铜陵相思河流域采矿活动中重金属的迁移和分布及其对生态环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山的开发利用促进了社会经济的发展,但同时也破坏周围的生态环境,威胁附近居民的身体健康。铜陵相思河流域的周围有一些不同类型的矿山已开采或正在开采,其中对生态环境影响较大的是上游的凤凰山铜矿和中游的新桥硫铁矿。
     本次工作调查了相思河流域的矿山开采状况,包括正在使用的和废弃的采坑、尾矿库、废石堆等。使用改进的酸碱计数测试法来研究两种不同类型矿山的产酸能力和酸中和潜力,从而对它们产生酸性排水的可能性进行分析,由实验可知新桥硫铁矿产生矿山酸性排水。使用Fortsner 5步逐级提取法对废石样品中重金属元素的赋存状态进行研究,它们主要以硅酸盐态存在,其次为还原态和可氧化态,从而了解影响重金属元素扩散迁移的因素。同时还对相思河流域中、上游不同类型矿山开采影响的土壤、水、底泥中重金属元素的含量分布进行比较,并给予污染现状评价。通过研究可知相思河流域中游的水环境、土壤环境中重金属元素的污染比上游严重。
     最后还分析了采矿活动中重金属元素对周围生态环境污染的成因和机理,并提出相应的防治和治理重金属元素污染的措施,减少重金属元素对周围生态环境的污染。因此,此项研究具有重要的理论意义和实际意义。
Though the exploitation and use of the mine is accelerating the development of the society and economy, simultaneously destroying the ecological environment and a great menace to the human health around the mining area. Some different types mine is exploiting or exploited around the Xiangsi river area, Tongling. Especially the Fenghuangshan copper mine in upriver and the Xinqiao pyrite mine in middle river have more great menace to ecological environment than others.Detailed information about the mine around the Xiangsi river was collected in this study. It is included the used or using pits, tailing reservoirs, discarded rocks heaps etc. The NP and AP of the two different types mine were tested via modified ABA test and analyzed the probability of AMD for them, consequently knew the Xinqiao pyrite mine has AMD. The Fortsner 5 sequential extraction method has been used to analyze heavy metal elements distribution and speciation state in the discarded rocks. The silicate state is primary, the next is reducible state, oxidizable state. The factors that control heavy metal elements transfer have been found. Then a comparative analysis that heavy metal elements content in soil, water, sediment between two types mine and assessment about the heavy metal elements were given. The result is that the heavy metal elements content in upriver is more than that in middle river.Finally, The cause and mechanism about the heavy metal distribution and pollution was analyzed. Some prevention and cure measures for cutting down heavy metal elements pollution was proposed. So this research has important academic and practical sense.
引文
1 丁园.重金属污染土壤的治理方法.环境与开发,2000,15(2):25-28.
    2 王泽群.新桥矿矿床共生元素浅析.矿业快报,2002,21:8-10.
    3 王中明.新桥硫铁矿矿石选矿工艺研究.有色矿山,2000,29(3):32-34.
    4 王亚平,鲍征宇,侯书恩.尾矿库周围土壤中重金属存在形态特征研究.岩矿测试,2000,19(1):7-13.
    5 王成端,张家达.矿山环境污染及矿业可持续发展对策的研究.四川冶金,1997,3:73-77.
    6 韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状.地球科学进展,2002,17(6):833-839.
    7 左振鲁,陈俊,王汝成等.铜陵鸡冠山硫铁矿废矿堆积区的重金属分布与磁化率变化.岩石矿物学杂志,2001,20(2):199-207.
    8 代宏文,王春来,汪庚水,李章鹤,邱晓悌.杨山冲尾矿库复垦建立植被技术研究.资源·产业.
    9 卢龙,王汝成,薛纪越,陈俊.黄铁矿风化过程中元素的活化及对环境的影响.地质评论,2001,47(1):95-101.
    10 刘恒亮.新桥硫铁矿露天排水系统改造.露天采煤技术,2000,4:62-63.
    11 刘付程,孙庆业,顾也萍.铜陵铜矿尾矿的不良特性对植被重建的影响与治理对策.资源保护,1999,15(3):147-149.
    12 吕荣,宋守志.金属尾矿资源化前景.中国矿业,1998,(1):25-27.
    13 孙伟.尾矿的综合回收和利用.金属矿山,2000,增刊:290-292.
    14 许乃政,陶于祥,高南华.金属矿山环境污染及整治对策.火山地质与矿产,2001,22(1):63-70.
    15 沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境,2000,16(2):39-44.
    16 牟保磊.元素地球化学.1999,北京大学出版社.
    17 李辉,杨振宏.尾矿区地下水环境质量现状评价.黄金,1998,(2):47-49.
    18 李建国,郭择德.某尾矿库周围环境中污染物生态转移研究.辐射保护,2002,22(1):9-14.
    19 李铿贤,樊庆恩,周展明.矿业环保技术发展的现状与展望.中国钼业,1995,19(6):28-32.
    20 张从.环境评价教程.2002,10,中国环境科学出版社.
    21 陈茂祺.有色金属工业固体废弃物综合利用概况.矿冶,1997,(1):82-88.
    22 陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展.污染治理技术与设备,2001,2(2):41-46.
    23 林年丰.医学环境地球化学.1991,吉林科学技术出版社.
    24 陈志良,仇荣亮,张景书,万云兵.重金属污染土壤的修复技术.工程与技术,2001.8:17-19.
    25 胡国信,亚海斌,章臣平.新桥硫铁矿下盘边坡地下水分析及疏干排水.金属矿山,2001,9:12-14.
    26 姚敬劬.矿山环境问题分类.国土资源科技管理,2003,3:44-47.
    27 夏元法.铜陵地区层控矽卡岩型矿床地质特征和成矿条件.矿产与地质,1999,13(6):338-342.
    28 徐晓春,陈友存,陈天虎,胡礼军,周俊.论矿产资源保护、开发利用与可持续发展.合肥工业大学学报(社会科学版),2000,14(2):36-40.
    29 黄崇轲,白冶,朱裕生等.中国铜矿床.地质出版社,2001,2.
    30 常学秀,文传浩,王焕校.重金属污染与人体健康.云南环境科学,2000,19(1):59-61.
    31 谢先军,韩吟文.黄石巷子口地区水环境重金属污染评价与防治对策.安全与环境工程,2003,10(4):34-37.
    32 滕彦国,倪师军,张成江.应用地质积累指数评价攀枝花地区土壤重金属污染.重庆环境科学,2002,24(4):25-28.
    33 Alpers, C. N., Jambor, J. L. and Nordstrom, D. K., eds., Sulfateminerals; crystallography, geochemistry and environmental significance:Reviews in Mineralogy and Geochemistry, 2000, 40:32-43.
    34 Al-Asheh S, Banat F. Adsorption of copper and zinc by oil shale. EnvironmentalGeology, 2001, 36(3-4):219-226.
    35 Atilla Aykol Heavy meatl pollution and acid drainage from the abandoned Balya Pb-Zn sulfide mine NW Anatolia, Turkey, Environmental Geology, 2003, 45:198-208.
    36 B. BussiereA laboratory study of covers made of low-sulphide railings to prevent acid mine drainage, Environmental Geology, 2004, 45:609-622.
    37 B. Prasad. J. M. Bose Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas, Environmental Geology, 2001, 41:183-188.
    38 B. Elberling. T. Balic-Zunic. A. Edsberg Spatial variations and controls of acid mine drainage generation, Environmental Geology, 2003, 43:806-813.
    39 Blowes D W, Quebec R A, hanton-Fong C J, New approaches to the prevention of acid mine drainage. 1995, SSC File 0285Q.23440-1111, CANMET, Natural Resources Canada, Ottawa, Canada.
    40 Buckley A N, Woods R, The surface oxidize pyrite, Appl Surf Sci,1987,27:437-452.
    41 Blowes D W., Reardon E J., Lambor J.L., Cherry J.A., The formation and potential importance of cemented layers in inactive sulfide mine tailings . Geochim Cosmochim Acta,1991,55:965-978.
    42 Campbell, D.L., and Fitterman, D.V., Geoelectrical methods for investigating mine dump, in proceedings from the Fifth International Conference on Acid Drainage(ICARD2000), Dever Colorado, May 21-24, 2000, Society for Mining, Metallurgy and Exploration, 2000,1513-1523.
    43 Clark M W, Walsh S R, Smith J V. The distribution of heavy metals in an abandoned mining area: a case study of Strauss Pit, the Drake mining area, Australia, Environmental Geology, 2001,40(6):655-663.
    44 Davis G B,Ritchie Aim. A model of oxdation in pyritic mine wastes.III.The importance of particle size distribution.Appl Math Model, 1987,11:417-422.
    45 David A.Bird Characterization of anthropogenic and natural sources of acid rock drainage at the Cinnamon Gulch abandoned mine land inventory site, Summit county, Colorado. Environmental Geology, 2003 ,44:919-932.
    46 E.C.Teixeira.L.S.Ortiz.M.F.C.Alves.J.C.D.Sanchez. Distribution of selected heavy metals in fluvial sediments of the coal mining region of Baixo Jacui,Rs,Brazil, Environmental Geology, 2001,41:145-154.
    47 E.Dinelli.F.TateoFactors controlling heavy-metal dispersion in mining areas: the case of Vigonzano. A Fe-Cu sulfide deposit associated with ophiolitic rocks, Environmental Geology, 2001,40:1138-1150.
    48 Elberling B,Nicholson R V,Reardon E J. Evaluation of sulphide oxidation rates:a laboratory study comparing oxygen fluxes and rates of oxidation product release.Canada Geotech, 1994,31:375-383.
    49 Gabler H E, Schneider J. Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains.Germany. Environmental Geology, 2000,39(7):774-782.
    50 Ghomshei M M, Allen D M. Potential application of oxygen-18 and deuterium in mining effluent and acid rock drainage studies. Environmental Geology, 2000,37(4):267-280.
    51 Hageman, P.L., and Briggs, P.H., A simple field leach test for rapid screening and qualitative characterization of mine waster dump material on abandoned mine lands, in proceedings from the Fifth International Conference on Acid
     Drainage(ICARD2000), Dever Colorado, May 21-24, 2000, Society for Mining, Metallurgy and Exploration, 2000,1463-1475.
    52 I.Mascaro.B.Benvenuti Mine wastes at the polymetallic deposit of Fenice Capanne Mineralogy, geochemistry and environmental impact, Environmental Geology, 2001,41:417-429.
    53 Jane M.Hammarstrom.Robert R.seal 11.Allen L.John C.Jackson Weathering of sulfidic shale and copper mine waste: Secondary minerals and metal cycling in Great Smoky Mountains National park,Tennessee and North Carolina,USA, Environmental Geology,2003,45:35-57.
    54 Jennings S R, Dollhopf D J and Inskeep W P. Acid production from sulfide minerals using hydrogen peroxide weathering [J].Appl. Geochem, 2000,15:235-243.
    55 Johnson,C.A.,Grimes,D.J.,Rye.R.O., Fate of process solution Cyanide and nitrate at three Nevada gold mines inferred from stable carbon-and nitrogen-isotope measurements:instute of Mining and Metallurgy, Section C:Mineral Processing and Extractive Metallurgy,Submitted,2000,6:177-179.
    56 Jambor J.L, Owens DR. Mineralogy of the tailings impoundment at the former Cu-Ni deposit of Nickel Rim mines Ltd., eastern edge of the Sudbury Structure, Ontario, Division Report MSL93-4(CF). 1993,CANMET, EMR, Canada.
    56 Kissssao Gnandi.HJ.TobschallHeavy metals distribution of soils around mining site of cadmium-rich marine sedimentary phosphorites of Kpogame and Hahotoe, Environmental Geology, 2002,41:593-600.
    58 Kwong Y T J, Roots C F, Roach P, Kettley W. Post-mine metal transport and attenuation in the Keno Hill Mining district, central Yukon, Canade. Environmental Geology, 1997,30(l/2):98-106
    59 Kooner Z S, Comparative study of adsorption behavior of copper, lead and zinc onto goethite in aqueous systems, Environmental Geology, 1993, 21: 242-250.
    60 inZ.PulsRM. Adsorption,desorption and oxidation of arsenic affected by clay minerals and aging process.Environmental Geology, 2000,39(7):753-759.
    61 Linz. Leachate chemistry and precipitates mineralogy of Rudolfsgruvan mine waste dump in central Sweden, Water Sci. Tech, 1996,33:163-171.
    62 Mckibben M A and Barnes H L. Oxidation of pyrite in low temperature acidic solutions:rate laws and surface texture[J].Geochim.Cosmochim.Acta 1986, 50:1509-1520.
    63 Milu, J L Leroy, C Peiffert. Water contamination downstream from a copper mine in the Apuseni Mountains Romania. Environmental Geology, 2002, 42:773-782.
    64 Nicholson R.VgillhamR.W,ReardonE.J. Pyrite oxidation in carbonate buffered solution.Rate control by oxide coatings,Geochim Cosmochim Acta, 1990,54:395-402.
    65 N. C. Woo. MJ. Choi Arsenic and metal contamination of water resources from mining wastes in Korea, Environmental Geology, 2001,40(3):305-311.
    66 Nordstrom D K, Aqueous pyrite oxidation and the consequent formation of secondary minerals [A] Madison. Acid sulfate weathering [M].Soil Sci.Soc.Am, 1987,37-56.
    67 Nicholson R V and Scharer J M. Laboratory studies of pyrrhotite oxidation kinetics [A].Alpers C N,Blowes D W. Environmental Geochemistry of Sulfide oxidation [MJ. Washington D C.:American Chemical Society, 1994 14-30.
    68 P. Acero.J.M.A.Mandado.J.Gomez.M.J.Gimeno.L.F.Auque.FJ.Torrijo, Environmental impact of heavy metal dispersion in the Huerva river, Environmental Geology, 2003,43:950-956.
    69 Rickard D. Kinetics of pyrite formation by the H_2S oxidation of iron(II) monosulfide in aqueous solutions between 25 ℃ and 125 ℃ :the rate equation,Geochim Cosmochiml Acta, 1997,61:115-134.
    70 R.J.Bowell Geochemistry of iron ochres and mine waters from Levant Mine,cornwall, Apllied Geochemistry, 1995,10:237-250.
    71 Strom M. Mobility of Al, Co, Cr, Fe, Mn, Ni, and V in sulphide-bearing fine-grained sediments exposed atmospheric O_2: an experimental study. Environmental Geology, 1998,39(l):39-50.
    72 Sam Earman. Ronald L.Hershey water quality impacts from waste rock at a carlin-type gold mine,Elko country, Nevada, Environmental Geology, 2004,45:1043-1053.
    73 Sherlock E J, Lawrence R W, Poulin P, On the neutralization of acid rock drainage by carbonate and silicate minerals. Environmental Geology, 1995,25:43-54.
    74 Smith,K.S., Metal sorption on mineral surfaces:an overview with examples relating to mineral deposits in Plumlee,G.S. and Logsdon,M.J.,eds, The Environmental Geochemistry of Mineral Deposits, 1999,6A:161-182.
    75 Smith,K.S.,Walton-Day,K., and Ranville,J.F.,Evaluating the effects of fluvial tailings deposits on water quality in the Upper Arkansas River basin, Colorado:
     observational scale considerations, in proceedings from the Fifth International Conference on Acid Rock Drainage: Society for Mining,Metallurgy and Exploration, 2003,1415-1424.
    76 Smith, K.S., and Huyck, H.L.O., An overview of the abundance,relative mobility, bioavail- -ability, and human toxicity of metals, in plumlee, G.S., and Logsdon, M.J.,eds., The Environ- -mental Geochemistry of Mineral Deposits, Reviews in Economic Geology, 2001,6A:29-70.
    77 Walder I F, Chavez W X, mineralogical and geochemical behavior of mill tailing material produced from lead- zinc skarn mineralization, Hanover, Grand Country, New Mexico, USA, Environmental Geology, 1995, 39(3/4):272-278.
    78 Walton-Day, K.,Rossi,F.J.,Gerner,L.J.,Evans,J.B., Yager,T.J.,Ranville, J.F., and Smith, K.S., Effects of fluvial tailings deposits on soils and surface- and ground-water quality, and implications for remediation-Upper Arkansas River,Colorado, Water-Resources Investigations Report, 2000, 99-4273.
    79 Zhi Dang.Congqiang Liu Mobility of heavy metals associated with the natural weathering of coal mine spoils, Environmental Pollution,2002,118:419-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700