基于物料介电特性醇类物质快速分离的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究了利用微波真空加热技术对液体物料中的低浓度醇类物质进行分离,主要以乙醇和甲醇为例,研究出了分离动力学数学模型,并对二者的分离效果进行了比较,然后将该技术应用于低醇黄酒的生产,并对生产出的低醇黄酒的品质、特性进行了检测和评定,最后对小型连续性微波真空分离设备进行展望。
     甲醇和乙醇的整个微波真空分离过程,可分为两段:恒速段和降速段,恒速段的速率可依据能量平衡方程计算,而降速段不能根据能量平衡方程计算,从经验角度出发,找出影响分离常数的主要因素,赋予它们各因素指数的乘积关系,然后利用实验结果回归得到各指数和未知常数。分析不同微波真空条件下的分离曲线得出,分离速率随微波功率和真空压力的增大而增大。另外,溶液中的甲醇和乙醇含量并不能降至零,而是降到其所能达到的最低浓度后基本保持不变,这主要和它们本身的化学性质以及分子间作用力有关。
     对相同浓度的甲醇和乙醇水溶液进行实验,研究二者的温度分布和温度变化情况。实验表明,整个加热过程主要分为两个阶段,第一阶段为均匀加热段,在该阶段,溶液的温度线性增至接近该真空度下水的饱和温度,此阶段基本没有水分和醇的蒸发,且均匀加热段的时间非常短;第二阶段为温度缓慢上升段,在该阶段,水分和醇大量从溶液内部蒸发迁出,几乎没有阻力;分离后期,当醇的浓度降至最低时,溶液中水分继续吸收微波能,温度继续缓慢上升。
     甲醇和乙醇均属于低碳醇化合物,但是因为二者的介电特性不同,所以吸收微波的能力不同,导致分离速率的不同,在相同的微波真空操作条件下,单一的乙醇和甲醇水溶液中后者的分离速率要大于前者,而在甲醇和乙醇的混合溶液中,乙醇分离速率比单一的乙醇水溶液中乙醇分离速率略有增大,甲醇的分离速率与单一的甲醇水溶液的分离速率相比增加的比较明显。
     将微波真空分离技术应用于经过正常发酵生产的黄酒,对其中的低浓度乙醇进行分离,通过正交实验找出乙醇含量降至最低的条件,进而达到制取低醇黄酒的目的,并与蒸馏法制得的低醇黄酒进行比较。微波真空法制得的低醇黄酒不仅效果好、所需时间短,而且颜色基本没有变化,而蒸馏法所需时间长,颜色明显加深,而且所达到效果并不理想。应用固相微萃取,气-质联谱技术对两种方法处理前后黄酒中的挥发性风味成分及其含量的变化进行了检测和比较,结果显示,其挥发性成分含量有一些变化,但不影响黄酒固有的风味。
     应用微波真空分离技术对稀溶液中的醇类物质进行分离是可行的,但是,间歇式微波真空分离设备效率低下,所以,研制小型连续式微波真空分离设备是非常有必要的,连续性设备不仅分离速度快,可以极大地提高生产能力,而且比间歇式设备能够达到更好的分离效果。
The sepatation of low concentration alcohol of liquid material by microwave-vacuum technique and the dynamics mathematical model were studied in this paper, mainly take the ethyl alcohol and the methyl alcohol as the tested materials, and their separation effects were compared, then apply this technology to produce the low-alcohol rice wine. The qualities and functionality of the low-alcohol rice wine are tested by experiments. Finally, the small continuous microwave vacuum separation equipment was proposed.
     The microwave-vacuum sepatation process of methanol and ethanol experienced two periods. The constant rate period can be described by a theoretical model based on the energy conservation. However the model wasn’t fit for the period when the rate declined. Here with an empirical model is chosen and the effect of process variables was embodied in the expression of the phenomenological parameters. The regression method is used to estimate the best model parameters. The separation curves were tested and found that the separation rate increased with the improving of the microwave power and the vacuum pressure. Moreover, the content of methanol and ethanol in the solution cannot drop to zero, but after falling the lowest density which it can achieve and maintaining invariability, maybe this is related to their chemical property as well as the intermolecular action.
     Temperature distribution and changes were tested with the same concentration of methanol and ethanol-water solution in the experiment. The experiments showed the heating process mainly experienced two distinct periods: a warming-up period without removal of moisture and alcohol when the solution temperature increased linearly with heating time until it reached the corresponding saturation temperature of water at the vacuum pressure; a slow rise period in which most of the moisture and alcohol evaporated and flowed out of the sample efficiently with little resistance; in later period, when the alcohol concentration decrease to the lowest value, the moisture continues to absorb the microwave energy, the temperature of the solution continues to rise slowly.
     The methanol and ethanol belong to the low-carbon alcohol compound, but their dielectric characteristic are different, therefore the abilities of absorption microwave are different, resulting in the segregation rate are different. In the same vacuum pressure, in the sole ethanol and methanol-water solution the methanol's segregation rate is bigger than the former, but in mix ethanol and methanol-water solution, the segregation rate of ethanol increases slightly, but the segregation rate of methanol increases quite obviously.
     Appling the microwave vacuum separation technology to produce the low-ethanol rice wine e. g., separating the ethanol from it. It was found that the content of ethanol can be dropped to the lowest by microwave vacuum heating. Compared to the distilled one the low-ethanol rice wine not only have good color and flavor, but also retain the most nutrition resulted from shorter heating and low temperature. The volatiles of originol rice wine, rice wine after distillation and microwave vacuum heating were concentrated by solid-phase microextraction (SPME), separated and identified by gas chromatography–mass spectrometry (GC-MS). By comparison the experiment dates, it can be found that low-ethanol rice wine prepared by the current methods was a little changes of the compositions and contents of flavors.
     It’s feasible for separating alcohol of dilute solution using the microwave vacuum heating technology, but the efficiency of the intermittent microwave vacuum separation equipment is low, the development of small continuous microwave vacuum separation equipment is necessary. It’s will not only sharpen the productivity enormously, but also can achieve the better separation effect compared to the intermittent equipment.
引文
1. Collie C H, Hasted J B, Ritson D M. Proc. Phys. Soc., 1947, 60: 145
    2. Grant E H, Buchanan T J, Cook H F. J. Chem. Phys., 1957, 26: 156
    3. Hasted J B. Aqueous Dielectrics. New York: Chapman and Hall, 1973
    4. Hans-Juergen Blume C. IEEE Trans. Instrum. andMeas., 1980, 29: 281
    5. Kingston H M, Haswell S J.Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation and Applications. Washington DC: American Chemical Society, 1997: 7
    6. D. R. Baghursl, J. Chem. Soc. Chem. Commun., 1992, 9, 674
    7. Richter R C, Link D, Kingston H M. AnaL. Chem., 2001, 73 (1): 30 A
    8. ZHANG Jin-sheng, LI Li-hua, ZHANG Han-qi, et al. Spectroscopy and Spectral Analysis, 1996, 16(4): 56
    9. GONG Zhen-bin, LIANG Feng, YANG Peng-yuan, et al. Spectroscopy and Spectral Analysis, 1999, 19(3): 356
    10. LIANG Pei-hong, Li An-mo. Spectroscopy and Spectral Analysis, 2000, 20(1): 61
    11. GONG Zhen-bin, LIANG Feng, YANG Peng-yuan, JJN Qin-han, HUANG Ben-li. Spectroscopy and Spectral Analysis, 2002, 22(1): 63
    12. JIN Qin-han. Microwave Chemistry. Beijing: Science Press, 2001
    13. Jin Q H, Liang F, Zhang H Q, etal. Trac-Trends Anal. Chem., 1999, 18(7): 479
    14. Zolotov Y A. J. Anal. Chem., 2000, 55(12): 1112
    15. Fang C S, Lai P M C. Microwave heating and separation of water in oil emulsions[J ]. Journal of microwave power and electro magnetic energy, 1995, 30 (1): 46-57
    16.赵景联,任国勇.微波辐射Fenton试剂氧化催化降解水中三氯乙烯[J].微波学报,2003,19 (1): 85-90
    17.王颖,魏爱军,宋文森,等.用FDTD法进行原油介质微波加热的模拟研究[J].微波学报, 2002, 18 (1): 74-78
    18.刘晓艳,楚伟华,李清波,等.微波技术及微波破乳实验[J].大庆石油学院学报, 2005, 29 (3): 96-98
    19.王鹏.环境微波化学技术[M].北京:化工出版社, 2003.
    20.汪建国.黄酒的营养价值、保健功能及产品创新[J].江苏调味副食品,2004,21(3):10-14.
    21. Yeh-Chung Chien, Jen-Fang Liu, Ya-Jing Huang, Chun-Sen Hsu and Jane C.-J. Chao Alcohol, Volume
    37, Issue 3, November 2005, Pages 143-150
    22.李家寿.黄酒色、香、味成分来源浅析.酿酒科技,2001;(3):44-50.
    23. Jae Ho Kim, Dae Hyoung Lee, Seung Hwan Lee, Shin Yang Choi and Jong Soo Lee Journal of Bioscience and Bioengineering, Volume 97, Issue 1, 2004, Pages 24-28
    24.汪建国.我国黄酒的改革成就及发展方向[J].中国酿造, 2006(6):4-8
    25.殷维松.黄酒简单酿造法[M].北京:中国食品出版社, 1987:102-106
    26.杨国军.低度保健型黄酒的研制开发[J].酿酒,2001,28(3):81-82
    27.汪建国.银杏叶在黄酒中的应用开发[J].中国黄酒,2002,(2)
    28.谭淑娟,肖泽仪,李磊,等.膜渗透蒸发用于葡萄酒脱醇的实验研究[J].精细化工,2003,20(2):69-72
    29. Kimmerle K,Gudernatsch W. Pilot dealcoholization of beer by pervaporation [A].Proceedings of Fifth International conference on processes in the chemical Industry[C].Englewood,NJ,Bakish Materials Corporation,1991,291-307
    30. Karlsson H O E, Loureiro S, Tragardh G.Aroma compounds recovery with pervaporation-temperature effect during pervaporation of a Muscat wine[J].Journal of Food Engineering,1995,26;177-191
    31.李磊,谭淑娟,肖泽仪,等.无醇及低醇饮料的研制方法[J].酿酒科技,2005,129(3):65-68
    32.上海华光酿酒药业公司.创新“和酒”品牌[J].中国黄酒, 2003, (2)
    33. Schiffmamn RF. Microwave And Dielectric Drying[M]. In AS Mujunmdar (Eds.), Handbook of Industrial Drying. Marcel Dekker, New York, USA. 1987
    34. Huggins M. Ann. N. Y. Acad. Sci . , 1942 , 42:1-11
    35. Abrams D S, Prausnitz J M. AIChE J . , 1975, 21:116-128
    36. Fredenslund A, Jones R L, Prausnitz J M. AIChEJ . , 1975 , 21:1086-1099
    37. Favre E, Nguyen Q T, Clement R, et al . J . Membr. Sci. ,1996 , 117:227-236
    38. Jonquieres A, Perrin L, Durand A, et al. J . Membr. Sci . ,1998 , 147:59-71
    39. Lee B C, Danner R P. Fluid Phase Equilibria, 1997, 128: 97-114
    40. Yamaguchi T, Miyazaki Y, Nakao S, et al . Ind. Eng. Chem. Res. , 1998, 37:177-184
    41. Louli V, Tassios D. Fluid Phase Equilibria, 2000, 168: 165-182
    42.蓝立文(Lan L W).高分子物理(Polymer Physics).西北工业大学出版社(Northwestern Polytechnical University Press ) ,1993. 240-243
    43. Cui ZW, Xu SY, Sun DW. Effect of microwave–vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves[J]. Drying Technology, 2004, 22(3): 561-574
    44. Cui ZW, Xu SY, Sun DW. Dehydration of garlic slices by combined microwave–vacuum and air drying[J]. Drying Technology, 2003, 21(7): 1173-1185
    45. J Wang. A single-layer model for far-infrared radiation drying of onion slices[J]. Drying Technology, 2002, 20(10): 1941-1953
    46. Cui ZW, Xu SY, Sun DW, etc. Dehydration of concentrated ganoderma lucidum extraction by combined microwave-vacuum and conventional vacuum drying[J]. Drying Technology, 2006,24 (5): 595-599
    47. Tatsuro Ueki, Yuji Teramoto, Riichiro Ohba, Seinosuke Ueda and Kiyoshi Yoshizawa. Research on production techniques of special rice wine by complete fermentation. Journal of Fermentation and Bioengineering, Volume 72, Issue 1, 1991, Pages 31-35
    48.顾国贤.酿造酒工艺学(第二版)[M].北京:中国轻工业出版社,1999(2):456-508
    49.李家寿.黄酒色、香、味成分来源浅析.酿酒科技,2001;(3):44-50
    50.陈阳.甲基橙氧化褪色光度法测定酒中乙醇含量[J] .理化检验-化学分册,2003,3.(39):163
    51.吴有炜.多水平正交试验和水平趋势图.试验设计与数据处理,2002,3(1):93-96
    52.宋兴良,朱化雨.气相色谱-质谱法分析啤酒中的风味物质[J].食品研究与开发.2006,27(5): 115-116,94
    53.程劲松.顶空固相微萃取-气相色谱法测定葡萄酒的风味组分[J].中外葡萄与葡萄酒.2003, (2):19-21
    54. Sabine Krist, Heidrun Unterweger, Franz Bandion, etc. Volatile compound analysis of SPME headspace and extract samples from roasted Italian chestnuts (Castanea sativa Mill) using GC-MS[J]. European Food Research and Technology, 2004,219:470-473
    55. Martin Ngassoum, Leopold Jirovetz, Gerhard Buchbauer. SPME/GC/MS analysis of headspace aroma compounds of the Cameroonian fruit Tetrapleura tetraptera (Thonn.) Taub[J].European Food Research and Technology, 2001,213(1): 18-21
    56.赵淑富,刁立虎,韩锡波,等.色差计在柠檬酸易碳化合物溶液颜色判定中的应用[J].中国食品添加剂,2000,(4):65-67
    57.李家寿.黄酒色、香、味成分来源浅析[J].酿酒科技, 2001,(3): 48-50
    58.金钦汉.1999.微波化学.科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700