用户名: 密码: 验证码:
青海省果洛龙洼金矿区流体包裹体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果洛龙洼金矿是产于东昆仑造山带的一个与华力西-印支-燕山中酸性岩浆活动有关的中温热液石英脉型金矿床。论文以果洛龙洼金矿区为研究对象,运用流体包裹体岩相学、温度测试及成分分析等方法,讨论了果洛龙洼金矿区成矿流体的特征,研究成矿作用条件。
     研究表明,果洛龙洼金矿成矿过程可以划分为3个阶段:乳白色石英脉阶段(Ⅰ)、含金石英黄铁矿阶段(Ⅱ)、石英硫化物阶段(Ⅲ)。不同阶段的石英中发现了各种类型的流体包裹体。流体包裹体个体一般较小,以4-8μm为主,最大15μm。包裹体的形态以椭圆形为主,少数为条形、板状,不规则状。根据包裹体的特征,将其划分为液相水溶液包裹体,水溶液-二氧化碳包裹体,富CO2包裹体纯二氧化碳包裹体和甲烷包裹体5种类型。
     该矿床流体包裹体气相成分主要为H2O和CO2,还有含有一定量的CH4和少量H2。液相成分中,阳离子以Na+和k+为主,阴离子以SO42-、Cl-为主。所有样品中,Na+>K+含量,Cl->SO42-含量。成矿溶液属于CO2-Na+(K+,Ca+)-Cl-(SO42-,F-)-H2O体系.
     第Ⅱ~Ⅲ阶段成矿流体均一温度主要集中在280~350℃;第Ⅱ阶段(含金石英黄铁矿阶段)对应高盐度群,盐度一般为15~22(wt%NaCl equiv),第Ⅲ阶段对应中盐度群为4~10(wt%NaCl equiv);成矿压力为2962~3562bar,相当于大约10.5km的深度。
     成矿流体特征表明金的成矿作用与岩浆热液关系密切,属于中温岩浆热液矿床。后期的热液活动存在明显的H2O和CO2的分离作用,对金矿成矿起到了改造富集作用。
The Guoluolongwa gold deposit, located in the Eastern Kunlun orogenic belt, is a mesothermal quartz-vein type gold deposit related to Variscan-Indosinian-Yanshanian intermediate-felsic magmatism. In this paper, the characteristics of ore-forming fluids of the Guoluolongwa gold deposit were discussed, and the conditions of mineralization were studied by means of fluid-inclusion petrography, microthermometry, and component analysis.
     The metallogenesis of Guoluolongwa gold deposit can be divided into three stages:(Ⅰ) milky white quartz veins stage; (Ⅱ) gold-bearing quartz-pyrite stage; (Ⅲ) quartz-sulfide re-enrichment stage. There are various types of inclusions in the quartz at different stages. The size of inclusions mainly varied from 4 to 8μm, with maximum size of 15 um. Most of inclusions are rounded to irregular in shape, with occasionale presence of ribbon or platy shapes. Five types of fluid inclusions were found in quartz, namely aqueous, aqueous-CO2, CO2-rich, pure CO2, and methane inclusions.
     The gas component of fluid inclusions are dominantly H2O and CO2, with minor CH4 and H2. The cation ions in fluid inclusions are mainly Na+and K+, and the main anion ions are SO42- and Cl". That is to say, the ore-forming fluids are generally characterized by Cl->SO42- and Na+>K+,which belong to CO2-Na+(K+,Ca+)-Cl-(SO42-,F)-H2O type fluids.
     The homogenization temperatures of the inclusions fromⅡandⅢstages concentrate between 280℃and 350℃, corresponding to the high salinity groups of 15-22 wt% NaCl equiv. and the middle salinity groups of 4-10 wt% NaCl equiv., respectively. The metallogenic pressure estimated by fluid inclusions is 2962 bars to 3562 bars, equivalent to a depth of 10.5 km.
     The characteristics of ore-forming fluids show that mineralization is closely related to magmatic hydrothermal, indicating that the deposit is a medium temperature magmatic hydrothermal deposit. Subsequence, phase separation of H2O and CO2 in hydrothermal fluids caused gold transformation and enrichment.
引文
[1]阿成业,王毅智,任晋祁,等.东昆仑地区万保沟群的解体及早寒武世地层的新发现[J].中国地质,2003,30(2):199-205
    [2]蔡雄飞,魏启荣.东昆仑万保沟群洋岛地层序列特征和构造古地理恢复[J].地层学杂志,2007,31(2):117-125
    [3]陈树民.青海省果洛龙洼金异常区成矿特征及找矿方向[J].地质与资源,2002,11(2):83-87
    [4]池国祥,卢焕章.流体包裹体组合对测温数据有效性的制约及数据表达方法[J].岩石学报,2008,24(9):1945—1953
    [5]古风宝,吴向农,姜常义.东昆仑华里西期-印支期花岗岩组合及构造环境[J].青海地质,1996,5(1):18-36
    [6]古风宝.东昆仑地质特征及晚古生代-中生代构造演化[J].青海地质,1994,3(1):4-14
    [7]郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352
    [8]胡正国,刘继庆,钱壮志,等.东昆仑区域成矿规律初步研究[J].黄金科学技术,1998,6(5-6):6-13
    [9]胡正国,刘继庆,钱壮志,等.东昆仑区域成矿规律分析——关于找矿工作的战略思考[J].西安工程学院学报,1999,21(4):46-50
    [10]季强.青海东昆仑中段早寒武世小壳动物群的发现及其地质意义[J].中国区域地质,1997,16(4):428-431
    [11]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000,1-154
    [12]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992,1-224
    [13]姜春发.中央造山带主要地质构造特征[J].地学研究,1993,(27):103-108
    [14]姜能,王英玉.CH4在金矿成矿中的作用[J].世界地质,1995,14(4);29-32
    [15]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998,7(1):27-35
    [16]李厚民,胡正国,钱壮志,等.对东昆仑金及多金属主要成矿系列的初步认识[J].西安工程学院学报,1999,21(4):51-56
    [17]李厚民,沈远超,胡正国,等.青海东昆仑五龙沟金矿床成矿条件及成矿机 理[J].地质与勘探,2001,37(1):65-69
    [18]李厚民,沈远超,胡正国,等.青海五龙沟金矿床矿石、矿物含金性及金的赋存状态[J].矿物学报,2001,21(1):89-94
    [19]李厚民,沈远超,钱壮志,等.东昆仑-南祁连富砷金矿与矿区岩浆岩的关系[J].吉林大学学报(地球科学版),2003,33(1):26-31
    [20]李厚民,孙继东,沈远超,等.东昆仑五龙沟金矿床Ⅲ矿段原生晕特征及模式[J].地质地球化学,2001,29(3):109-116
    [21]李延栋.青藏高原地质科学研究新进展[J].地质通报,2002,21(7):370-376
    [22]李延栋.青藏高原隆升的过程和机制[J].地球学报,1995,(4):1-9
    [23]龙晓平,金巍,葛文春,等.东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义[J].地球化学,2006,35(4):367-376
    [24]卢焕章.C02流体与金矿化:流体包裹体的证据[J].地球化学,2008,7(37):321-328
    [25]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004,1-492
    [26]陆松年,于海峰,金巍.塔里木古大陆东缘的微大陆块体群[J].岩石矿物学杂志,2002,21(4):317-326
    [27]潘彤,马梅生,康祥瑞.东昆仑肯德可克及外围钴多金属矿找矿突破的启示[J].中国地质,2001,28(2):17-21
    [28]潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学(D辑),1996,6(4):302-307
    [29]潘裕生.昆仑山区构造区划初探[J].自然资源学报,1989,4(3):196-203
    [30]钱壮志,胡正国,李厚民,等.东昆仑中带金矿成矿特征及成矿模式[J].矿床地质,2000,19(4):315-321
    [31]钱壮志,胡正国,李厚民.东昆仑中带印支期浅成-超浅成岩浆岩及其构造环境[J].矿物岩石,2000,20(2):14-18
    [32]钱壮志,胡正国,刘继庆,等.东昆仑中带金矿成矿地质特征[J].西安工程学院学报,2000,22(2):22-26
    [33]钱壮志,胡正国,刘继庆,等.古特提斯东昆仑活动陆缘及其区域成矿[J].大地构造与成矿学,2000,24(2):134-139
    [34]钱壮志,汤中立,李文渊,等.秦祁昆成矿域古生代区域成矿规律[J].西北地质,2003,36(1):34-40
    [35]青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991, 582-584
    [36]青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社,1997,46-48
    [37]孙崇仁主编,青海省岩石地层[M].武汉:中国地质大学出版社,1997,1-340
    [38]文雪峰,王怀超.青海省都兰县果洛龙洼金矿床地质特征及成因探讨[J].黄金科学技术,2006,14(5):27-29
    [39]文雪峰,伊有昌.果洛龙洼金矿床地质特征及成因探讨[J].中国科学工程,2005,7:284-285
    [40]肖静.东昆仑东段果洛龙洼金矿韧性剪切带显微构造研究[J].西部探矿工程,2007,9:146-149
    [41]许荣华,Harris N., Lewis G.,等.拉萨至格尔木的同位素地球化学.见:中英青藏高原综合地质考察队编.青藏高原地质演化[M].北京:科学出版社,1990,282~302
    [42]许志琴,崔军文,张建新.大陆山链变形构造动力学[M].北京:冶金工业出版社,1996,204-225
    [43]许志琴,姜枚,杨经绥.青藏高原北部隆升的深部构造物理作用-以“格尔木一唐古拉山”地质及地球物理综合剖面为例[J].地质学报,1996,70(3):195-206
    [44]许志琴,李海兵,杨经绥,等.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J].地质学报,2001,75(2):156-164
    [45]薛培林,肖静,薛福林,等.青海祁漫塔格一都兰成矿带铜矿找矿前景初探[J].矿产与地质,2006,35(4):247-250
    [46]杨宝荣,杨小斌.青海都兰果洛龙洼金矿床地质特征及控矿因素浅析[J].黄金科学技术,2007,15:26-30
    [47]杨小斌,杨宝荣,王晓云.青海果洛龙洼金矿床金的赋存状态研究[J].地质与勘探,2006,42(5):57-59
    [48]殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学-中国地质大学学报,1997,22(4):339-342
    [49]袁万明,莫宣学,王世成,等.东昆仑金成矿作用与区域构造演化的关系[J].地质与勘探,2003,39(3):5-8
    [50]袁万明,莫宣学,喻学惠,等.东昆仑早石炭世火山岩的地球化学特征及其构造背景[J].岩石矿物学杂志,1998,17(4):289-295
    [51]袁万明,莫宣学,喻学惠,等.青海省五龙沟矿区金矿化的石英稀土元素地球化学指示[J].地质与勘探,2002,38(1):15-17
    [52]袁万明,王世成,王兰芬.东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据[J].地球学报,2000,21(4):389-395
    [53]张本仁,傅家谟.地球化学进展[M].北京:化学工业出版社,2005,1-448
    [54]张德全,丰成友,李大新,等.柴北缘-东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137-146
    [55]张德全,王彦,丰成友.驼路沟喷气沉积钴(金)矿床的地质-地球化学[J].矿床地质,2002,21(3):213-222
    [56]赵财胜.青海东昆仑造山带金、银成矿作用:[博士学位论文].长春:吉林大学,2004
    [57]郑健康.东昆仑区域构造的发展演化[J].青海地质,1992,1(1):15-25
    [58]周显强,等.青海都兰地区矿田构造于成矿特征[M].北京:地质出版社,1996,1-242
    [59]周显强,宋友贵,邓军,等.青海都兰地区控矿构造特征研究[J].地质力学学报,1996,2(1):34-41
    [60]朱云海,Pan Yuanming,张克信,等.东昆仑造山带蛇绿岩矿物学特征及其岩石成因讨论[J].矿物学报,2000,20(2):128-142
    [61]Bodnar RJ. Introduction to fluid inclusions. In:Samson I, Anderson A and Marshall D (eds). Fluid Inclusions-Analysis and Interpretation. Mineralogical Association of Canada, Short Course Series,2003,32:1-8
    [62]Brown, P.E. FLINCOR:A microcomputer program for the reduction and investigation of fluid inclusion data:American Mineralogist,1989,74,1390-1393.
    [63]Brown, RE, and Lamb, W.M, P-V-T properties of fluids in the system H2O-CO2-NaCl:New graphical presentations and implications for fluid inclusion studies:Geochimicaet Cosmochimica Acta,1989,53:1209-1221
    [64]Chi Guo-xiang, Zhou yi-ming, Lu Huan-zhang, An overview on current fluid-inclusio research and applications. Acta Petrologica Sinica,2003,19(2):201-212
    [65]Chi Guoxiang, Dube B, Williamson K, Williams-Jones A E. Formation of the Campbell-Red Lake gold deposit by H2O-poor, CO2-dominated fluids. Miner Deposit,2006,40(6/7):726-741
    [66]Lai JianQing, Fluid Evolution in the Formation of the Fenghuangshan Cu-Fe-Au Deposit, Tongling, Anhui, China.Economic Geology,2007,106,949~970
    [67]Lu Huan-zhang, Role of CO2 fluid in the formation of gold deposits:Fluid inclusion evidences, Geochimica,2008,7(37):321-328
    [68]Bakker RJ and Jansen JBH. Amechanism for preferential H2O leakage from fluid inclusion in quartz, based on TEM observations. Contributions to Mineralogy and Petrology,1994,116:7-20
    [69]Bakker R J. Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O-CO2-CH4-N2-Nacl system. Chem.Geol,1999,154:225-236
    [70]Bakker RJ and Diamond LW. Determination of the composition and molar volume of H2O-CO2 fluid inclusions by microthermomerty. Geochim. Cosmochim. 2000.Acta,64:1753-1764
    [71]BakkerRJ, Dubessy J and Cathelineau M. Improvements in clathrate modeling; I, The H2O-CO2 system with various salts. Geochim. Cosmochim Acta,,1996. 60,1657-1681

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700