机车空调电源系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机车司机室安装空调系统可以改善司机室的微气候条件,为机车司机提供舒适的工作环境,在我国铁路高速发展的今天,对保证机车高速、安全运行具有非常重要的现实意义,因此研制高效、可靠的机车空调系统十分必要。与普通空调运行环境相比,机车司机室内气候环境恶劣,空调的热负荷大,运行条件差,供电电源电压波动范围大,这些因素对机车空调电源的设计、安装及调试都提出了更高的要求。为了改善机车司机的工作环境,本文设计了一种稳定的机车空调电源系统,针对机车空调的特殊运行工况采用先进控制策略以提高系统运行的稳定性。
     本文首先介绍了机车空调的工作原理以及应用情况,并根据机车空调电源系统的技术指标,提出了电源系统总体设计方案,包括主电路和控制电路设计方案,同时对电源的硬件结构进行模块化设计,模块之间用接插件进行连接,拆装方便。
     本文设计了DC-DC变换主电路和控制电路,主电路采用Boost升压拓扑结构,对输入电压进行升压变换,控制电路包括PWM脉冲发生电路和电压负反馈电路。试验结果表明,所设计的DC-DC电路可以很好的实现升压功能,可以保持输出电压的稳定。
     本文进行了DC-AC逆变主电路与控制电路的设计,逆变电路使用IPM智能功率模块组成三相全桥逆变电路,使直流电逆变成交流电,再将输出电源连接到空调机组,逆变控制电路以TMS320F2812为核心控制芯片,采用正弦脉宽调制技术,并设计了IPM驱动电路。
     最后,本文以PIC单片机为核心对主控制电路及故障保护电路进行了软硬件设计,分析了故障保护的工作原理,对所设计的保护电路结构进行了详细的介绍,并进行了电源系统的抗干扰设计。
Locomotive cab air condition systems can improve the micro-climate conditions of the driver's cab for locomotive drivers with a comfortable working environment. At the time of the rapid development of railway, it has very important practical significance for ensuring locomotive high-speed, safe operation. Therefore it is necessary to develop efficient and reliable locomotive air condition system. Compared with ordinary air condition running environment, the indoor environment of locomotive cab is bad, air condition heat load is large, operating conditions are poor and the voltage of power supply fluctuates intensely. These factors have higher requirements for the design, installation and commissioning of the air condition power supply. In order to improve the working environment of locomotive drivers, A stable power system is designed for locomotive air condition. Advanced control strategies are used to improve system stability for the special operating conditions.
     Firstly the working principle and application of locomotive air condition are described. The design program of locomotive air condition power system, including the main circuit and control circuit is proposed according to the specifications. The hardware structure of the power is designed using modules. Connectors are used to connect modules to facilitate assembly.
     DC-DC main transformation circuit and control circuit are designed. In order to boost the input voltage, boost topology is used in the main circuit. PWM pulse circuit and voltage negative feedback circuit are used in the control circuit. The results show that the designed DC-DC boost circuit has good performance, can maintain output voltage stability.
     DC-AC main transformation circuit and control circuit are designed. In order to make DC into AC to supply air condition unit, three-phase full-bridge inverter circuit is constituted by the IPM module in the main circuit. TMS320F2812 is used as a core control chip in the control circuit. SPWM technique is used. IPM drive circuit is designed.
     Finally, the software and hardware of main control circuit and fault protection circuit are designed, using the PIC microcontroller as the core. The working principle of fault protection is analyzed. The structure of protection circuit is described in detail. Anti-interference measures are designed to power system.
引文
[1]邓景山,范仲海.机车司机室空调概述[J].制冷,2000,19(3):33~37
    [2]郭臣善,苏德坤,石磊.铁路机车空调电源设计[J].电源技术应用,2007,10(2):42~45
    [3]陈汝东.制冷技术与应用[M].上海:同济大学出版社,2006.11~15
    [4]叶立国.新型内燃机车司机室空调装置的研制[J].中国铁道科学,2001,22(3):112~114
    [5]肖云华,黄光远,朱茂华.电力机车空调系统的设计选型[J].电力机车与城轨车辆,2006,29(2):24~27
    [6]赵江农,费宝玲.我国电力机车司机室空调系统分析与研究[J].电力机车与城轨车辆,2009,32(3):8~10
    [7]钟美,张侃谕,王生学.电力机车空调电源设计[J].微计算机信息,2006,22(9):85~87
    [8]柳铮,宋强,刘文华.50kVA机车空调变频电源[J].电力电子技术,2006,40(2):69~72
    [9]李可生.基于DSP的电力机车空调逆变电源的研究[J].电源技术应用,2007,10(4):16~19
    [10]郭臣善,苏德坤.铁路机车空调电源标准探讨[J].铁道技术监督,2006,34(8):1~3
    [11]白锡彬,张全柱,王磊,等.机车空调逆变电源控制系统及其实现[J].机车电传动,2007,(5):15~17
    [12]Bimal K.Bose著,王聪,赵金,等译.现代电力电子学与交流传动[M].北京:机械工业出版社,2005.132~150
    [13]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2005.150~165
    [14]夏聪,高田,景占荣,等.变频空调SPWM技术的研究[J].机械与电子,2004,(6):24~27
    [15]易龙强,戴瑜兴.正弦逆变电源的数字脉宽调制技术[J].湖南大学学报(自然科学版),2007,34(1):37~42
    [16]张志学,马皓,何湘宁.新型正弦脉宽调制采样方法的研究[J].浙江大学学报(工学版),2005,39(4):588~593
    [17]熊军华,王亭岭,陈建明,等.三种SPWM波形生成算法的分析与实现[J].微计算机信息,2008,24(7):307~309
    [18]阎纲,袁艳,张泰山.三相SPWM波的软件生成及应用研究[J].自动化技术与应用,2003,22(9):74~76
    [19]刘胜利.现代高频开关电源实用技术[M].北京:电子工业出版社2001.100~121
    [20]Yingqi Zhang, Sen P C. A new soft-switching technique for buck, boost, and buck-boost converters[J]. IEEE Transactions on Industry Applications,2003,39(6): 1775~1782
    [21]Jang Y, Dillman D L, Jovanovic M M. A new soft-switched PFC boost rectifier with integrated flyback converter for stand-by power[J]. IEEE Transactions on Power Electronics,2006,21(1):66~72
    [22]卢婷,周飞,童亦斌,等.内燃机车空调电源的设计[J].电力电子技术,2008,42(3):57~59
    [23]Fosler Ross. Simplifying boost converter design[J]. Elektron,2004,21(6): 35~36
    [24]Yungtaek Jang, Jovanovic M M. A new, soft-switched, high-power-factor boost converter with IGBTs[J]. IEEE Transactions on Power Electronics,2002,17(4):469~476
    [25]Qun Zhao, Fengfeng Tao, Lee F C, et al. A simple and effective method to alleviate the rectifier reverse-recovery problem in continuous-current-mode boost converters[J]. IEEE Transactions on Power Electronics,2001,16(5):649~658
    [26]时磊.机车空调电源的设计与研究[D].北京交通大学,2007.3
    [27]钟美.基于模糊变频技术的机车空调电源研究[D].上海大学,2006.2
    [28]王立华,刘志军,王成军,等.UC384x系列构成的PWM式开关电源的电路分析与维修[J].通信电源技术,2005,22(6):36~39
    [29]Tan F D, Middlebrook R D. A unified model for current-programmed converters[J]. IEEE Transactions on Power Electronics,1995,10(4):397~408
    [30]Bryant B, Kazimierczuk M K. Modeling the closed-current loop of PWM boost DC-DC converters operating in CCM with peak current-mode control [J]. IEEE Transactions on Circuits and Systems,2005,52(11):2404~2412
    [31]武素珍,王琨.基于UC3844的变频器IGBT驱动电源设计[J].电测与仪表,2008,45(512):57~60
    [32]张兰红,陈道炼.电流控制型脉宽调制器UC3842及其应用[J].盐城工学院学报,2002,15(2):5~7
    [33]王文建,何杞鑫,吴建兴,等.一种新型的应用于DC-DC转换器的斜率补偿设计[J].电子器件,2007,30(5):1905~1908
    [34]高田,景占荣,羊彦,等.峰值电流控制模式中斜率补偿的研究[J].电力电 子技术,2007,41(3):92~94
    [35]Barai M, Sengupta S, Biswas J. Dual-Mode Multiple-Band Digital Controller for High-Frequency DC-DC Converter [J]. IEEE Transactions on Power Electronics,2009, 24(3):752~766
    [36]Kiam Heong Ang, Chong G, Yun Li. PID control system analysis, design, and technology[J]. IEEE Transactions on Control Systems Technology,2005,13(4):559~576
    [37]Qing-Guo Wang, Tong-Heng Lee, Ho-Wang Fung, et al. PID tuning for improved performance[J]. IEEE Transactions on Control Systems Technology,1999,7(4): 457~465
    [38]胡寿松.自动控制原理[M].北京:科学出版社,2005.236~251
    [39]Rech C, Pinheiro H, Grundling H A, et al. Comparison of digital control techniques with repetitive ingegral action for low cost PWM inverters [J]. IEEE Transactions on Power Electronics,2003,18(1):401~410
    [40]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2007.59~71
    [41]Li Shao-Lin, Yang Ping. Research on a SPWM Inverter Power Supply System Based on DSP[J].2008 International Conference on Computer Science and Software Engineering,2008,7:150~153
    [42]杨成林.三相逆变器DSP控制技术的研究[D].浙江大学,2004.3
    [43]万山明.TMS320F2812原理及应用实例[M].北京:北京航空航天大学出版社,2007.18~34
    [44]苏奎峰,吕强,耿庆锋,等.TMS320F2812原理与开发[M].北京:电子工业出版社,2005.12~22
    [45]陈湘令,张莹.基于DSP变频器的SPWM控制算法[J].微计算机信息,2007,23(3):134~136
    [46]Gopinath R, Sangsun Kim, Jae-Hong Hahn, et al. Development of a low cost fuel cell inverters system with DSP control[J]. IEEE Transactions on Power Electronics, 2004,19(5):1256~1262
    [47]董卓敏,王永,孙德敏.对称规则SPWM的谐波分析及DSP实现[J].数据采集与处理,2003,18(2):165~169
    [48]宋俊超.电力机车空调逆变电源[D].北京交通大学,2008.6
    [49]王耀北,闫英敏,胡玉贵.DSP控制的IPM正弦逆变电源系统硬件电路设计[J].现代电子技术,2005,(24):103~105
    [50]李广海,叶勇,蒋静坪.IPM驱动和保护电路的研究[J].电子技术应用,2003,29(12):43~45
    [51]周志敏,周继海,纪爱华.变频电源实用技术[M].北京:中国电力出版社, 2005.58~78
    [52]求是科技.PIC单片机典型模块设计实例导航[M].北京:人民邮电出版社,2005.78~107
    [53]王有绪,许杰.PIC系列单片机接口技术及应用系统设计[M].北京:北京航空航天大学出版社,2000.110~123
    [54]钱照明,程肇基.电力电子系统电磁兼容设计基础及干扰抑制技术[M].杭州:浙江大学出版社,2004.58~71
    [55]郑琼林,郝荣泰.机车用50kVA IGBT逆变器的电磁兼容性设计[J].中国电机工程学报,2000,20(5):34~36
    [56]杨任基,师宇杰,袁臣虎.一种新型功率变换器的电磁干扰分析及抑制[J].微计算机信息,2005,21(4):206~208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700