N. Rao, A.K. Cheetham, et al. Science and technology of nanomaterials:current status and future prospects [J]. J. Mater. Chem.2001,11:2887-2895.
    [4]J.Hu, L.S. Li, et al. Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods [J]. Science.2001,292:2060-2063.
    [5]Y.W Jun, Y.Y. Jung, et al. Architectural Control of Magnetic Semiconductor Nanocrystals [J]. J. Am. Chem. Soc.2002,124:615-619.
    [6]L.J. Lauhon, M.S. Gudiksen, et al. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature,2002,420:57-61.
    [7]A. Sashchiuk, L. Amirav, et al. PbSe Nanocrystal Assemblies:Synthesis and Structural, Optical, and Electrical Characterization[J]. Nano Lett,2004,4: 159-165.
    [8]C.W.Cheng, G.Y. Xu, et al. Facile solvothermal synthesis of nanostructured PbSe with anisotropic shape:Nanocubes, submicrometer cubes and truncated octahedron[J]. J. Cryst. Growth,2009,311:1285-1290.
    [9]F.W. Wise, et al. Lead Salt Quantum Dots:theLimit of Strong Quantum Confinement[J]. Acc. Chem. Res,2000,33:773-780.
    [10]R.J. Ellingson, M.C. Beard, et al. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots[J]. Nano Lett,2005,5:865-871.
    [11]V.I. Klimov, et al. Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals:Implications for Lasing and Solar Energy Conversion[J]. J. Phys. Chem. B,2006,110:16827-16845.
    [12]R.D. Schaller, V.M. Agranovich, et al. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states[J]. Nat. Phys,2005,1:189-194.
    [13]D.H. Cui, J. Xu, et al. Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells[J]. Appl. Phys. Lett,2006,88:183111.
    [14]P.K. Khanna, N. Singh, et al. Synthesis of nano-sized PbSe from octeno-1,2,3-selenadiazole[J]. Mater. Res. Bull.2007,42:1414-1421.
    [15]I.C. Baek, S.I. Seok, et al. Ligand-dependent particle size control of PbSe quantum dots[J]. J. Colloid Interf. Sci,2007,310:163-166.
    [16]J. J. Zhu, X.H. Liao, et al. Photochemical synthesis and characterization of PbSe nanoparticles[J]. Mater. Res. Bull,2001,36:1169-1176.
    [17]T. Ding, H.Wang, et al. Sonochemical synthesis and characterizations of monodispersed PbSe nanocrystals in polymer solvent[J]. Cryst. Growth,2002, 235:517-522.
    [18]J. Xu, J.P. Ge, et al. Solvothermal synthesis of monodisperse PbSe nanocrystals[J]. J. Phys. Chem. B,2006,110:2497-2501.
    [19]W. Zhu, W.Z. Wang, et al. A Reverse Cation-Exchange Route to Hollow PbSe Nanospheres Evolving from Se/Ag2Se Core/Shell Colloids[J]. J. Phys. Chem. B, 2006,110:9785-9790.
    [20]G.Q. Zhang, W. Wang, et al. Facile One-Pot Synthesis of PbSe and NiSe2 Hollow Spheres:Kirkendall-Effect-Induced Growth and Related Properties[J].Chem. Mater,2009,21:969-974.
    [21]Y.F. Liu, J.B. Cao, et al. A Complex-Based Soft Template Route to PbSe Nanowires [J]. Eur. J. Inorg. Chem,2003,4:644-647.
    [22]K.S. Cho, D.V. Talapin, et al. Murray. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles [J]. J. Am. Chem. Soc,2005,127: 7140-7147.
    [23]K.L. Hull, J.W. Grebinski, et al. Induced Branching in Confined PbSe Nanowires [J]. Chem. Mater,2005,17:4416-4425.
    [24]M.J. Bierman, L.Y.K. Albert, et al. Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis [J]. Nano Lett,2007,7:2907-2912.
    [25]F. Melissa, A.I. Hochbaum, et al. Synthesis and Thermoelectrical Characterization of Lead Chalcogenide Nanowires [J]. Adv.Mater,2007,19: 3047-3051.
    [26]J. Zhu, H. Peng, et al. Hyperbranched Lead Selenide Nanowire Networks [J]. Nano Lett, 2007,7:1095-1099.
    [27]H. Tong, Y.J. Zhu, et al. Lead Chalcogenide Nanotubes Synthesized by Biomolecule-Assisted Self-Assembly of Nanocrystals at Room Temperature [J]. Angew. Chem. Int. Ed,2006,45:7739-7742.
    [28]S.Y. Zhang, Y. Liu, et al. Rapid, Large-Scale Synthesis and Electrochemical Behavior of Faceted Single-CrystallineSelenium Nanotubes [J]. J. Phys. Chem. B,2006,110:9041-9047.
    [29]S. Sapra, J. Nanda, et al. Unraveling Internal Structures of Highly Luminescent PbSe Nanocrystallites Using Variable-Energy Synchrotron Radiation Photoelectron Spectroscopy J. Phys. Chem. B,2006,110:15244-15250.
    [30]U. Kumar, N. Shailesh, et al. Size- and shape-controlled synthesis and properties of colloidal PbSe nanocrystals [J]. Materials Chemistry and Physics,2009,113:107-114.
    [31]J. M. Luther, M. Law, et al. Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol [J]. ACS Nano,2008,2:271-280.
    [32]Y. Yang, S.C. Kung, et al. Synthesis of PbTe Nanowire Arrays using Lithographically Patterned Nanowire Electrodeposition [J]. Nano Lett,2008,8: 2447-2451.
    [33]F.O. Meara, M. Essi, et al. Processing and characterization of thin film Cux(Ge28Se60Sb12)1-x ionselective Electrode membrane [J]. Chalcogen. Lett. 2008,5:117-124.
    [34]K. Nakano, T. Sato, et al. Self-Assembled Monolayer Formation from Decaneselenol on Polycrystalline Gold As Characterized by Electrochemical Measurements, Quartz-Crystal Microbalance, XPS, and IR Spectroscopy [J]. Langmuir,2000,16:2225-2229.
    [35]C. Wang, G. Zhang, et al. Hydrothermal synthesis of PbSe, PbTe semiconductor nanocrystals [J]. Journal of physics and chemistry of solid,2001,62:1957-1960.
    [36]L. Matt, M.L. Joseph, et al. Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines [J]. J. Am. Chem. Soc,2008,130:5974-5985.
    [37]S.Y. Zhang, C.X. Fang, et al. Synthesis and Electrochemical Behavior of Crystalline Ag2Se Nanotubes [J]. J. Phys. Chem. C,2007,111:4168-4174.
    [38]S.D. Zhang, C.Z. Wu, et al. Controllable Synthesis of PbSe Nanostructures and Growth Mechanisms [J]. Cryst. Grown Des,2008,8:2933.
    [39]W. Wei, S.Y. Zhang, et al. Electrochemical behavior and electrogenerated chemiluminescence of crystalline CuSe nanotubes [J]. Solid State Sci,2008,10: 622-628.
    [1]D Arivuoli, F.D Gnanam, et al. Growth and microhardness studies of chalcogenides of arsenic, antimony and bismuth [J]. J Mater Sci Lett,1988,7: 711-713
    [2]H.T. EI-Shair, A.M. Ibrahim, et al. Optical properties of Sb2Se3 thin films [J]. Vacuum,1991,42:911-914.
    [3]J.F. Smyth, D.D. Awschalom, et al. Macroscopic quantum effects in nanometer-scale magnets [J]. Science,1992,258:414-421.
    [4]R Venkatasubramanian, E. Siilvola, et al. Thin-film thermoelectric devices with high room-temperature figures of merit [J]. Nature,2001,413:597-602.
    [5]Mishra S K, Satpathy S, et al. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide [J]. J. Phys. Condens. Mater,1997,9: 461-470
    [6]T. M.Tritt, et al. Holey and unholey semiconductors [J]. Science,1999,283: 804-805.
    [7]H. Liu, H.M. Cui, et al. Growth of Bi2Se3 nanobelts synthesized through a co-reduction method under ultrasonic irradiation at room temperature [J]. Cryst Growth Des,2005,5:1711-1714.
    [8]S.K. Batabyal, C. Basu, et al. Solvothermal synthesis of bismuth selenide nanotubes [J]. Mater Lett,2006,60:2582-2585.
    [9]C.W. Bates, L. England, et al. An electron-mirror infrared image converter using vitreous selenium-bismuth photoconducting layers [J]. Appl Phys Lett,1996,14: 390-395.
    [10]D.B. Hyun, J.S. Hwang, et al. Electrical properties of the 85% Bi2Te3 -15% Bi2Se3 thermoelectric materical doped with Sbl3 and CuBr [J]. J Phys Chem Solids,1998,59:1039-1044.
    [11]L.D. Hicks, M.S. Dresselhaus, et al. Thermoelectric figure of merit of a one-dimensional conductor [J]. Phys Rev B,1993,47:16631-16634.
    [12]L.D. Hicks, T.C. Harman, et al. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit [J]. Phys Rev B,1996,53: 10493-10496.
    [13]T.C. Harman, P.J. Taylor, et al. Thermoelectric quantum-dot superlattices with high ZT [J]. J Electron Mater,2000,29:L1-L4.
    [14]R. Venkatasubramanian, E. Siivola, et al. Thin-film thermoelectric devices with high room-temperature figures of merit [J]. Nature,2001,413:597-602.
    [15]M.S. Dresselhaus, G. Chen, et al. New Directions for low-dimensional thermoelectric materials [J]. Adv Mater,2007,19:1043-1053.
    [16]B. Poudel, Q. Hao, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys [J]. Science,2008,320:634-638.
    [17]X.F. Qiu, J.J. Zhu, et al. Size-controllable sonochemical synthesis of thermoelectric material of Bi2Se3 nanocrystals [J]. Inorg Chem Comm,2004,7: 319-321.
    [18]W.Z. Wang, Y. Geng, et al. Synthesis and characterization of nanocrystalline Bi2Se3 by solvothermal method [J]. Mater Res Bull,1999,34:131-134.
    [19]G.Q. Zhang, W. Wang, et al. Solvothermal synthesis of V-VI binary and ternary hexagonal platelets:The oriented attachment mechanism [J]. Cryst Growth Des, 2009,9:145-150.
    [20]J. Li, Y.C. Zhu, et al. Synthesis and shape evolution of bismuth selenide hollow nanospheres [J]. Solid State Comm,2008,147:36-40.
    [21]X.H. Yang, X. Wang, et al. Synthesis and optical properties of single-crystalline bismuth selenide nanorods via a convenient route [J]. J Cryst Growth,2005,276: 566-570.
    [22]S Xu, W.B. Zhao, et al. Photochemical synthesis of Bi2Se3 nanosphere and nanorods [J]. Mater Lett,2005,59:319-321.
    [23]S.K. Batabyal, C. Basu, et al. Solvothermal synthesis of bismuth selenide nanotubes [J]. Mater Lett,2006,60:2582-2585
    [24]S.Y. Zhang, Y. Liu, et al. Rapid, large-scale synthesis and electrochemical behavior of faceted single-crystalline selenium nanotubes [J]. J Phys Chem B, 2006,110:9041-9047.
    [25]Zhou B, Liu B, et al. Ultrasonic- assisted size-controllable synthesis of Bi2Te3 nanoflakes with electrogenerated chemiluminescence. Ultrason Sonochem [J]. 2007,14:229-234.
    [26]D.B. Wang, D.B. Yu, et al. Preparation and characterization of wire-like Sb2Se3 and flake-like Bi2Se3 nanocrystals [J]. J Cryst Growth,2003,253:445-451.
    [27]E.J. Menke, M.A. Brown, et al. Bismuth telluride (Bi2Te3) nanowires:synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation [J]. Langmuir,2006,22:10564-10574.
    [28]P.F. Zuo, S.Y. Zhang, et al. Rapid synthesis and electrochemical property of Ag2Te nanorods [J]. J Phys Chem C,2008,112:14825-14829.
    [29]X.Z. Guo, S.Y. Zhang, et al. Synthesis, characterization, and properties of the fringy CdSe wurtzite nanocrystals [J]. J Phys Chem C,2008,112:17899-17905.
    [30]J. Li, Y.C. Zhu, et al. Synthesis and shape evolution of bismuth selenide hollow nanospheres [J]. Solid State Comm,2008,147:36~40.
    [31]S.Y. Zhang, C.X. Fang, et al. Synthesis and electrochemical behavior of crystalline Ag2Se nanotubes [J]. J Phys Chem C,2007,111:4168-4174.
    [32]W. Wei, S.Y. Zhang, et al. Electrochemical behavior and electrogenerated chemiluminescence of crystalline CuSe nanotubes [J]. Solid State Sci,2008,10: 622-628.
    [33]A Jagminas, I. Valsiunas, et al. Alumina template-assisted growth of bismuth selenide nanowire arrays [J]. J Cryst Growth,2008,310:428-43
    [1]Dongwoo Chu. R.M. Walser, et al. Observation and analysis of the primary 29Si hyperfine structure of the E' center in non-crystalline SiO2[J]. Appl. Phys. Lett, 1974,24:479.
    [2]H. Maier, D.R. Daniel, et al. SnSe single crystals:sublimation growth,deviation from stoichiometry And electrical properies[J]. J. Electronic Mater,1977,6: 693-704.
    [3]H.M. Wang. Y. Wang, et al A DFT Study of Diels-Alder Reactions of o-Quinone Methides and Various Substituted Ethenes:Selectivity and Reaction Mechanism[J]. J. Org. Chem.2005,70:4910-4917
    [4]Y. Yang, C. Gong, et al. Influences of Titania Concentration on the Structure and the Three-order Nonlinear Optical Properties of Core-shell Ag/TiO2 Nanocomposites[J]. Acta Phys-Chem Sin,2006,22:383-387. In Chinese.
    [5]M. Herbert, R. O. Armin, et al. Kinetics of electrophile-nucleophile combinations:A general approach to polar organic reactivity [J]. Pure Appl. Chem, 2005,77:1807-1821.
    [6]W.X. Zhang, Z.H. Yang, et al. Room temperature growth of nanocrystalline tin (Ⅱ) selenide from aqueous solution [J]. Journal of Crystal Growth,2000,217: 157-160.
    [7]W.X. Zhang, Z.H. Yang, et al. Room temperature growth of nanocrystalline tin (Ⅱ) selenide from aqueous solution [J]. J Cryst Growth,2000,217:157-160.
    [8]D Chen, K.B. Tang, et al. Rapid Synthesis of SnSe Nanowires via an Ethylenediamine-assisted Polyol Route [J]. J Chem Lett,2003,32:426-427.
    [9]W.X Zhang, Z.H. Yang, et al. Room temperature growth of nanocrystalline tin (Ⅱ) selenide from aqueous solution [J]. Journal of Crystal Growth,2000,217:157-160
    [10]B Pejova, I Grozdanov, et al. Chemical synthesis, structural and optical properties of quantum sized semiconducting tin(Ⅱ) selenide in thin film form [J]. Thin Solid Films,2007,515:5203-5211.
    [11]Kegao Liu, Hong Liu, et al. Liming Feng Synthesis and characterization of SnSe2 hexagonal nanolakes. Materials Letters 63 (2009) 512-514
    [12]H.M Cui, H Liu, et al. Synthesis of Bi2Se3 thermoelectric nanosheets and nanotubes through hydrothermal co-reduction method [J]. J Solid State Chem, 2004,177:4001-4006.
    [13]S.Y Zhang, C.X Fang, et al. Synthesis and electrochemicals behavior of crystalline Ag2Se nanotubes[J]. J. Phys. Chem. C,2007,111:4168-4174.
    [14]S.L. Mao, S.Y Zhang, et al. Synthesis and electrochemical properties of PbSe nanotubes. J.Phys.Chem.C 2009,113:18091-18096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700