表面纳米化对铜合金组织及性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜及其合金是工业中应用广泛的金属材料,但是铜合金强度低、耐磨性差,严重限制了其应用。金属材料的表面通过机械研磨处理使表面获得纳米晶是近几年表面强化方法研究的热点之一,这种技术在工业应用上具有非常广阔的应用前景,它将纳米晶体材料的优异性能与传统工程金属材料结合了起来。堆垛层错能(SFE——stacking fault energy)对面心立方金属的变形机制有较大的影响,较低的层错能会抑制位错滑移,而使变形以孪生的形式出现,除了SFE外,高应变速率和低温也会导致孪生塑性变形,Cu的层错能为78mJ/m2,加入合金元素后层错能变化较大。
     本文对纯铜,Cu-2wt%Ti合金,Cu-10wt%Ni合金进行不同时间的表面机械研磨处理(SMAT),探究不同合金元素的溶入对铜合金层错能的影响,以及层错能的不同对形变机制的影响。还研究了时效Cu-2wt%Ti合金SMAT过程与未时效处理的Cu-2wt%Ti合金形变机制的差异。探究了层错能的降低所引起的强化,提高了材料的耐磨性。利用显微硬度仪测了不同材料纳米化后表面到心部的硬度值,利用OM, XRD, SEM等测试手段对组织进行了表征。对SMAT的Cu-2wt%Ti合金试样进行了时效分析,对纳米化后的纯铜试样进行了退火保温,研究了纳米晶粒的热稳定。
     结果表明:(1)纯铜表面纳米化后,表层晶粒细化,但没有看到明显的形变孪晶,形变方式主要为位错的滑移。Cu-10wt%Ni合金表面纳米化后,随着纳米化时间的延长,形变孪晶的数目明显增多,孪晶交割程度不明显,其形变方式为开始为位错的滑移,位错发生塞积后,形变以孪生为主,但孪生可以改变位相差,随后又以位错滑移为主。
     (2)不论是固溶态Cu-2wt%Ti的纳米化试样还是固溶+时效纳米化后的纳米化试样,都可以明显看到其大量的形变孪晶与交叉孪晶,且有分层现象。Ti的溶入大大降低了铜的层错能,所以其形变方式主要为孪生,出现明显分层想象的原因是大晶粒与小晶粒塑性形变机制不同,大晶粒易于发生孪生,而小晶粒更易滑移,所以出现了分层现象。固溶态Cu-2wt%Ti合金时效后会使材料层错能提高,表现在纳米化相同时间,形变孪晶数量降低,交割程度降低。
     (3)纯铜板材、铜镍合金、铜钛合金经表面纳米化后表面硬度明显高于心部,耐蚀性能都有所下降,耐磨性提高。Cu-10wt%Ni合金的耐磨性高于纯Cu的原因主要是由于溶质原子的溶入造成的固溶强化,而Cu-2wt%Ti合金耐磨性高于纯Cu的原因除了固溶强化外还有就是其层错能的降低,使得层错带变宽,易于产生孪晶,孪晶与宽的层错带都可以阻碍位错的运动。
     (4)表面纳米化45min、60min后400℃时效,时效温度与Cu-2wt%Ti合金的再结晶温度接近或处于其范围内,所以时效过程与再结晶交叠,样品表面Ti含量偏高有可能是因为表层一定范围内发生了调幅分解。
     (5)经过纳米化30min、60min的纯铜板材,在450℃退火保温不同的时间,通过XRD衍射分析,表面纳米晶的确有长大趋势,不过仍在纳米级别范围之内。微观应变越大纳米晶的热稳定性越好,大的微观应变可以抑制纳米晶粒的长大。
Copper and its alloys are widely used in industry as metal material. However, copper alloys have lower strength, poor wear resistance. So its application is severely limited. The surface of metallic materials can form nanocrystalline by means of surface mechanical attrition treatment (SMAT) and this is one of popular research method about surface strengthening in recent years. The application of this technology in industry has a very broad application prospects. It combines the performance of nanocrystalline materials with traditional construction materials. Stacking fault energy(SFE) has a greater impact on deformation mechanism of face centered cubic metals. Lower stacking fault energy will inhibit dislocation glide and as a result the form of deformation is twin. High strain rate and temperature also can cause Twin plastic deformation beside SFE. The stacking fault energy of Cu is 78mJ/m2, and the stacking fault energy has a great change after adding alloying elements.
     In this paper, pure copper, Cu-2wt%Ti alloys and Cu-10wt%Ni alloys have been treated with different time of the surface mechanical attrition treatment (SMAT). The impact of different alloying elements dissolved in the copper alloy on stacking fault energy has been researched and the impact of different Stacking fault energy on deformation mechanism has been researched too. The difference between the surface mechanical attrition treatment process of aging Cu-2wt%Ti alloy and deformation mechanism of not aging Cu-2wt%Ti alloy has been studied. And we have researched the harden caused by dropping of stacking fault probability. And material wear resistance is improved. The hardness of different materials after surface nanocrystallization from surface to core has been measured by the microhardness tester. The materials was characterized by OM, XRD, SEM and so on. Cu-2wt%Ti after surface mechanical attrition treatment was analyzed after ageing. the pure copper samples after surface nanocrystallization was annealing and Thermal stability of nanocrystalline was studied.
     The results show that:(1) the surface grain of pure copper was refined after surface nanocrystallization, but obvious deformation twins was not been found. the main deformation way was dislocation slipping. After surface nanocrystallization, along with the extending of time for surface nanocrystallization, the number of deformation twins increased obviously in Cu-2wt%Ti alloy. The intersecting of deformation twins was not obvious and the main deformation way was dislocation slipping. After dislocation pile-up, the main deformation way was twinning, but twinning can change phase difference and after this the main deformation way was dislocation slipping.
     (2) Both Cu-2wt%Ti nano-samples in solid solution state and the samples treated by solution and aging, a mass of deformation twin crystal and crossover twin crystal were observed as well as a phenomenon of layering. With the introduction of Ti, Stacking Fault Energy of Cu was brought down, which led to the twinning of crystal. Layering occured because big crystal particles tended to twin but small ones were easy to slip under the different plastic deformation mechanisms of them. Cu-2wt%Ti in the solid solution state possessed higher stacking fault energy afer the aging treatment, which can be certified by nano change at the same time, reduction of deformation twin crystal and drop of intersecting of deformation twins.
     (3) Pure copper, Cu-10wt%Ni alloys and Cu-2wt%Ti alloys occupied higher hardness in their surface than that in the heart atfer the surface nanocrystallization. Besides, their corrosion resistance is a bit lower than before. In contrast, they all have an increased abrasion performance. The solution strengthening which derived from soluteatoms solutioned in the Cu-10wt%Ni alloys, made the alloys more wear resistant than pure Cu. Other than the solution strengthening, the decreaseing of stacking fault energy in the Cu-2wt%Ti also made its wear resistant higher than pure Cu. As a result the fault strips widened and the twins can form easily and The twins and stacking fault both can block motion of dislocations
     (4) After the surface nanocrystallization for 45min and 60 min, respectively, the samples of Cu-2wt5Ti alloys went on to be aged in temperature of 400℃which is similar to its recrystallization temperature or within the range of its recrystallization temperature. Therefore, the aging procedure was carried out in the meanwhile of recrystallization and high Ti concentration in the surface was due to the spinodal decomposition, which occurred in the surface layer wihtin a certain range.
     (5) After the nanorization of pure copper sheet for 30min and 60 min, respectively, at the temperature of 450℃, its surface indeed had a tendency of growth although only in the nanometer level which can be found by XRD. In addition, the bigger microscopic strain made the steel more stable, and also restrained the growth of the nanocrystal in it.
引文
[1]陈敬中,刘剑洪.纳米材料科学导论[M],北京:高等教育出版社,2006,8-12.
    [2]H. Gleiter. Nanostructured materials:basic concepts and microstructure. Acta Mater,2000,48(1):1-29
    [3]卢柯,周飞.纳米晶体材料的研究现状[J].金属学报,1997,33(1):99-106.
    [4]W. Wunderlich, Y. Ishida, R. Maurer. HRTEM-studies of the microstructure of nanocrystalline palladium. Scripta Metallurgica et Materialia,1990,24(2):403-408
    [5]赵凤起,覃光明,蔡炳源.纳米材料在火药中的应用研究现状及发展方向[J].火炸药学报,2001(4):61-65.
    [6]Avouris P H, Martel R, Derycke V, et al. Carbon nanotube transistors and logic circuits[J]. Physica B: Condensed Matter,2002,323(1-4):6-14.
    [7]张立德.纳米材料[M],北京:化学工业出版社.2002,39-44.
    [8]姚超,张智宏,林西平等.纳米技术与纳米材料——防晒化妆品中的纳米二氧化钛[J].日用化学工业,2003,33(5):333-336.
    [9]张立德,方明.纳米颗粒材料研究的新进展[J].材料导报.2010,17(002),1-5.
    [10]Yali Li, Yong Liang, FenZheng et al. Laser synthesis of ultrafine Si3N4---SiC powders from hexamethyldisilazane[J]. Material Science and Engineering:A,1994,174(2):23-26.
    [11]J Karolin, C D Geddes, K Wynne, et al. Nanoparticle metrology in sol-gels using multiphoton excited fluorescence [J]. Mearsurement Science and Technology,2002,13(1):21-27.
    [12]Canham L T. Silicon quantum wire array fabrication by eletrochemical and chemical dissolution of wafers[J]. Applied Physics Letters,1990,57(10):1046-1048.
    [13]秦晓英.纳米固体Ag在高温下的热膨胀行为[J].物理学报,1995,44(2):244-250
    [14]卢志超,鲜于泽,沈保根等.铁基纳米晶合金的热膨胀研究[J].物理学报,1994,43(5):799-802.
    [15]张晓宇,吴迪,刘云旭等.添加微量纳米铁粉对铁基粉末烧结温度的影响[J].金属热处理,2007,12:49-52.
    [16]云斯宁,蒋明学,符国力等.纳米陶瓷超塑性及应用[J].陶瓷,2003,3:20-54
    [17]Hoffman M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews,1995,95,(1):69-96.
    [18]刘俊,徐志兵,王燕群.纳米氧化锌的制备及其光催化性能研究[J].合肥工业大学自然学报(自然科学版),2008,31(6):898-901.
    [19]K Lu, J Lu, et al. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Material Science Engineering,2004,375-377:38-45.
    [20]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程,2001,3(4):1-5.
    [21]高家诚,王强,高正源等.机械研磨金属表面纳米化的研究进展[J].功能材料,2010,5(41):741-745.
    [22]张聪惠,兰新哲,赵西成等.金属材料表面纳米化研究现状[J].铸造技术,2006,27(8):882-884.
    [23]N R Tao, Z B Wang, W P Tong,et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Material,2002,50(45):4603-4616.
    [24]Wang K, Tao N R, Liu G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper[J].Acta Material,2006,54(52):5281-5291.
    [25]Ying-hui Wei, Bao-sheng Liu, Li-feng Hou et al. Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment[J]. Journal of Alloys and Compounds,2008,452(2):336-342.
    [26]H W Zhang, Z K Hei, G Liu et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J]. Acta Material,2003,51(12):1871-1881.
    [27]胡兰青,李茂林,王科等.铝合金表面纳米化处理及显微结构特征[J].中国有色金属学报,2004,14(12):2016-2020.
    [28]Trtica M S, Gakovic B M, et al. Surface modification of stainless steels by TEA CO2 laser[J]. Applied Surface Science,2001 (177):48-57.
    [29]Kwok C T, Cheng F T, Man H C.et al. Laser surface modification of UNS S31603 stainless steel. Part I:microstructures and corrosion characteristics [J].Materials Science and Engineering.2000,A(290): 55-73.
    [30]Capello E, Chiarello P, Previtali B. Laser welding and surface treatment of a 22Cr-5Ni-2Mo duplex stainless steel[J]. Materials Science and Engineering,2003, A(351):334-343.
    [31]Jain M, Christman T. Processing of submicron grain 304 stainless steel[J]. Journal of Materials Research,1996,11(11):2677-2680.
    [32]杨银辉,严彪,张俊宝等.金属材料表面自身纳米化研究进展[J].材料导报,2009,21(11):17-21.
    [1]张德生.冶金设备用传热铜材料及表面强化技术[J].山东冶金,2002,16(10):35-37.
    [2]石子源,丁志敏.纯铜的表面弥散强化及其性能[J].大连钢铁学院院报,1998,19(1):30-32.
    [3]Gleiter H. Nanocrystalline materials [J]Progress in Material Science,1989,33(4); 223-315.
    [4]Liu G, Lu J, Lu k, et al, Surface nanocrystallization of 316 stain-less steel induced by actrasonic shot peening [J]. Material Science and Engineering.2000, A286(15); 91-95
    [5]冯淦,石连捷,吕坚等.低碳钢超声喷丸表面纳米化的研究[J].金属学报,2000,36(3):300-303.
    [6]Gu J F, Bei D H, Pan J S, et al. Improved nitrogen transport in surface nanocrystallized low carbon steels during gas eousnitridation [J]. Material Letters,2002,55(5):340-343.
    [7]巴德玛,马世宁,李长青等.超音速微粒轰击38CrSi钢表面纳米化的研究[J].材料工程,2006,17(12):3-7.
    [8]Liu G, Wang S C, Lou X F, et al. Low carbon steel with nano-structured surface layer induced by high-energy shot peening [J]. Script Materialia,2001,44(8):1791-1795.
    [9]Ping Wu, Jing Yangwang. Internal frictional elastic study on surface nanocrystallized 304 stainless steel induced by high-energy shot peening [J]. Material Science Technology,2002,18(2):132-134.
    [10]Tao N R, Wang Z B. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Materialia,2002,50(18):4603-4616.
    [11]J A Venables, Deformation Twinning[M]. Gordon and Breach Science Publishers, London,1963,25: 77-116.
    [12]F I Grace. Shock-wave strengthening of copper and nickel[J]. Applied physics,1969,40(6): 2649-2653.
    [13]M A Crimp, B C Smith, D E Mikkola., Substructure development in shock-loaded Cu-8.7Ge and copper:the role of temperature, grain size and stacking facult energy[J]. Material Science Engineering, 1987,96(24):27-40.
    [14]G T GrayⅢ, P S Follansbee, C E Frantz, Effect of residul strain on the substructure development and mechanical response of shock-loaded copper[J]. Material Science Engineering,1989,111(12):9-16.
    [15]A Rohatgi, K S Vecchio, G T Gray Ⅲ, The influces of Cu-Al alloys:Deformation twinning, work hardening and dynamic recovery[J]. Metall. Mater. Trans,2001,32A(15):135-145.
    [16]Lu K, Lu J, Surface nanocrystallization of metallic materials-presentation of the concept behind a new approach[J]. Material Science Technology,1999,15(3):193-197
    [17]Wei Yinghui, Liu Baosheng, Hou Lifeng, et al. Characterization and Properties of Nanocrystalline Surface Layer in Mg Alloy Induced by Surface Mechanical Attrition Treatment[J]. Alloys and Compounds.2008,452(2):336-342.
    [18]陶乃熔.超声喷丸表面纳米化微观结构及机理的研究[D].东北大学硕士学位论文,1999,6-8.
    [19]Klug H P, Alexander L E, X-ray Diffraction Procedure for Polycrystalline and Amorphous Materials[J], New York:Wiley,1974:662-668.
    [20]冯淦,石连捷,吕坚等.低碳钢超声喷丸表面纳米化的研究[J].金属学报,2000,36(3):300-303.
    [21]Wang K, Tao N.R., Liu G, et al. Plastic strain-induced grain refinement at the nanometer scale in copper[J]. Acta Materialia,2006,54(2):5281-5291
    [22]Murr L.E, Interfacial Phenomena in Metals and Alloys[M], Unit State,1975:48-48.
    [23]Saka N, Fundamentals of Tribology[M], Edifed by Suh, N.P and Saka. N, MTI Press,1980:135-137..
    [24]O Engler, Deformation and texture of copper-manganese alloys[J], Acta Mater,2000,48(20) 4847-4840.
    [25]Xiliang Nie, Renhui Wang, Yiying Ye, et al. Calculations of stacking fault energy for fee metals and their alloys based on an improved embedded-atom method[J]. Solid State Communications,1995, 96(10):729-734.
    [26]H W Zhang, Z K Hei, G Liu et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J]. Acta Material,2003,51(12):1871-1881.
    [27]徐滨士,朱绍华.表面工程的理论与技术[M].第一版.国防工业出版社,1999:24-29.
    [29]张洪旺,刘川等.表面机械研磨诱导AIS1304不锈钢表面纳米化Ⅱ.晶粒细化机理[J].金属学报,2003,39(4):34-35.
    [30]卫英慧,合金连续相变中调幅分解与有序化相分解规律的研究[D],西安交通大学博士学位论文,1997:45-49.
    [31]卫英慧,王笑天.Cu-Ti合金时效早期相变规律的研究[J].电子显微学报,1997,16(2):114-119.
    [32]Lu K, Lu J. Nanostructured surface layer on metallic induced by surface mechanical attrition treatment [J]. Material Science and Engineering,2004,375-377(15):38-45.
    [33]Tao Nairong, Zhang Hongwang, Lu Jian, et al. Devleopment of nanostructures in metallic materials with low stacking fault energies during surface mechanical attrition treatment(SMAT) [J]. Mater Trans,2003,44 (10):1919-1925.
    [34]D Hull. Effect of grain size and temperature on slip, twinning and fracture in 3% silicon iron [J]. Acta Metal,1961,9(3):191-204.
    [35]M R Barnett, Z.Keshavarz, A.GBeer, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-lZn[J], Acta Mater 2004,52(17):5093-5013.
    [36]M.R.Barnett, A rationale for the strong dependence of mechanical twinning on grain size[J], Scripta Materialia,2008,59:696-698.
    [37]Mingwei Chen, En Ma, Kevin J Hemker et.al. Deformation twinning in nanocrystalline aluminum[J], Science,2003,300(5623):1275-1277.
    [38]Huayun Du, Yinghui Wei. Effect of velovity of balls on the strain and stress of low carbon steel surface layer during SMAT[J].
    [1]Lu K, Lu J. Surface Nanocrystallization (SNC) of metallic materials- presentation of the concept behind anew approach[J]. Materials Science and Technology,1999,15(3):193-197
    [2]Lu L, Sui M L. Lu K Superplastic extensibility of nanocrystalline copper at room temperature[J], Science,2000,287(5437):1463-1466.
    [3]Lu K. Nanocrystalline Metals crystallinezed from amorphous solids:nanocrystallization, structure, and properties [J], Materials Science Engineering,1996,16(4):161-221.
    [4]Morris D G. Mechanical Behaviour of Nanostructured Materials[J]. Trans.Tech. Publications Ltd., Switzerland,1998,70-72
    [5]Tong W P, Tao N R, Wang Z B, et al. Nitriding iron at lower temperatures[J]. Science,2003,299(5607): 686-688
    [6]徐恒钧,刘国勋.材料科学基础[M].北京工业大学出版社,2001:376-379.
    [7]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报,2000,36(8):785-789.
    [8]Lu K., Wei W D, Wang J T. Microhardness and fracture properties of nanocrystalline Ni-P alloy[J]. Scripta Metallurgica et Materialia,1990,24(12):2319-2323
    [9]Chokshi A H, Rosen A, Karch J. On the validity of the hall-petch rationship in nanocrystallin materials[J]. Scripta Metallurgica,1989,23(10):1679-1683
    [10]Brun P Le, Gaffet E, Froye L. Structure and properties of Cu, Ni and Fe powders milled in a planetary ball mill[J]. Scripta Metallurgica et Materialia,1992,26(11):1743-1748.
    [11]Jang J S C, Koch C C. The hall-petch relationship in nanocrystalline iron produced by ball milling[J]. Scripta Metallurgica et Materialia,1990,24(8):1599-1604.
    [12]Liu X D, Wang J T, Hu Z Q. Structure and properties of Fe-based nanocrystalline alloys containing a small amount of transition elements[J]. Materials Science Engineering,1993, A 169(1-2):17-19.
    [13]Takeuchi S. The Mechanism of the Inverse Hall-Petch Relation of Nanocrystals[J]. Scripta Materialia, 2001,44(8-9):1483-1487.
    [14]Yong X P, Liu G, Lu K. Characterization and Properties of Nanostructured Surface Layer in Low Carbon Steel Subjected to Surface Mechanical Attrition[J]. Materials Science and Technology,2003, 19(1):1-4.
    [15]Rolanda T, Retrainta D, Lu K.. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J]. Scripta Materialia,2006,54(11): 1949-1954.
    [16]胡兰青,李茂林等.铝合金表面纳米化处理及纤维结构特征[J].中国有色金属学报,2004,14(18):2016-2020.
    [17]K S Raja, S A Namjoshi, M Misr. Improved corrosion resistance of Ni-22Cr-13Mo-4W Alloy by surface nanocrystallization[J], Materials Letters 2005,59(5):70-574.
    [18]Kh. M S, Youssef, C C, Improved corrosion behavior of nanocrystalline zinc produced by Pulse-current electrodeposition[J], Corrosion Science 2004,46(1):51-64.
    [19]石继红,武保林,刘刚.2316L不锈钢表面纳米化后腐蚀性能研究[J].材料工程,2005,10(2):42-46.
    [20]X Y Wang, D Y Li. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel[J], Electrochimica Acta,2002,47(24):3939-3947.
    [21]李瑛,王福会,刘刚.表面纳米化低碳钢电化学行为尺寸效应[J].中国腐蚀与防护学报,2001,21(4):215-218.
    [22]李瑛,王福会.表面纳米化对金属材料电化学腐蚀行为的影响[J].腐蚀与防,2003,24(1):6-1.
    [23]Craf C P, Heim U. Schwitzgebei G.. Potentiometrical investigations of nanocrystalline copper[J]. Solid State Ionics,2000,131(1-2):165-174.
    [24]刘宝胜.表面纳米化镁合金的显微结构、变形机理及纳米表层的性能研究[D].太原理工大学硕士研究生学位论文,2007:19-22.
    [25]Z B Wang, N R. Tao. Effect of surface nanocrystallization on friction and wear properties in low carbon steel[J]. Materials Science and Engineering,2003, A352(1-2):144-149.
    [26]H Q Sun, Y N Shi, M X Zhang. Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer[J]. Surface & Coatings Technology,2008,202(13):2859-2864
    [27]Shan-Le, L E Murr. Effect of Prestrain and Stacking-Fault Energy on the Application of The Hal-11 Petch Relation in fcc Metal and Alloys[J]. Metallography,1980,13(3):203-224.
    [28]Liu J J. Principles of Wear of Materials and Its Wear Resistance[M]. Beijing:Tshinghua Univercity Press,1993:158-160.
    [1]诺维科夫[苏]著.金属热处理理论[M].北京:机械工业出版社,1987:9-12.
    [2]卫英慧,王笑天.Cu-4Ti合金调幅分解的TEM研究[J].稀有金属材料与工程,1997,28(3):5-8.
    [3]卫英慧,王笑天.Cu-4Ti合金胞状反应的的研究[J].西安交通大学学报,1997,31(3):49-52.
    [4]K Lu, L Lu, S. Suresh. Strengthening Materials by Engineering coherent internal boundaries at the nanoscale[J]. Science,2009,324(5925):349-352.
    [1]R A Andrievski. Stability of nanostructured materials[J]. Materials Science,2003,38(7),1367-1375.
    [2]Shewmon P.G. Transformation in Metals[M]. New York:McGraw-Hill Book CO.1969:116-120.
    [3]张立德,解思深.纳米材料和纳米结构[M].北京:化学工业出版社,2005:334-338.
    [4]J.Weissmuller. Alloy effects in nanostructures[J]. Nanostructured Materials,1993,3(1-6):261-272.
    [5]A.Michels, C.E.Krill. Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials[J]. Acta Materialia,1999,47(7),2143-2152
    [6]V.Y.Gertsman, R.Birringer. On the room-temperature grain growth in nanocrystalline copper[J], Scripta Metallurgica et Materialia,1994,30(25):577-581.
    [7]G. Gottstein, A H King, L S Shvindlerman. The effect of triple-junction drag on grain growth[J], Acta Materialia,2000,48(78):397-403.
    [8]Y. Estrin, G. Gottstein. E.Rabkin, On the kinetics of grain growth inhibited by vacancy generation[J], Scripta Materialia,2000,43(58),141-147.
    [9]马礼敦.近代X射线多晶体衍射-实验技术与数据分析[M].北京:化学工业出版社,2004,403.
    [10]E.利弗森,叶恒强.材料的特征检测(第Ⅰ部分)[M].北京:科学出版社,1998:302-305.
    [11]Ning Wang, Zhirui Wang. Isokinetic analysis of nanocrystalline nickel electrodeposits upon annealing[J], Acta Mater.1997,45(7):1655-1669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700