HSF1在激素非依赖性前列腺癌中的作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌在许多西方国家是男性最常见的恶性肿瘤,占男性癌症死因的第二位。前列腺癌在我国临床住院病人中所占比率逐渐升高,成为威胁老年男性健康的一个重要因素。由于前列腺癌细胞的生长具有依赖于雄激素的生物学特性,导致几乎所有初始对内分泌治疗敏感的前列腺癌患者最终都将产生雄激素抵抗,由雄激素依赖型前列腺癌发展成高度恶化且易广泛转移,并最终死于激素非依赖性前列腺癌。因此,激素非依赖性前列腺癌的发病机制已经成为泌尿肿瘤学者遇到的最常见和最棘手的难题之一,是当前前列腺癌研究的热点。深入研究其分子机制,寻求有效的干预手段阻断,对于提高前列腺癌的整体治疗水平具有重要的理论和现实意义。第一章非依赖性前列腺癌差异表达蛋白的筛选研究
     目的:筛选HRPC的发生发展的重要蛋白分子靶点。方法:通过提取雄激素依赖型前列腺癌和雄激素非依赖型前列腺癌组织总蛋白,用双向电泳技术分离转膜,正常人血清封闭,分别用两组患者血清作为一抗行Western blot检测作为引导,从正常、雄激素依赖和激素难治性三个视角去显示差异表达的蛋白。结果:筛选获得差异表达的蛋白点:自吞噬蛋白1(Beclinl),谷胱苷肽S转移酶P(GSTP1-1), ZBTB7、Dihydrodiol dehydrogenase 2(DDH),葡萄糖依赖性胰岛素释放肽受体(GIPR)、热休克因子1(heat shock factor 1,HSF1)、α烯醇酶(ENO1)、锰,超氧化物歧化酶(MnSOD)、磷酸甘油酸变位酶1(PGAM1)、肽基脯氨基顺反异构酶(PPIA)、磷脂酰乙醇胺结合蛋白(PEBP)等。结论:本研究改进的血清免疫印迹技术引导的蛋白质组学方法,筛选差异表达蛋白具有可行性。为激素非依赖性前列腺癌研究提供了一种新的方法和候选分子。
     目的:探讨热休克因子1在前列腺癌发生发展中起重要的作用。方法:采用免疫组化和Western blot方法检测了HSF1在前列腺癌组织中的表达中,并分析其表达水平与前列腺癌临床病理指标的相关性。结果:(1)HSF1在前列腺癌组织中的表达高于良性前列腺增生组织
     (3.01±0.09 vs 1.25±0.07),差异有统计学意义(P<0.05);HSF1在激素依赖前列腺癌组织中表达低于激素非依赖型前列腺癌组织(1.25±0.07 vs 3.12±0.09),差异有统计学意义(P<0.05),HSP27在前列腺癌组织中的表达低于良性前列腺增生组织(1.47±0.06vs3.12±0.01),差异有统计学意义(P<0.05);HSP27在激素依赖前列腺癌组织中表达高于激素非依赖型前列腺癌组织(2.37±0.02vs1.12±0.04),差异有统计学意义(P<0.05)。HSF1和HSP27表达呈负相关(r=-8.753,P<0.05)。HSP27在激素依赖性前列腺癌细胞株LNCaP中的表达高于激素非依赖性前列腺癌细胞株PC-3细胞中的表达(3.02±0.06 vs 1.35±0.05),差异有统计学意义(P<0.05),HSF1和HSP27表达呈负相关(r=-8.695,P<0.05)。(2)HSF1的表达与PSA、临床分期的具有显著性相关性。HSF1表达与Gleason评分呈正相关(r=0.66,P<0.001)。HSF1表达与PSA水平随PSA升高而升高,呈正相关(r=0.76,P<0.001)结论-HSF1蛋白在激素非依赖性前列腺癌发生发展中起重要的调控作用。第三章HSF1在PC,3细胞中的作用与机制研究
     目的:HSF1在前列腺癌中发生发展中的作用及机制。方法:通过构建逆转录RNA干扰HSF1质粒,转染激素非依赖性前列腺癌细胞株PC-3细胞,体外采用划痕愈合实验、Transwell实验、流式细胞术等方法,体内通过裸鼠皮下成瘤实验,从体外和体内两个层面进行HSF1的表达调节作用机制研究。结果:(1)体外实验中抑制HSF1的表达可以抑制PC-3细胞的侵袭迁移。采用划痕实验比较了PC-3HSF1RNAi+和PC-3HSF1RNAi-的迁移能力,结果显示PC-3HSF1RNAi+较PC-3HSF1RNAi-细胞迁移能力明显下降,24小时划痕愈合率分别为62%vs77%,差异具有显著性意义(P<0.05)。采用Transwell侵袭小室测定法比较PC-3HSF1RNAi+和PC-3HSF1RNAi-的侵袭能力,结果显示PC-3HSF1RNAi+较PC-3HSF1RNAi,细胞侵袭能力明显下降,24小时培养后穿过Transwell的每低倍视野细胞数分别为63±11 vs 129±13,差异具有显著性意义(P<0.05)。(2)体外HSF1表达沉默的可以促进PC-3细胞的凋亡。pSUPERHSF1RNAi+转染细胞48h后出现大量的凋亡细胞,较空白对照组明显增加,差异有统计学意义(31.3%±2.8%vs3.9%±0.7%,P<0.05),而pSUPER HSF1RNAi-组和空白对照组细胞凋亡率差异无统计学意义(P>0.05)。(3)体内抑制HSF1的表达可以抑制PC-3细胞的成瘤能力。比较了MiceHSF1RNAi+和MiceHSF1RNAi-两组裸鼠模型中PC-3细胞原发瘤的大小,分别为3.01±0.22和3.45±0.23,差异具有显著性意义(P<0.05),这提示体内抑制HSF1的表达能够抑制PC-3细胞的生长。(4)HSF1表达沉默的PC-3细胞后蛋白的表达.应激在上调HSF1表达的同时下调了HSP27表达。且Caspase-3蛋白(1.13±0.03 vs 2.13±0.08)、Fas蛋白表达上调(1.31±0.09 vs2.69±0.03),Cyclin E蛋白表达下调(1.98±0.02 vs 1.06±0.05),差异具有统计学意义(P<0.05),Mdr1蛋白表达无变化(2.44±0.05vs2.53±0.07),差异具无统计学意义(P>0.05)。结论:HSF1表达上调在激素非依赖性前列腺癌细胞侵袭转移中起重要的作用。HSF1通过上调Caspase-3蛋白、Fas蛋白表达,下调HSP27蛋白、Cyclin E蛋白表达在激素非依赖性前列腺癌细胞凋亡中起重要的作用机制。
Prostate cancer is the most common cancer in male, and the second most common cause of cancer-related death in Western countries,. Prostate cancer has gradually increased in proportion in China, becoming the threat to the health of male elders.Since the growth of prostate cancer depends on the biological characteristics of androgen, almost all the initial treatment of the endocrine-sensitive prostate cancer patients will eventually become androgen resistance and change from androgen-dependent prostate cancer into hormone refractory prostate cancer(HRPC) which is highly deteriorated, and eventually died of hormone refractory prostate cancer. Thus, the pathogenesis of HRPC has become the most common and one of the most difficult point in the current focus of prostate cancer research. Study of the molecular mechanism of HRPC and find effective interventions to block or even reverse the genesis of HRPC,will be helpful for the treatment of prostate cancer and extend overall level of great theoretical and practical significance.Discovering important protein molecular target for the occurrence and development of HRPC is a scientific problem to be solved.
     Objective:Screening of the important molecular target protein in tumorigenesis and development of HRPC.Methods:Extracting the total protein of androgen-dependent prostate cancer and androgen-independent prostate cancer tissues, and using two-dimensional electrophoresis to separate transfer membrane, blocked with three groups of serums from normal male, androgen-dependent prostate cancer patients and androgen-independent prostate cancer patients as the primary antibody, screening the differentially expressed proteins with Western blot. Results: We have screened differentially expressed protein as follow:swallowing protein 1 (Beclinl),glutathione S transferase P (GSTP1-1),ZBTB7, Dihydrodiol dehydrogenase 2 (DDH), glucose-dependent insulin-releasing peptide receptor(GIPR), heat shock factor 1 (HSF1),a enolase (ENO1),Mn-superoxide dismutase (MnSOD), phosphoglycerate mutase 1 (PGAM1),peptide-based breast amino-cis-trans isomerase (PPIA), phosphatidylethanolamine binding protein (PEBP) and so on. Conclusion: The modified serum immunoblotting proteomics technique is feasible to screen differentially expressed proteins. We screened differentially expressed proteins of Claudin-4, Beclin 1,HSF1 which may play an important role in development of hormone-independent prostate cancer.
     Objective:To investigate the role of heat shock factor 1 in the development of prostate cancer. Methods:Immunohistochemistry and Western blot methods were used to detect the expression levels of HSF1 in prostate cancer tissues and the correlation between the expression levels and prostate cancer clinical pathological characters was analyzed. Results:(1)HSP27 was lower in prostate cancer tissues than benign prostatic hyperplasia tissues(1.47±0.06 vs 3.12±0.01),with significant difference (P<0.05);HSP27 in hormone refractory prostate cancer tissues was significantly higher than hormone-independent prostate cancer (2.37±0.02 vs 1.12±0.04, P<0.05).The negative correlation was found between HSF1 and HSP27 expression (r=-8.753, P<0.05).HSP27 in hormone-dependent prostate cancer cell line LNCaP was higher than in hormone-independent prostate cancer cell line PC-3 (3.02±0.06 vs 1.35±0.05),the difference was significant (P<0.05),HSF1 and HSP27 expression was negatively correlated (r=-8.695,P<0.05).(2) Expression of HSF1 was significantly correlated with PSA level, Gleason score, clinical stage in prostate cancer. Expression of HSF1 was observed positive correlation with Gleason score(r=0.66,P<0.001)and with PSA level (r=0.76, P<0.001).Conclusion:HSF1 plays an important role in the development of hormone refractory prostate cancer.
     Objective:To investigate the mechanism of HSF1 on development of prostate cancer. Methods:RNA interference plasmid of HSF1 was constructed and was transfected into hormone-independent prostate cancer cell line PC-3 cells by reverse transcription. Scratch healing, Transwell experiments, flow cytometry and other methods as in vitro experiments and subcutaneous tumor formation experiment in vivo were used to explain the regulation mechanism. Results:(1)Inhibition of the expression of HSF1 lead to decrease of the invasion ablitiy of PC-3 cell migration In vitro. The results of scratch healing showed that migration ability of PC-3 HSF1RNAi+ Was significantly impaired,24-hour scratch healing rates of PC-3 HSF1RNAi+ and PC-3 HSF1RNAi- cells were 62% vs 77%,the difference was significant (P<0.05).Different invasive ability were found in PC-3 HSF1RNAi+ and PC-3 HSF1RNAi- by Transwell assay. After 24 hours cell culture, cell count of permeate through Transwell (lowpower field) were 63±11 vs 129±13,difference was significant (P<0.05).These results suggest that in vitro inhibition of HSF1 expression in PC-3 cells can inhibit the invasion and metastasis of prostate cancer. (2) In vitro, the silence of HSF1 expression can promote the apoptosis of PC-3 cells.48h after transfection, pSUPER HSF1RNAi+ cells increased more apoptotic cells number than control group, significantly (31.3%±2.8% vs 3.9%±0.7%, P<0.05),but the apoptosis rate of pSUPER HSF1RNAi- group and control group showed no significant difference (P>0.05).(3)The silence of HSF1 expression in PC-3 cells can inhibit the ability tumor formation in vivo.The size of primary tumor of PC-3 cells in nude Mice HSF1RNAi+ and nude Mice HSF1RNAi-,were 3.01±0.22 and 3.45±0.23,significant difference (P<0.05),suggesting that the silence of HSF1 expression in vivo can inhibit the growth of PC-3 cells. (4) Thermal stimulation up-regulated the expression of HSF1-silenced in PC-3 cells and down-regulated expression of HSP27.Caspase-3 protein (1.13±0.03 vs 2.13±0.08), Fas protein expression(1.31±0.09 vs 2.69±0.03),Cyclin E protein expression were decreased(1.98±0.02 vs 1.06±0.05),with statistically significant difference (P<0.05).No statistically significant difference was found in Mdrl protein expression (2.44±0.05 vs 2.53±0.07,P>0.05).Conclusion:Over-expression of HSF1 and down-regulation of HSP27 play an important role in the invasion and metastasis of hormone resistant prostate cancer.
引文
[1]孙颖浩.我国前列腺癌的研究现状.中华泌尿外科杂志2004;2(25):77-80
    [2]Small EJ, Harris KA.Secondary hormonal manipulation of prostate cancer. Semin Urol Oncol 2002;20:24-30.
    [3]Fizazi K, Martinez LA, Sikes CR, et al.The association of p21(WAF1/CIP1) with progression to androgen-independent prostate cancer. Clin Cancer Res 2002;8 (3): 775-781.
    [4]Arnold JT, Issacs JT. Mechanisms involved in the progression of androgen-independent prostate cancer:it is not only the cancer cell's fault. Endocr Relat Cancer 2002;9:61-73.
    [5]Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 2005; 23(32):8253-61.
    [6]Balk SP. Androgen receptor as a target in androgen-independent prostate cancer. Urology 2002;60(3):132-138.
    [7]Denmeade SR, Lin XS,Isaacs JT, et al. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 1996; 28 (4):251-265.
    [8]Bubendorf L, Sauter G, Moch H. Prognostic significance of Bcl-2 in clinically localized prostate cancer. Am J Pathol 1996;148(5):1557-1565.
    [9]Agus DB, Cordon-ardo C, Fox W. Prostate cancer cell cycle regulators:response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst 1999;91(21):1869-1876.
    [10]姜涛,姜辉,宋希双.前列腺癌中P53的表达及其临床意义.中华男科学杂志2005;11(6):448-454
    [11]Chang BD, Watanabe K,Broude EV. Effects of p21Wafl/Cip 1/Sdil on cellular gene expression:imp lications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA 2000;97(8):4291-4296.
    [12]Kim IY, Ahn HJ, ZelnerDJ, et al.Loss of exp ression of transforming growth factor beta type I and type II recep tors correlates with tumor grade in human prostate cancer tissues.Clin Cancer Res 1996;2(8):1255-1261.
    [13]LingMT, Wang X, Lee DT, et al. Id-1 expression induces androgen independent p rostate cancer cell growth through activation of epidermal growth factor recep tor (EGF2R).Carcinogenesis 2004;25(4):517-525.
    [14]Christians ES,Yan LJ, Benjamin IJ. Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit CareMed 2002;30(1): S43-50.
    [15]Hoang AT, Huang J, Rudra-Ganguly N, et al.A novel association between the human heat shock transcrip tion factor 1 (HSF1)and p rostate adenocarcinoma. Am JPathol 2000;156(3):857-864.
    [16]Cen H, Zheng S,Fang YM, et al.Induction of HSF1 expression is associated with sporadic colorectal cancer. World J Gastroenterol 2004;10(21):3122-3126.
    [17]Wang J, He H, Yu L, et al.HSF1 down-regulates XAF1 through transcrip-tional regulation. J Biol Chem 2006;281(5):2451-2459.
    [18]KhalequeMA, Bharti A, Gong J, et al. Heat shock factor 1 represses estrogen-dependent transcrip tion through association with MTA1.Oncogene 2008;27(13): 1886-1893.
    [19]Li Q, Feldman RA, Radhakrishnan VM, et al.Hsf1 is required for the nuclear translocation of p53 tumor supp ressor. Neop lasia 2008;10(10):1138-1145
    [20]Jacobs AT, Marnett LJ. HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem 2009; 284(14):9176-9183.
    [21]Venkatakrishnan CD, Dunsmore K, Wong H, et al.HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol 2008;294(4):H1736-44.
    [22]Thomas M, Harrell JM, Morishima Y, Peng HM, Pratt WB, Lieberman AP. Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum Mol Genet 2006;15(11):1876-1883.
    [23]赵志刚,马庆诤,许纯孝.热休克蛋白70在人前列腺癌细胞株PC-3和LNCaP中的表达及其意义.中华实验外科杂志2001;18(2):169-170.
    [24]Hiroyoshi S,Naoto K, Takashi I. Current topics and perspectives relating to hormone therapy for prostate cancer.Int J Clin Oncol.2008,13;262(2):401-410
    [25]Storr SJ, Chakrabarti J, Barnes A, et al.Use of autoantibodies in breast cancer screening and diagnosis.Expert Rev Anticancer Ther.2006; 6 (8):1215-23.
    [26]Olson BM, McNeel DG. Antibody and T-cell responses specific for the androgen receptor in patients with prostate cancer. Prostate.2007,1;67(16):1729-1739.
    [27]Candiano G, Bruschi M, Musante L, et al.Blue silver:A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis,2004,25(9): 1327-1333
    [28]Troyer DA, Tang Y, Bedolla R, Adhvaryu SG, et al, Degraffenried LA. Characterization of PacMetUT1,a recently isolated human prostate cancer cell line. Prostate.2008;1,68(8),883-892
    [29]Hsieh AC, Ryan CJ. Novel concepts in androgen receptor blockade.Cancer J.2008; 14(1):11-14.
    [30]Shariat SF, Lamb DJ, Iyengar RG, et al.Herbal/hormonal dietary supplement possibly associated with prostate cancer progression.Clin Cancer Res.2008;5;14(2): 607-611.
    [31]Kageyama Y, Hyochi N, Kihara K, et al.The androgen receptor as putative therapeutic target in hormone-refractory prostate cancer.Recent Patents Anticancer Drug Discov.2007;2(3):203-211
    [32]M. Nesterova, N. Johnson, C. Cheadle, et al, Autoantibody biomarker opens a new gateway for cancer diagnosis. Biochimica Biophysica Acta.2006;1762 (4):398-403.
    [33]Li J, Zhang Z, Rosenzweig J, Wang YY, et al.Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem.2002;48:1296-1304.
    [34]Storr SJ, Chakrabarti J, Barnes A, et al.Use of autoantibodies in breast cancer screening and diagnosis.Expert Rev Anticancer Ther.2006;6(8):1215-1223.
    [35]Olson BM, McNeel DG. Antibody and T-cell responses specific for the androgen receptor in patients with prostate cancer.Prostate.2007;;67(16):1729-1739.
    [36]Petricoin EF 3rd, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst.2002;94:1576-1578.
    [37]Hanash S,Brichory F, Beer D.A proteomic approach to the identification of lung cancer markers.Dis Markers.2001;17(4):295-300.
    [38]Dennis MK, Bowles HJ, Mackenzie DA, et al.A multifunctional androgen receptor screening assay using the high-throughput Hypercyt((R)) flow cytometry system. Cytometry A.2008,13;62(5):457-464.
    [39]Chen SJ, Karan D, Johansson SL, et al.Prostate-derived factor as a paracrine and autocrine factor for the proliferation of androgen receptor-positive human prostate cancer cells. Prostate.2007,1;67(5):557-571.
    [40]Huang Y, Franklin J, Gifford K, Roberts BL, Nicolette CA.A high-throughput proteo-genomics method to identify antibody targets associated with malignant disease.Clin Immunol.2004,111(2):202-209.
    [41]Meyer-Siegler KL, Iczkowski KA, Leng L, et al. Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells.J Immunol.2006,15;177(12):8730-8739.
    [42]Ghosh A, Wang X, Klein E, Heston WD.Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness.Cancer Res.2005,1;65(3):727-731.
    [43]Laxman B, Morris DS, Yu J, et al.A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer.Cancer Res.2008,1;68(3):645-649.
    [44]Ines L Monika N Jurgen B.An optimized method for the isolation and identification of membrane proteins.Electrophoresis.2003;24(11):1795-808.
    [45]Furuse M, Fujita K, Hiiragi T, et al. Claudin-1 and-2:Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin.J Cell Biol,1998,141(7):1539-1550.
    [46]TokesAM, Kulka J, Paku S,et al.Claudin-1,-3 and-4 proteins and mRNA exp ression in benign and malignant breast lesions:A research study. B reast Cancer Res, 2005,7(2):R296-R305.
    [47]Hassan S,Biswas MH, Zhang C, et al.Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells.Oncogene. 2009,10;28(49):4386-4396.
    [48]Rocchi P, So A, Kojima S,et al.Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res.2004,15;64(18):6595-6602.
    [49]Curtin JF, Cotter TG.Defects in death-inducing signalling complex formation prevent JNK activation and Fas-mediated apoptosis in DU 145 prostate carcinoma cells.Br J Cancer.2003,17;89(10):1950-1957.
    [50]Hiroyoshi S,Naoto K, Takashi I. Current topics and perspectives relating to hormone therapy for prostate cancer. Int J Clin Oncol.2008,13;262(2):401-410
    [51]Miyake H, Muramaki M, Kurahashi T, et al.Enhanced expression of heat shock protein 27 following neoadjuvant hormonal therapy is associated with poor clinical outcome in patients undergoing radical prostatectomy for prostate cancer. Anticancer Res.2006,26(2B):1583-1587.
    [52]Whitesell L, Lindquist S.Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets.2009,13(4):469-478.
    [53]Dai C, Whitesell L, Rogers AB,Lindquist S.Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell.2007,21;130(6):1005-1018.
    [54]Rocchi P, Jugpal P, So A, et al.Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int.2006,98(5):1082-1089.
    [55]Pissimissis N, Papageorgiou E, Lembessis P, Armakolas A, Koutsilieris M. The glutamatergic system expression in human PC-3 and LNCaP prostate cancer cells. Anticancer Res.2009;29(1):371-377.
    [56]Cohen MB,Rokhlin OW.Mechanisms of prostate cancer cell survival after inhibition of AR expression.J Cell Biochem.2009,15;106(3):363-371.
    [57]Schnadig ID, Beer TM. Optimal timing of chemotherapy in androgen independent prostate cancer.Urol Oncol.2009;27(1):97-100.
    [58]Mikhailova M, Wang Y, Bedolla R, et al.AKT regulates androgen receptor-dependent growth and PSA expression in prostate cancer. Adv Exp Med Biol.2008; 617:397-405.
    [59]Ashkenazi A, Dixit VM. Death recep tors:signaling and modulation. Science,1998, 281:1305.
    [60]Rao J, Li N. Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Targets,2004,4:345-354.
    [61]Pawlak G,Helfman DM. Cytoskeletal changes in cell transformation and tumorigenesis. CurrOp in Genet Dev,2001,11:41-47.
    [1].Jemal A, Siegel R, Ward E, et al. Cancer statistics,2007. CA Cancer J Clin, 2007,57:43-66.
    [2].邵常霞,项永兵,刘振伟,等.上海市区泌尿系统恶性肿瘤相对生存率分析.中国肿瘤临床,2005.
    [3].Lilleby W, Nesland JM, Fossa SD, et al.The prognostic impact of cytokeratin-positive cells in bone marrow of patients with localized prostate cancer. Int J Cancer,2003,103:91-96.
    [4].Greengauz-Roberts O, Stoppler H, Nomura S,et al.Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens. Proteomics,2005,5:1746-1757.
    [5].Somiari RI, Sullivan A, Russell S,et al.High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics,2003,3:1863-73.
    [6].Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics.Proteomics,2004,4:3665-3685.
    [7].Petricoin EF, Liotta LA. Proteomic analysis at the bedside:early detection of cancer. Trends Biotechnol,2002,20:S30-34.
    [8].Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet,2002,359:572-577.
    [9].Li J, White N, Zhang Z, et al.Detection of prostate cancer using serum proteomics pattern in a histologically confirmed population. J Urol,2004,171: 1782-1787.
    [10].Xiao Z, Adam BL, Cazares LH, et al. Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res,2001,61:6029-6033.
    [11].Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem,2002,48: 1835-1843.
    [12].Paweletz CP, Liotta LA, Petricoin EF 3rd. New technologies for biomarker analysis of prostate cancer progression:Laser capture microdissection and tissue proteomics. Urology,2001,57:160-163.
    [13].Alaiya AA, Franzen B, Auer G, et al.Cancer proteomics:from identification of novel markers to creation of artifical learning models for tumor classification. Electrophoresis,2000,21:1210-1217.
    [14].Wellmann A, Wollscheid V, Lu H, et al.Analysis of microdissected prostate tissue with ProteinChip arrays--a way to new insights into carcinogenesis and to diagnostic tools. Int J Mol Med,2002,9:341-347.
    [15].Cazares LH, Adam BL, Ward MD, et al. Normal, benign, preneoplastic, and malignant prostate cells have distinct protein expression profiles resolved by surface enhanced laser desorption/ionization mass spectrometry. Clin Cancer Res,2002,8:2541-2552.
    [16].Agarwala KL, Kokame K, Kato H, et al.Phosphorylation of RTP, an ER stress-responsive cytoplasmic protein. Biochem Biophys Res Commun, 2000,272:641-647.
    [17].Park H, Adams MA, Lachat P, et al. Hypoxia induces the expression of a 43-kDa protein (PROXY-1)in normal and malignant cells.Biochem Biophys Res Commun,2000,276:321-328.
    [18].Ornstein DK, Gillespie JW, Paweletz CP, et al.Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis,2000,21:2235-2242.
    [19].Ahram M, Best CJ, Flaig MJ, et al.Proteomic analysis of human prostate cancer. Mol Carcinog,2002,33:9-15.
    [20].Meehan KL, Holland JW, Dawkins HJ. Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate, 2002,50:54-63.
    [21].Simone NL, Remaley AT, Charboneau L, et al.Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection. Am J Pathol,2000,156: 445-452.
    [22].Bubendorf L, Kononen J, Koivisto P, et al.Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays.Cancer Res,1999,59:803-6.
    [23].Xu LL, Su YP, Labiche R, et al. Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes.Int J Cancer,2001,92:322-328.
    [24].Gretzer MB, Chan DW, van Rootselaar CL, et al.Proteomic analysis of dunning prostate cancer cell lines with variable metastatic potential using SELDI-TOF. Prostate,2004,60:325-331.
    [25].Wright ME, Eng J, Sherman J, et al. Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biol,2003,5:R4.
    [26].Marouga R, David S,Hawkins E. The development of the DIGE system:2D fluorescence difference gel analysis technology. Anal Bioanal Chem,2005, 382:669-678.
    [27].Rowland JG, Robson JL, Simon WJ, et al.Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics,2007,7:47-63.
    [28].Lin JF, Xu J, Tian HY, et al. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int J Cancer,2007,121:2596-605. [1]Powers MV, Jones K, Barillari C, et al.Targeting HSP70:The second potentially druggable heat shock protein and molecular chaperone? Cell Cycle.2010,14;9(8).1253-1261 [2] Salminen A, Lehtonen M, Paimela T, Kaarniranta K.Celastrol:Molecular targets of Thunder God Vine.Biochem Biophys Res Commun.2010,9; 394 (3): 439-442.
    [3]Jacobs AT, Marnett LJ.Systems Analysis of Protein Modification and Cellular Responses Induced by Electrophile Stress.Acc Chem Res.2010,10 (4):457-462.
    [4]Sharma R, Sharma A, Chaudhary P, Role of lipid peroxidation in cellular
    responses to D, L-sulforaphane, a promising cancer chemopreventive agent. Biochemistry.2010,13;49(14):3191-202.
    [5]Kim SA, Kwon SM, Yoon JH, Ahn SGThe antitumor effect of PLK1 and HSF1 double knockdown on human oral carcinoma cells.Int J Oncol.2010;36 (4):867-72.
    [6]Rossi A, Trotta E, Brandi R, Arisi I, Coccia M, Santoro MG.AIRAP:a new human heat shock gene regulated by heat shock factor 1.J Biol Chem.2010,25 (11):539-542.
    [7]Sharma A, Meena AS,Bhat MK.Hyperthermia-associated carboplatin resistance: Differential role of p53,HSF1 and Hsp70 in hepatoma cells.Cancer Sci.2010, 28.(9):740-747.
    [8]Neef DW,Turski ML, Thiele DJ.Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease.PLoS Biol.2010,19;8(1):1021-1029
    [9]Kim EH,Lee YJ,Bae S,Lee JS,Kim J,Lee YS.Heat shock factor 1-mediated aneuploidy requires a defective function of p53.Cancer Res.2009,15;69(24): 9404-9412.
    [10]Neznanov N, Gorbachev AV, Neznanova L, Anti-malaria drug blocks proteotoxic stress response:anti-cancer implications.Cell Cycle.2009,8 (23): 3960-3970.
    [11]Wang K, Fang H, Xiao D,Converting redox signaling to apoptotic activities by stress-responsive regulators HSF1 and NRF2 in fenretinide treated cancer cells. PLoS One.2009 Oct 21;4(10):e7538.
    [12]Au Q, Zhang Y, Barber JR, Ng SC, Zhang B.Identification of inhibitors of HSF1 functional activity by high-content target-based screening.J Biomol Screen.2009;14(10):1165-75.
    [13]Andersen JL, Kornbluth S.A cut above the other caspases.Mol Cell.2009, 24;35(6):733-4.
    [14]Eymery A, Horard B, El Atifi-Borel M, A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells.Nucleic
    Acids Res.2009; 37(19):6340-54. [15]Zhao YH, Zhou M, Liu H, Ding Y, Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene.2009,22;28(42):3689-701. [16] McDowell CL, Bryan Sutton R, Obermann WM. Expression of Hsp90 chaperone [corrected] proteins in human tumor tissue.Int J Biol Macromol. 2009,1;45(3):310-4. [17] Jin X, Moskophidis D, Hu Y, Phillips A, Mivechi NF.Heat shock factor 1 deficiency via its downstream target gene alphaB-crystallin (Hspb5) impairs p53 degradation.J Cell Biochem.2009, 1;107(3):504-15.
    [18]Whitesell L, Lindquist S.Inhibiting the transcription factor HSF1 as an anticancer strategy.Expert Opin Ther Targets.2009,13(4):469-78.
    [19]Logan IR, McNeill HV, Cook S,et al.Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage. Nucleic Acids Res. 2009,37(9):2962-73.
    [20]Jacobs AT, Marnett LJ.HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins.J Biol Chem.2009,3;284(14):9176-83.
    [21]Li Q, Feldman RA, Radhakrishnan VM, Carey S, Martinez JD.Hsfl is required for the nuclear translocation of p53 tumor suppressor.Neoplasia.2008; 10(10):1138-45.
    [22]Khaleque MA, Bharti A, Gong J, Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1.Oncogene.2008,20; 27(13):1886-93.
    [23]Dai C, Whitesell L, Rogers AB, Lindquist S.Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis.Cell.2007,21;130(6):1005-18.
    [24]Zhang Y,Huang L,Zhang J,et al.Targeted disruption of hsfl leads to lack of the rmo tolerance and defines tissue specific regulation for stress2inducible Hsp molecular charperones.J Cell Biochem,2002,86(2):376-393.
    [25]Hong Pyo Kim,Xue Wang,Jinglan Zhang,et al.Heat Shock Protein70 Mediates the Cytoprotective Effect of Carbon Monoxide:Involvement of p38 MAPK and Heat Shock Factor-1.The Journal of Immunology2005,(175):2622-2629.
    [26]Sang-Gun AHN,Soo-A KIM,Jung-Hoon YOON,et al.Heat-shock cognate 70 is required for the activation of heat-shock factor 1 inmammalian cells. Biochem J,2005,(392):145-152.
    [27]XIE Y,ZHONG R,CHEN C,et al.Heat shock factor 1 contains two functional domains that mediate transcriptional repression of rhe c-fos and c-fms genes. J Biol Chem,2003,278(7):4687-4698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700