RF-CMOS片上螺旋电感模型及模型库的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着硅集成电路技术和无线通讯市场的快速发展,以系统级芯片为趋势的硅基射频集成电路(RFIC)逐渐以低成本、低功耗等优势崛起。电感作为重要的无源器件,在电路中可实现阻抗匹配、可调谐负载、反馈、滤波等功能,在RFIC单元电路如低噪声放大器(LNA)、压控振荡器(VCO)、混频器(Mixer)、滤波器(Filter)、功率放大器(PA)中扮演着举足轻重的角色,其设计和优化已成为整个电路成功设计的关键之一。在标准CMOS工艺中,由于硅衬底是有损耗的,使得硅基片上螺旋电感的品质因数普遍不高。同时,以硅材料为衬底的电路,其工作性能也会因为随工作频率上升而出现的各种损耗(尤其是衬底损耗)而恶化。目前,随着工艺尺寸的减小,射频集成电路的应用频率越来越高,可达到几十甚至几百GHz。在如此高的频率下,电感中的高频寄生效应,如金属的趋肤效应、邻近效应以及衬底的涡流效应等,都会变得非常严重,这也为准确建立电感模型增加了难度。因此,有效地分析并获得硅衬底在片螺旋电感的电路模型及其参数,掌握电感性能随工作频率改变的特性,以用于电感的设计和优化,已成为实现硅衬底射频/毫米波集成电路的一个非常重要的课题。本文主要研究硅衬底在片螺旋电感的分析、仿真和建模。
     本文首先介绍片上螺旋电感相关的基础知识,包括电感的结构、性能参数、损耗机制和建模方法等。在电感的损耗机制中,本文着重介绍两大损耗,即金属损耗和衬底损耗。建模方法主要分析了电磁场仿真和等效电路模型,并总结了它们的优缺点和适用范围。
     在总结和对比了现有的等效电路模型之后,本文提出了两个新模型,它们分别是单π和双π模型。新的单π模型是一个宽带模型,采用一个横跨在两个端口之间、与直流电感相耦合的R-L-C网络来表征涡流效应,同时在传统的R-C衬底网络中串联一个R-L并联支路来表征衬底损耗。该模型主要提高了单π模型在高频时的精度,拓宽了模型的带宽。新的双π模型改变了趋肤效应和邻近效应的描述方式。模型中用一个由三个R-L串联支路组成的并联网络来描述趋肤效应,邻近效应则用它们相互之间的互感来表示。同时,新的单π模型中的衬底网络也适用于该模型,可以拓展其带宽。
     最后,本文利用已见诸于报道的单π和双π模型以及本文提出的双π模型,建立了三个电感scalable模型,即模型库。这三个模型库可分为两种类型:(1)基于已见诸于报道的单π和双π模型的电感模型库,我们采用了经验的方法,先对一批电感进行参数提取和优化,再总结模型中各元件参数值的规律,用与尺寸相关的数学公式来表示等效电路元件值。(2)基于本文提出的双π模型的电感模型库,我们采用了物理的方法,模型中的元件值均用它们的物理公式表示,这些公式与电感的版图尺寸和工艺参数有关。在此基础上,我们再添加一些优化系数来提高拟合精度。
     文中两个新模型和三个模型库均采用基于SMIC 0.18μm RF CMOS工艺的平面螺旋电感进行了验证,电感的测试频率从DC到40GHz。从仿真和测试的对比结果来看,新模型和模型库的拟合精度较高,符合电路设计中的应用要求。
With the rapid development of silicon-based integrated circuits technology and wireless communication market, the radio frequency integrated circuits (RFICs) are applied widely for the advantages of low cost and low power. As a critical component of RFIC function cells such as LNA, VCO, Mixer, Filter, and PA, the design and optimization of on-chip spiral inductors are essential in circuits design. In addition, the performance of the devices and circuits on silicon substrate is degrading due to various losses in which the substrate loss is especially significant as frequency increased. Nowadays, advances in nano-scale CMOS technology even have made it feasible to implement W-Band circuits in CMOS. In this case, the parasitic effects such as the skin and proximity effects in the conductor and the eddy current effect in the substrate will become more serious, which increases the difficulty in device modeling. Thus, an accurate equivalent circuit model with robust parameter extraction methodology is indispensable for inductor characterization and circuit simulation for CMOS mixed-signal/RF SoC and millimeter-wave circuit designs. In this thesis, the analysis, Electro-magnetic (EM) simulation and modeling of on-chip spiral inductor are discussed.
     Firstly, the fundamentals of on-chip spiral inductors such as layout structures, performance parameters, loss mechanisms and modeling methods are discussed. The losses of metal and substrate which are two types of major loss mechanisms are discussed in detail. Subsequently, the major modeling methods of on-chip spiral inductor are presented including EM simulation, segmental equivalent circuit model and compact lumped-element model.
     Two new equivalent-circuit models are proposed in this paper, which are single-πand double-πmodels. The new single-πmodel has better wideband prediction capability than traditional single-πorΤ-models. The eddy current in substrate is represented by an R-L-C network coupled with DC inductance. A new substrate network, consisting of R/L/C, is proposed to model the broadband loss mechanisms in the silicon substrate. In the new double-πmodel, the skin and proximity effects are represented by a parallel network, consisting of several R-L series branches and mutual inductors. As the skin and proximity effects are frequency-dependent, the number of branches varies with the frequency of interest, and more branches are needed with increasing frequency. The substrate network in the new single-πmodel is also proved to be suitable for this double-πmodel.
     Lastly, three inductor model libraries are developed based on the proposed double-πmodel and two reported models. These model libraries can be categorized into two types: (1) The empirical scalable models based on the reported single-πand double-πmodels. Performing the parameter-extraction procedure on a series of inductors, then the values of equivalent-circuit elements are expressed by a set of functions related to the geometry parameters of inductors. (2) The physical scalable model based on the new double-πmodel. The scalable expressions are determined by physical meanings, geometry parameters and process parameters.
     A series of inductors with different geometries are fabricated in standard SMIC 0.18-μm 1P6M RF CMOS process to verify the new equivalent-circuit models and inductor libraries. Excellent agreements have been obtained between the modeled and measured data up to 40 GHz.
引文
[1] Lin J C H, Ye T H h, Chen C H, et al. State-of-the-art RF/Analog Foundry Technology[J]. Bipolar/BiCMOS Circuit and Technology Meeting, 2002: 73-79.
    [2] Cheng Y. Anoverview of Device Behavior and Modeling of CMOS Technology for RFIC Design[J]. Electron Devices for Microwave and Optoelectronic Applications, 2003: 109-114.
    [3] Iwai H. CMOS Technology Future[J]. Device , Circuits and Systems, 2004: 179-182.
    [4] Haran B S. 22nm Technology Compatible Fully Functional 0.1μm2 6T-SRAM Cell[J]. IEDM, 2008: 1-4.
    [5] A.M.Niknejad, C.Doan, S.Emami, M.Dunga, X,Xi, J.He, R. Broderson, and C.Hu. Next Genera- tion CMOS Compact Models for RF and Microwave Applications[J]. RFIC Symposium, 2005, 1:141-144.
    [6] G.Gildenblat, X.Li, W.Wu, H.Wang, A.Jha, R.van Langevelde, G.D.J.Smit, A.J.Scholten, and D. B.M.Klaassen. PSP: An Advanced Surface-Potential-Based MOSFET Model for Circuit Simu- lation[J]. IEEE Trans. Electron Dev., 2006, 9: 1979-1993.
    [7] Zhiping Yu and C.C.McAndrew. RF CMOS is More Than CMOS: Modeling of RF Passive Components[J]. IEEE Custom Integrated Circuits Conference, 2009, 9: 227–230.
    [8] Jhe-Jia Kuo, Zuo-Min Tsai, Ping-Chen Huang, et al. A Wide Tuning Range Voltage Controlled Oscillator Using Common-Base Configuration and Inductive Feedback[J]. IEEE Microw. And Wireless Components Letters, 2009,19(10): 653–655.
    [9] Xiaohua Fan, Heng Zhang, Sanchez-Sinencio E., et al. A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA[J]. IEEE Solid-State Circuits, 2008, 43(3): 588–599.
    [10] Haitao Zhang, Huai Gao, Guann-Pyng Li. Broad-band Power Amplifier with A Novel Tunable Output Matching Network[J]. IEEE Trans. Microw. Theory Tech., 2005, 53(11): 3606–3614.
    [11] Luo Lan, Zeng Shan, Li Ming, et al. A Modified Double-πEquivalent Circuit Model for Silicon-Based Planar Spiral Inductors and its Application to a RF Mixer[J]. Solid-State and Integrated Circuits Technology, 2004, 1:213-216.
    [12] C.P.Yue and S.S.Wong. On-chip spiral inductors with patterned ground shields for Si-based RFIC’s[J]. IEEE Journal of Solid-State Circuits, 1998, 33(5): 743-752.
    [13] Gil J, Shin H. A Simple Wide-Band On-Chip Inductor Model for Silicon-Based RFICs[J]. IEEE TransMicrow Theory Tech, 2003, 51:9.
    [14] M. Fujishima, J. Kino. Accurate Subcircuit Model of an On-Chip Inductor with a New Sub- strate Network[J]. IEEE VLSl Circuits Symp. Dig., 2004(9): 763–379.
    [15] Yu Cao, Robert A.Groves, Xuejue Huang, et al. Frequency- Independent Equivalent-Circuit Model for On-Chip Spiral Inductors[J]. IEEE Journal of Solid-State Circuits, 2003, 38: 419-426.
    [16] A.C.Watson, D.Melendy, P.Francis, et al. A Comprehensive Compact-Modeling Methodology for Spiral Inductors in Silicon-Based RFICs[J]. IEEE Trans Microwave Theory and Techniques, 2004, 52(3): 849-857.
    [17] F.Huang, J.Lu, N.Jiang, X.Zhang, W.Wu, and Y.Wang. Frequency-Independent Asymmetric Double-πEquivalent Circuit for On-Chip Spiral Inductors: Physics-Based Modeling and Parameter Extraction[J]. IEEE J. Solid-State Circuits, 2006, 41(10): 2272–2283.
    [18] Wei Gao and Zhiping Yu. Scalable Compact Circuit Model and Synthesis for RF CMOS Spiral Inductors[J]. IEEE Trans. Microw. Theory Tech., 2006, 54(3): 1055–1064.
    [19] T.S.Horng, J.M.Wu, L.Q.Yang, and S.T.Fang. A Novel Modified-T Equivalent Circuit for Modeling LTCC Embedded Inductors With a Large Band-Width[J]. IEEE MTT-S Int.Microwave Symp.Dig., 2003, 51(12): 2327-2333.
    [20] J.C.Guo, T.Y.Tan. A Broadband and Scalable Model for On-Chip Inductors Incorporating Substrate and Conductor Loss Effects[J]. IEEE Trans. Electron Devices, 2006, 53(3): 413–421.
    [21] Young-Ghyu Ahn, Seong-Kyun Kim, Jung-Hoon Chun, et al. Efficient Scalable Modeling of Double-πEquivalent Circuit for On-Chip Spiral Inductors[J]. IEEE Trans. Microw. Theory Tech., 2009, 57(10): 2289-2300.
    [22] C.Wang, H.Liao, C.Li, R.Huang, W.Wong, X.Zhang, and Y.Wang. A Wideband Predictive‘Double-π’Equivalent-Circuit Model for On-Chip Spiral Inductors[J]. IEEE Trans. Electron Devices, 2009, 56(4) :609–619.
    [23] JoséM.López-Villegas, JosepSamitier, CharlesCané, et al. Improvement of the Quality Factor of RF Integrated Inductors by Layout Optimization[J]. IEEE Trans. Microw. Theory Tech., 2000 , 48(1): 76-83.
    [24] JingLiu, YanlingShi, XiuzhiWen, et al. On-Chip Spiral Inductor with Novel Gradually Changed Structure. Microwave and Optical Technology Letters[J], 2008, 50(8): 2210-2213.
    [25] A.Zolfaghari, A.Chan, and B.Razavi. Stacked Inductors and Transformers in CMOS Tech -nology[J]. IEEE Journal of Solid-State Circuits, 2001, 36: 620-628.
    [26] C.C.Tang, C.H. and S.I.Liu. Miniature 3-D Inductors in Standard CMOS Process[J]. IEEE Journal of Solid State Circuits, 2002, 37:471-480.
    [27] J.N.Burghartz, M.Soyuer, and K.A.Jenkinsm. Microwave Inductors and Capacitors in Standard Multilevel Interconnect Silicon Technology[J]. IEEE Trans. On Microwave Theory and Techniques,1996, 44: 100-104.
    [28]文进才.基于硅衬底在片螺旋电感的分析、建模和优化[D].杭州:杭州电子科技大学,2005.
    [29] K.B.Ashby, I.A.Koullias, W.C.Finley, J.J.Bastek, and S.Moinian. High Q Inductors for Wire -less Applications in a Complementary Silicon Bipolar Process[J]. IEEE Journal of Solid-State Circuits, 1996, 31: 4-9.
    [30] P.Arcioni, R.Castello, L.Perregrini, E.Sacchi, and F.Svelto. An Innovative Modelization of Loss Mechanism in Silicon Integrated Inductors[J]. IEEE Transactions on Circuits and Systems--II: Analog and Digital Signal Processing, 1999, 46: 1453-1460.
    [31] H.A.Wheeler. Formulas for The Skin Effects[J]. Proc. IRE, 1942, 30(9): 412-424.
    [32] W.B.Kuhn and N.M.Ibrahim. Analysis of Current Crowding Effects in Multiturn Spiral Induc- tors[J]. IEEE Trans. Microwave Theory Tech., 2001, 49 (1):31–38.
    [33] H.Tsai et al. Investigation of Current Crowding Effect on Spiral Inductors[J]. IEEE Microwave Theory and Techniques Symp.Dig.,1997: 139–142.
    [34] Kai Kang, Le-Wei Li, Said Zouhdi, et al. Electromagnetic-Thermal Analysis for Inductances and Eddy Current Lossws of On-chip Spiral Inductors on Lossy Silicon Substrate[J]. 1st European Microwave Integrated Circuits Conference, 2006: 13-16.
    [35] Andreas Weisshaar and Amy Luoh. Closes-Form Expressions for the Series Impedance Para- meters of On-chip Interconnects on Multilayer Silicon Substrate[J]. IEEE Trans. Advanced Packaging, 2004, 27: 126-134.
    [36] Jian-X.Zheng and Changhua Wan. Automatic Full-Wave Simulation of RFIC Passive Devices from Industrial Layouts[J]. Microwave Magazine, 2008, 9: 132-138.
    [37] Feng Ling, Jiming Song, Telesphor Kamgaing, et al. Systematic Analysis of Inductors on Silicon Using EM Simulation[J]. Electronic Components and Technology Conference, 2002: 484-489.
    [38] J.R.Long and M.A.Copeland. The Modeling, Characterization, and Design of Monolithic Inductors for Silicon RFIC’s[J]. IEEE Journal of Solid State Circuits, 1997, 32:357-369.
    [39] W.B.Kuhn and N.K.Yanduru. Spiral Inductor Substrate Loss Modeling in Silicon RF ICs[J]. Proc. RAWCON, 1998: 305–308.
    [40] Y.K.Koutsoyannopoulos and Y.Papananos. Systematic Analysis and Modeling of Integrated Inductors and Transformers in RFIC Design[J]. SC-25, 2000: 1028-1031. IEEE Trans. Circuits and Systems (Ⅱ) Analog and Digital Signal Processing, 2000, 47:699-713.
    [41] A.M.Niknejad and R.G. Meyer. Analysis, Design, and Optimization of Spiral Inductors and Transformers for Si RF ICs[J]. IEEE J. Solid-State Circuits, 1998, 33: 1470–1481.
    [42] A.M.Niknejad and R.G.Meyer. Analysis and Optimization of Monolithic Inductors and Trans- formers for RF ICs[J]. IEEE Custom Integrated Circuits Conference, 1997: 375-378.
    [43] A.M.Niknejad and R.G.Meyer. Analysis of Eddy Current Losses over Conductive Substrates with Applications to Monolithic Inductors and Transformers[J]. IEEE MTT, 2001, 49:166-76.
    [44] A.M.Niknejad, R.Gharpurey, and R.G. Meyer. Numerically Stable Green Function for Model- ing and Analysis of Substrate Coupling in Integrated Circuits[J]. IEEE Trans. Computer-Aided Design, 1998, 17: 305–315.
    [45] C.P.Yue. On-Chip Spiral Inductor for Silicon-Based Radio-Frequency Integrated Circuits [D]. Stanford: Stanford University, 1998.
    [46] C.P.Yue, Wong S S. Physical Modeling of Spiral Inductors on Silicon[J]. IEEE Trans Electron Devices, 2000, 47: 3.
    [47] C.Y.Su, L.P.Chen, S.J.Chang, et al. A Macro Model of Silicon Spiral Inductor[J]. Solid-State Electronics, 2002, 46: 759-767.
    [48] F.Y.Huang, J.X.Lu, D.M.Jiang, et al. A Novel Analytical Approach to Parameter Extraction for On-Chip Spiral Inductors Taking into Account High-Order Parasitic E?ect[J]. Solid-State Electronics, 2006, 50: 1557-1562.
    [49] M.Kang, J.Gil, and H.Shin. A Simple Parameter Extraction Method of Spiral On-Chip Inductors[J]. IEEE Trans. Electron Devices, 2005, 52(9): 3267–3273.
    [50] H.H.Chen, H.W.Zhang, S.J.Chung, J.T.Kuo, and T.C.Wu. Accurate Systematic Model-Para- meter Extraction for On-Chip Spiral Inductors[J]. IEEE Trans. Electron Devices, 2008, 55(11): 3267–3273.
    [51] I.C.H.Lai and M.Fujishima. A New On-Chip Substrate-Coupled Inductor Model Implemented With Scalable Expressions[J]. IEEE J. Solid-State Circuits, 2006, 41(11): 2491–2499.
    [52] Y.F.Zhu, J.X.Lu, Z.J.Wu, et al. A Novel Equivalent Circuit and Parameter Extraction for On-Chip Spiral Inductors[J]. ASIC, 2007: 1126-1128.
    [53] Zou Huanhuan, Sun Lingling, Wen Jincai and Liu Jun. Scalable Modeling and Comparison for Spiral Inductors Using Enhanced 1-πand 2-πTopologies[J]. Journal of Semiconductors, 2010, 31(5).055011-1-055011-7.
    [54] Seong-Kyun Kim, Byung-Sung Kim. Scalable Modeling of Spiral Inductor in 0.13μm RF CMOS Process[J]. International SoC Design Conference, 2008: 437-439.
    [55] T.S.Horng, J.K. au, C.H.Huang, and F.Y.Han. Synthesis of a Super Broadband Model for On- Chip Spiral Inductors[J]. IEEE RFIC Symp. Dig., 2004(6): 453–456.
    [56] Jiaju Wei and Zhigong Wang. Frequency-Independent T Equivalent Circuit for On-Chip Spiral Inductors[J]. IEEE Electronic Device Letters. 2010, 31(99): 933-935.
    [57]陈抗生.电磁场与电磁波[M].北京:高等教育出版社, 2007: 119-135.
    [58] HFSS online help.
    [59] Mohan S S, del Mar Hershenson M, Boyd S P, et al. Simple accurate expressions for planar spiral inductances[J]. IEEE J Solid-State Circuits, 1999, 34: 1419.
    [60] Grover F W. Inductance Calculations[M]. NewYork, NY: Van Nostrand, 1962.
    [61] L. Y. Ding, T. Wang, Y. C. Hu, et al. CMOS-Compatible Electrochemical Process for CMOS Inductor[J]. Solid-State Sensors, Actuators and Microsystems Conference, 2009(6): 2118–2121.
    [62] F. Y. Huang, J. X. Lu, Y. F. Wu, et al. Effect of Substrate Parasitic Inductance on Silicon-Based Transmission Lines and On-Chip Inductors[J]. IEEE Electron Device Letter, 2007, 28(11): 1025– 1028.
    [63] Shizhong Mei and Yehea I.Ismail.Modeling Skin and Proximity Effects With Reduced Realizable RL Circuits[J]. IEEE Trans. VLSI Systems, 2004, 12(4): 437-447.
    [64] Yungseon Eo and William R. Eisenstadt. High-speed VLSI Interconnect Modeling Based on S-Parameter Measurements[J]. IEEE Trans. Components, Hybrids and Manufacturing Tech., 1993, 16(8): 555-562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700