基于Halbach阵列楔形气隙盘式无铁心永磁同步电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是国家863计划项目《高性能稀土永磁电机技术集成及关键材料》(2004AA32G080)的部分研究内容,本文的主要内容是对基于Halbach阵列楔形气隙盘式无铁心永磁同步电机的设计及其电磁场分析。该类电机作为一种现代高性能伺服电机,具有重量轻、结构紧凑、振动噪声低、转动惯量小,机电时间常数小、低速运行平稳等特点,在数控机床、机器人、电动车、电梯、家用电器等场合具有广阔的应用前景。
     本论文充分利用外径空间提出了新型的基于Halbach阵列楔形气隙盘式无铁心永磁同步电动机,该电机通过改变气隙结构以进一步提高盘式无铁心永磁同步电机的气隙磁密,达到提高电机性能的目的,并针对这种电机进行建模和电磁场分析计算。由于此类电机的特殊结构,很难将三维开域磁场化为二维磁场计算,其气隙磁密按三维开域磁场分析,通过大量有限元的仿真分析最终确定了较小实用求解区域,简化了计算。
     基于Halbach阵列楔形气隙盘式无铁心永磁同步电机与普通永磁电动机有很多不同之处,与传统的电机参数计算相比,许多计算方法不再运用,本文针对该类电机给出了几个典型的计算公式,并总结了基于三维电磁场分析计算盘式无铁心同步电机的电磁计算程序,最后编制出了一套电磁设计计算的CAD软件。在制作工艺上,内/外转子结构的加工工艺、永磁体的固定加工、绕组盘的安装与定位、灌胶成形等难题都得到了解决,还制作了适合于盘式电机总装的特殊工艺设备。在理论分析和磁场仿真相结合的基础上,初步设计250W和2500W的两台样机;并对样机进行了大量的试验,分析试验结果,并与同规格的其他样机进行性能比较,进一步完善和总结。
     本论文的电机由于无铁心和楔形气隙的特殊结构,其重量大大减轻,电机的效率提高,转矩波动小,振动噪声明显减小等等,特别适合一些特殊的应用场合比如电动汽车、船用推进器、手持电动工具、机械臂等等。
As one part of the national project 863(2004AA32G080), text concentrates on the design and magnetic field analysis of disk coreless PMSM with wedgy airgap based on Halbach. As a high performance servo-motor, there are many characteristics of low mass, compact structure, low noise, low moment of inertia, small electromechanical time constant, steady running status in low speed in the disk coreless PMSM with wedgy airgap. As a perfect driving device, it could be used in many fields, such as numerical control machine, robot, electric vehicle, home appliance and so on.
     To optimize the motor, disk coreless PMSM with wedgy airgap based on Halbach is developed in text, making good use of the outer diameter. The magnetic flux density of this motor is heightened to obtain better performance by changing the structure of airgap. The coreless PMSM with wedgy airgap is analyzed by FEM. The FEM analysis has been done to prove that the method reducing the open domain into the smallest domain can obtain the results approximate to the accurate results. So the intention of simplification is achieved.
     There are many differences in structure between the disk coreless PMSM with wedgy airgap and traditional PMSM. There are no cores in the magnetism circuit except PMs. Leak magnetism circuit is very complex especially when the structure of wedgy airgap adopted causes magnetism circuit asymmetric. The calculation method of the disk coreless PMSM is also different from the traditional one. Several typical formulas are given in the text. The design method of disk coreless PMSM with wedgy airgap based on Halbach array is summed up and CAD software is compiled. In the technics, many difficulties are solved such as the inner/outer rotor structure technics, the fixation of PMs, the winding’s perfusion, orientation and installation. And the special technics equipment for the machining of the disc motor must be taken into account. At last, the sampling motors of 250W and 2500W are designed and developed. Much experiment is made to prove that the performance of the disk coreless PMSM with wedgy airgap is better than the traditional PMSM with same power.
     Because of the structure of coreless and the wedgy airgap, compared with the traditional PMSM, the mass is much lighter and the efficiency is higher and vibratory noise is obviously lowered. The disk coreless PMSM with wedgy airgap could be used in many fields, especially electric automobile, ship propeller, electric tool in hand, machine arm and so on.
引文
[1] 候书红,亚尔·买买提. 盘式电机在我国的发展及其展望. 微特电机. 1998,26(4): 30~33.
    [2] Yicheng Chen, Pragasen Pillay and Azeem Khan. PM Wind Generator Comparison of Different Topologies. Industry Applications Conference, 2004, 3: 1405~1412.
    [3] Federico Caricchi, Fabio Giulii Capponi and Fabio Crescimbini, etc. Experimental Study on Reducing Cogging Torque and No-Load Power Loss in Axial-Flux Permanent Magnet Machines with Slotted Winding. Industry Application, 2004, 40(4): 1066~1075.
    [4] Madawala U K, Green A W, Boys J T. A brushless ironless DC motor. Power Electronics and Variable-Speed Drives, 1991: 440~445.
    [5] 国内外动态. 微特电机,1999(3).
    [6] H.C.Lovatt, V.S.Ramsden and B.C.Mecrow. Design of an in-wheel motor for a solar-powered electric vehicle. Electric Power Applications, IEE Proceedings-, 1998, 145(5): 402~408
    [7] Gieras. J. F and Gieras. I. A. Performance analysis of a coreless permanent magnet brushless motor. Industry Applications Conference, 2002, 4: 2477~2482.
    [8] 唐任远. 现代永磁电机理论与设计. 北京:机械工业出版社,1997.
    [9] 吴畏,许锦兴,林金铭. 盘式永磁同步电动机及其发展. 电工技术杂. 1990, (2):10~13.
    [10] 王凤翔. Halbach 阵列及其在永磁电机设计中的应用. 微特电机,1999,27(4):22~24.
    [11] 胡之光. 电机电磁场的分析与计算. 第 1 版. 北京:机械工业出版社,1982.
    [12] 罗荣杰. 电机电磁场教程. 第 2 版. 浙江:浙江大学出版社,1993.
    [13] 邹继斌,刘宝廷,崔淑梅等. 磁路与磁场,哈尔滨:哈尔滨工业大学出版社,1998
    [14] 陈金涛,辜承林. 轴向磁场无铁心无刷永磁盘式电机的设计. 微电机. 2002,35(5):14~16.
    [15] 郑柒拾,王凤翔. 无刷永磁直流电机的绕组参数计算. 沈阳工业大学学报,2000,22(3):203~206.
    [16] 王民生,张侠. 无铁心无刷直流电动机的设计. 微电机,2005,38(6):82~83,104.
    [17] YOSHIHIKO OKUYAMA,梁春吉. 稀土永磁同步电机的发展. 国外大电机,1998,(3):7~16.
    [18] 李声敏,贺士毅. 永磁盘式电动机及其应用. 现代机械,1992,(3):16~17.
    [19] 王正茂,苏少平,郭芳. 盘式永磁同步电动机研究. 中小型电机,2000,27(5):13~15.
    [20] M.V.K. Chari and P.P. Silvester. 电磁场问题的有限元解法. 史乃,唐任远. 第 1版. 北京:科学出版社,1985. (59~83).
    [21] 汤蕴璆,史乃. 电机学. 北京:高等教育出版社,1998.
    [22] 陈清泉,黄红军. 轴向磁场电机的设计和应用. 电机技术. 1989,(3):47~51.
    [23] 王海峰,任章. ANSYS 在永磁电机设计中的应用. 中小型电机,2003,30(2):1~3.
    [24] 于志豪,刘志珍. VB 与 VC 混合编程在电机设计中的应用. 中小型电机,2003,30(2):20~22.
    [25] 吴杰,解锦辉. 用 ANSYS 分析计算盘式永磁电机二维电磁场. 船电技术,2003,23(1):17~19.
    [26] 诸自强,,张士红等. 轴向磁场永磁无刷直流电动机的分析和设计. 微电机,1992,25(1):3~8.
    [27] 庄旭,曾德俊,曾令全. 基于 FEM 永磁同步电动机的分析与计算. 东北电力学院学报,2005,25(6):116~119,122.
    [28] 辜承林. 转子无铁心式直流永磁盘式电机的磁场和解析分析与优化设计. 中国电机工程学报,1996,16(2):125~129.
    [29] 徐衍亮,许家群,唐任远. 永磁同步电动机空载气隙永磁磁密波形优化. 微特电机,2002,30(6):5~6.
    [30] 徐衍亮,赵建辉,房建成. 高速储能飞轮用无铁心永磁无刷直流电动机的分析与设计. 电工技术学报,2004,19(12):24~28.
    [31] 徐广人,唐任远,安忠良. 永磁同步电动机气隙磁场分析. 沈阳电力高等专科学校学报,2001,(2):1~4.
    [32] 胡敏强,严登俊,黄学良. 适用于电机电磁场有限元分析的前处理软件系统. 中小型电机,2000,(1):12~16.
    [33] 谢德馨,姚缨英,白保东等. 三维涡流场的有限元分析. 第 3 版. 北京:机械工业出版社,2001. (35~91).
    [34] 黄苏融. 现代盘式车轮电机设计技术. 电机技术,2005,(3):3~7.
    [35] 王海峰,任章. ANSYS 在永磁电机设计中的应用. 中小型电机,2003,30(2):1~3.
    [36] 刘晓东,杨芳春. 钕铁硼永磁盘式同步电动机的设计研究. 微特电机, 1998, 26(3): 6~7,26.
    [37] 刘春和. 电枢上无铁心的直流无刷力矩电机. 微电机, 2002, 35(3):14~17,26.
    [38] Z. Q. Zhu, Z. P. Xia, K. Atallah, G. W. Jewell and D. Howe. Analysis of Anisotropic Bonded NdFeB Halbach Cylinders Accounting for Partial PowderAlignment. Magnetics, 2000, 36(5): 3575~3577.
    [39] Z. Q. Zhu and D. Howe. Halbach permanent magnet machines and applications: a review. Electric Power Applications, 2001, 148 (4): 299~308.
    [40] K. Atallah and D. Howe. The Application of Halbach Cylinders to Brushless AC Servo Motors. Magnetics, 1998, 34(4): 2060~2062.
    [41] J. Chalmers. Parameters and performance of a high-Field Permanent Magnet Synchronous Motor for Variable-Frequency Operation. IEE Proc. B. 1985, 13(3): 117~124.
    [42] C. C. Chan, J. Z. Jiang and K. T. Chau, etc. Novel wide range speed control of permanent magnet brushless motor drives. Power Electronics, 1995, 10(5): 539~546.
    [43] C. C. Chan. Axial-Field Electrical Machines. Energy Conversion, 1987,2(2): 294~300.
    [44] C. C. Chan, K. T. Chau and J. Z. Jiang, etc. Novel Permanent Magnet Motor Drives for Electric Vehicles. industrial Electronics, 1996, 43(2): 331~339.
    [45] C. C. Chan and K. T. Chau. An Advanced Permanent Magnet Motor Drive System for Battery-Powered Electric Vehicle. Vehicular Technology, 1996, 45(1): 180~188.
    [46] Woo-Sup Han, Chong-Won Lee and Okada. Design and Control of a Disk-Type Integrated Motor-Bearing System. Mechatronics. IEEE/ASME Transactions, 2002, 7(1):15~22.
    [47] Parviainen. A., Niemela. M and Pyrhonen. J. Modeling of Axial Flux Permanent-Magnet Machines. Industry Applications, 2004, 40(5): 1333~1340.
    [48] Parviainen. A, Pyrhonen. J and Mantere. J. Performance Comparison between Low-Speed Axial-Flux and Radial-Flux Permanent Magnet Machines including Mechanical Constraints. Electric Machines and Drives, 2005: 1695~1702.
    [49] Parviainen. A, Pyrhonen. J and Kontkanen. P. Axial Flux Permanent Magnet Generator with Concentrated Winding for Small Wind Power Applications. Electric Machines and Drives, 2005: 1187~1191.
    [50] Kwon. O. M, Surussavadee. C and Chari. M. V. K, etc. Analysis of the far field of permanent-magnet motors and effects of geometric asymmetries and unbalance in magnet design. Magnetics, 2004, 40(2): 435~442.
    [51] Fengxiang Wang and Longya Xu. Design and Analysis of a permanent Magnet Motor Integrated with Journal Bearing. Industry Applications Conference, 1997, Thirty-Second IAS Annual Meeting, 1997, 1: 24~28
    [52] Davey. K. Optimization shows Halbach arrays to be non-ideal for induction devices. Magnetics, IEEE Transactions on, 2000, 36(4):1035~1038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700