双亲性磁性纳米材料制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有关两相催化的研究受到了人们的极大关注,但涉及两相催化反应的应用领域特别广泛,且不同反应体系间存在一定的差异性,因此,有目的的研究具有重大应用价值的两相催化反应对于解决实际问题不仅具有重要意义,而且具有重要的理论价值。当今国内外研究都以深度脱硫满足严格的燃料油尾气新排放标准及燃料电池的无硫化为研究目的。目前两相催化过氧化氢氧化深度脱硫被公认为最具发展前景的方法之一,结合燃料油脱硫是一个典型的两相催化反应体系,根据两相催化过氧化氢氧化深度脱硫的基本原理,本研究提出,通过具有催化活性的磷钨酸(H_3PW_(12)O_(40)与负载于磁性纳米二氧化硅球表面的两种疏水性季铵盐发生离子交换作用,构筑两相催化微反应器。旨在有效提高过氧化氢氧化效率的同时,解决产品难于纯化、催化剂难于回收和再利用问题。更重要的是,通过本研究实施为建立具有普遍适应性的两相催化微反应器的构筑方法及其应用奠定基础。
     依据上述目的。本研究主要包括以下两个方面:
     (一)采用油包水型反相微乳液体系制备得到磁性纳米二氧化硅(MSN)。以MSN作为载体,利用嫁接法和离子交换作用制备多功能微反应器PWO/AEM/MSN和PWO/AcrH~+/MSN。
     (1)反相微乳液法制备MSN
     在甲苯、水、十六烷基三甲基溴化铵三者组成的油包水型微乳液体系中,Fe~(2+)和Fe~(3+)在NH_3·H_2O存在的条件下,在水核内共沉淀生成Fe_3O_4。TEOS在过量氨水存在下,在油水界面水解缩合生成SiO_2。利用高分辨透射电镜、能谱仪、X射线衍射仪和振动样品磁强计等测定手段对其形貌和组成进行表征。结果表明:此磁性纳米二氧化硅是以赤铁矿Fe_3O_4为核,无定型二氧化硅为壳的核/壳型多功能材料,呈球形,粒径约为40nm。此材料具有分散性好,粒度均匀,比表面积大,超顺磁性等优点,是一种优良的催化剂载体。
     (2)利用后嫁接法和离子交换作用合成PWO/AEM/MSN和PWO/AcrH~+/MSN两种微反应器
     以反相微乳液法制得的磁性纳米二氧化硅作为载体,利用后嫁接法将两种不同的疏水性季铵盐固定于二氧化硅表面,制得烷基季铵盐/磁性二氧化硅和吖啶季铵盐/磁性二氧化硅两种复合材料,再利用固载后的季铵盐基团与磷钨酸阴离子之间的离子交换作用,制得目标复合微球PWO/AEM/MSN和PWO/AcrH~+/MSN。利用接触角测定仪、红外光谱仪、热重分析仪、扫描电子显微镜及能谱仪等多种手段对两种微反应器的表面形貌和组成进行了表征。研究结果表明:两种制备方法都已经成功地将磷钨酸负载于二氧化硅表面。而且可通过改变季铵盐的固载量,调节微反应器的表面亲水,疏水性(即在油水两相的分散情况)和磷钨酸的固载量,从而制得了不同性质的微反应器。
     (二)以二苯并噻吩(DBT)的十氢萘溶液为反应模型,以30%H_2O_2为氧化剂,乙腈和水的共沸物为萃取剂,研究了该系列催化剂对二苯并噻吩(DBT)的催化氧化性能。
     PWO/AEM/MSN作微反应器的脱硫研究中,根据微反应器AEM固载量的不同,分别采用乙醇引入和超声引入两种方式将双氧水引入至微反应器表面。结果表明:无论采用何种方式,此两相微反应器均表现出良好的催化氧化脱硫效率。微反应器PWO/AcrH~+/MSN在DBT氧化的过程中也显示了一定的催化效果,实验条件有待于进一步讨论。这两种微反应器均可通过外磁场从体系中分离出来而不需要任何溶剂。
     以上研究结果表明该实验已初步达到了预设的研究目的。
Recently,the study of biphasic catalysis has attracted wide interest.Although different biphasic catalyses have been widely studied,it is still important to construct universal method for biphasic catalysis in that the systems of biphasic catalysis reactions possess certain differences and extensive application.A new protocol was proposed to construct a structural microreactor used in ultra-deep desulfurization of fuel oil by H_2O_2 oxidation,which is based on:(1)ultra-deep desulfurization of fuel oil by H_2O_2 oxidation is a typical biphasic catalysis;(2)ultra-deep desulfurization was requested internationally extensively because of environmental protection purposes;(3)using H_2O_2 as oxidiant in ultra-deep desulfurization of fuel oil was widely focused on.The purpose of constructing of the structural microreactor is to overcome some defects in biphasic catalysis.The structural microreactor can overcome the difficulties in the process of separation and recovery of the catalysts of the emulsion-based biphasic catalysis.To achieve the goal,two novel composite microspheres were synthesized by ion exchange reaction between H_3PW_(12)O_(40) and two hydrophobic quaternary ammonium groups loaded on the MSN.According to the objects above mentioned,the main contents of this research include two aspects are as follows:
     1.PWO/AEM/MSN and PWO/AcrH~+/MSN composite microspheres were prepared using the magnetic silica nanoparticles(MSN) as the carrier.
     (1)Magnetic silica nanospheres were synthesized by a water-in-oil microemulsion technique(toluene/H_2O/CTAB).Fe~(2+)and Fe~(3+) with NH_3·H_2O co-precipitate inside the emulsion droplets gave magnetite precipitates.The TEOS was added slowly to the mixture,again under a nitrogen atmosphere.Follow that the catalyzed hydrolysis/condensation of the TEOS at the water/oil interface was happened because of the high pH.
     The morphology and composition of MSN were characterized by the HR-TEM,EDX,XRD and VSM,respectively.It was demonstrated that the magnetic silica nanoparticles possess a core-shell structure with the core of magnetite Fe_3O_4 phase and a shell of silica.The global Particles obtained had diameters about 40 nm.The synthesized iron oxide nanoparticles display strong magnetization,high specific surface area,and desirable superparamagnetic properties which are essential as the prime criterion as a magnetic carrier.
     (2)PWO/AEM/MSN and PWO/AcrH~+/MSN composite microreactors were prepared by following method.Firstly,using post-synthetic grafting method to covalenfly link organosilane species with surface silanol groups,two different hydrophobic quaternary ammoniums were immobilized onto MSN surface.We obtained AEM/MSN and AcrH~+/MSN.Secondly, PWO/AEM/MSN and PWO/AcrH~+/MSN were constructed by ion-exchange between quaternary ammoniums loaded on the surface of MSN and H_3PW_(12)O_(40).The morphologies and compositions of the two microreactors were characterized by Optical Contact Angle Measuring Device,Scanning Electron Microscopy(SEM),EDX,Thermogravimetric Analysis(TGA),Fouier Transform Infrared Spectroscopy(FT-IR),respectively.The results indicate that phosphotungstic acid had been immobilized on MSN surface successfully through two prepared process.And we can tailor the surface hydrophobic/hydrophilic properties and PWO content of two composite microreactors via adjusting the density of the immobilized quaternary ammoniums.
     2.For a model reaction run,dibenzothiophene(DBT) was dissolved in decahydronaphthalene. 30%H_2O_2 as oxidant and PWO/AEM/MSN or PWO/AcrH~+/MSN two composite microspheres as catalyst,the DBT was oxidated into the corresponding sulfone.Then the mixture was extracted by acetonitrile and water.
     In the system using PWO/AEM/MSN as microreactor,according to difference between dosages of AEM mobilized on composite material(PWO/AEM/MSN),two methods were used to introduce H_2O_2 onto the surface of magnetic microreactors.The results indicate that the composite material used as microreactor has excellent performences in ultra-deep desulfurization,whatever method was used.In the system using PWO/AcrH~+/MSN as microreactor,the results indicate that the microreactor is efficient on DBT oxidation.Meanwhile,the microreactors were recycled under a magnetic field but no organic solvent involved.
     From above results,the microreactors constructed meet the purpose proposed.
引文
[1] S. Neveu, A. Bee, M. Robineau, D. Talbot. Size-Selective Chemical Synthesis of Tartrate Stabilized Cobalt Ferrite Ionic Magnetic Fluid[J]. J. Colloid Interface Sci.,2002, 255(2):293-298.
    
    [2] F. Grasset, N. Labhsetwar, D. Li, D. C. Park, N. Saito, H. Haneda, O. Cador, T.Roisnel, S. Mornet, E. Duguet, J. Portier, J. Etourneau. Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments:Powder, Colloidal Solution, and Zinc Ferrite-Silica Core-Shell Nanoparticles[J].Langmuir, 2002,18:8 209-8 216.
    [3] S. Sun, H. Zeng. Size-Controlled Synthesis of Magnetite Nanoparticles[J]. J. Am.Chem. Soc., 2002,124:8 204-8 205.
    [4] S. J. Park, S. Kim, S. Lee, Z. Khim, K. Char, T. Hyeon. Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres[J]. J. Am. Chem. Soc., 2000,122:8 581-8 582.
    [5] V. F. Puntes, K. M. Krishan, A. P. Alivisatos. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt[J]. Science, 2001, 291:2 115-2 117.
    [6] Q. Chen, A. J. Rondinone, B. C. Chakoumakos, Z. J. Zhang. Synthesis of Superparamagnetic MgFe_2O_4 Nanoparticles by Coprecipitation[J]. J. Magn. Magn.Mater., 1999,194:1-7.
    [7] J. Park, K. An, Y. H. Wang, J. G Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M.Hwang, T. Hyeon. Ultra-large-scale Syntheses of Monodisperse Nanocrystals[J].Nat. Mater., 2004,3:891-895.
    [8] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices[J]. Science,2000,287:1 989-1 992.
    [9] E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H.Weller. Colloidal Synthesis and Self-Assembly of CoPt_3 Nanocrystals[J]. J. Am.Chem. Soc, 2002,124:11 480-11 485.
    [10] T. Hyeon. Chemical Synthesis of Magnetic Nanoparticles[J]. Chem. Commun.,2003, 8:927-934.
    
    [11] A. H. Lu, W. Schmidt, N. Matoussevitch, H. BPnnermann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth. Nanoengineering of a Magnetically Separable Hydrogenation Catalyst[J]. Angew. Chem., 2004,116(33):4 403-4 406.
    [12] S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett. Magnetically Separable, Carbon-Supported Nanocatalysts for the Manufacture of Fine Chemicals[J]. Angew. Chem., 2004,116(42):5 763-5 767.
    [13] L. William, K. IV, J. Drwiega, D. W. Mazyck, S. W. Lee. Magnetically Agitated Photocatalytic Reactor for Photocatalytic Oxidation of Aqueous Phase Organic Pollutants[J]. Environ. Sci. Technol., 2005,39:8 052-8 056.
    [14] A. K. Gupta, M. Gupta. Synthesis and Surface Engineering of Iiron Oxide Nanoparticles for Biomedical Applications[J]. Biomaterials, 2005,26(18):3 995-4021.
    [15] D. W. Elliott, W. X. Zhang. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment[J]. Environ. Sci. Technol., 2001,35:4 922-4 926.
    [16] M. Takafuji, S. Ide, H. Ihara, Z. Xu. Preparation of Poly(1-vinylimidazole)-Grafted Magnetic Nanoparticles and Their Application for Removal of Metal Ions[J]. Chem. Mater., 2004,16:1 977-1 983.
    [17] D. Ma, J. Guan, F. Normandin, S. Denommee, G Enright, T. Veres, B. Simard.Multifunctional Nano-Architecture for Biomedical Applications[J]. Chem. Mater.,2006,18:1 920-1 927.
    [18] M. D. Butterworth, S. A. Bell, S. P. Armes, A. W. Simpson. Synthesis and Characterization of Polypyrrole-Magnetite-Silica Particles[J]. J. Colloid Interface Sci., 1996,183: 91-99.
    [19] X. Q. Liu, J. M. Xing, Y. P. Guan, G B. Shan, H. Z. Liu. Synthesis of Amino-silane Modified Superparamagnetic Silica Supports and Their Use for Protein Immobilization[J]. Colloids and Surf., A, 2004, 238:127-131.
    [20] I. J. Brucea, J. Taylorb, M. Toddb, M. J. Daviesb, E. Borionib, C. Sangregorioa, T.Senb. Synthesis, Characterisation and Application of Silica-magnetite Nanocomposites[J]. J. Magn. Magn. Mater., 2004, 284:145-160.
    [21] W. Stober, A. Fink, E. Bonn. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. J. Colloid Interface Sci., 1968,26:62-69.
    [22] Z. Y. Lu, J. Dai, X. N. Song, G Wang, W.S. Yang. Facile Synthesis of Fe_3O_4/SiO_2 Composite Nanoparticles from Primary Silica Particles[J]. Colloids and Surf., A,2008,317:450-456.
    [23] Y. Lu, Y. D. Yin, Z. Y. Li, Y. N. Xia. Synthesis and Self-Assembly of Au@SiO_2 Core-Shell Colloids[J].Nano Lett.,2002,2(7):785-788.
    [24]Y.Lu,Y.D.Yin,B.T.Mayers,Y.N.Xia.Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach[J].Nano Lett.,2002,2(3):183-186.
    [25]A.L.Rogach,D.Nagesha,J.W.Ostrander,M.Giersig,N.A.Kotov."Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals[J].Chem.Mater.,2000,12:2676-2685.
    [26]Y.D.Yin,Y.Lu,Y.G.Sun,Y.N.Xia.Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica[J].Nano Lett.,2002,2(4):427-430.
    [27]S.H.Im,T.Herricks,Y.T.Lee,Y.N.Xia.Synthesis and Characterization of Monodisperse Silica Colloids Loaded with Superparamagnetic Iron Oxide Nanoparticles[J].Chem.Phys.Lett.,2005,401:19-23.
    [28]M.Ohmoril,E.Matijevic.Preparation and Properties of Uniform Coated Colloidal Particles.Ⅶ.Silica on Hematite[J].J.Colloid Interface Sci.,1992,150(2):594-598.
    [29]S.Santra,R.Tapec,N.Theodoropoulou,J.Dobson,A.Hebard,W.H.Tan.Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion:The Effect of Nonionic Surfactants[J].Langmuir,2001,17:2900-2906.
    [30]Q.Y.Yan,A.Purkayastha,T.Kim,R.Kr(o|¨)ger,A.Bose,G.Ramanath.Synthesis and Assembly of Monodisperse High-Coercivity Silica-Capped FePt Nanomagnets of Tunable Size,Composition,and Thermal Stability from Microemulsions[J].Adv.Mater.,2006,18:2 569-2 573.
    [31]D.K.Yi,S.S.Lee,G.C.Papaefthymiou,J.Y.Ying.Nanoparticle Architectures Templated by SiO_2/Fe_2O_3 Nanocomposites[J].Chem.Mater.,2006,18:614-619.
    [32]R.V.Christy,Z.J.Zhang.Synthesis and Magnetic Characterization of Mn and Co Spinel Ferrite-Silica Nanoparticles with Tunable Magnetic Core[J].Nano Lett.,2003,3(12):1739-1743.
    [33]Y.W.Zhao,X.K.Zhang,J.Q.Xiao.Submicrometer Laminated Fe/SiO_2 Soft Magnetic Composites-An Effective Route to Materials for High-Frequency Applications[J].Adv.Mater.,2005,17(7):915-918.
    [34]P.Tartaj,T.Gonzalez-Carreno,C.J.Serna.Single-Step Nanoenglneering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties[J].Adv. Mater., 2001,13(21):1 620-1 624.
    [35] S. L. Burkett, S. D. Sims, S. Mann. Synthesis of Hybrid Inorganic-Organic Mesoporous Silica by co-condensation of Siloxane and Organosiloxane Precursors[J]. Chem. Commun., 1996,11:1 367-1 368.
    [36] M. C. Burleigh, M. A. Markowitz, M. S. Spector, B. P. Gaber. Direct Synthesis of Periodic Mesoporous Organosilicas: Functional Incorporation by co-condensation with Organosilanes[J]. J. Phys. Chem. B., 2001,105:9 935-9 942.
    [37] P. G Wu, Z. H. Xu. Silanation of Nanostructured Mesoporous Magnetic Particles for Heavy Metal Recovery[J]. Ind. Eng. Chem. Res., 2005,44:816-824.
    [38] L. Li, J. L. Shi, J. N. Yan, H. G Chen, X. G Zhao. SBA-15 Supported Quaternary Ammonium Salt: an Efficient, Heterogeneous Phase-transfer Catalyst[J]. J. Mol.Catal. A: Chem., 2004,209:227-230.
    [39] T. Saito, T. Takatsuka, T. Kato. Adherence of Oral Streptococci to an Immobilized Antimicrobial Agent[J]. Archs Oral Bid., 1997,42(8):539~545.
    [40] H. H. Yang, S. Q. Zhang, X. L. Chen, Z. X. Zhuang, J. G Xu, X. R. Wang.Magnetite-Containing Spherical Silica Nanoparticles for Biocatalysis and Bioseparations[J]. Anal. Chem., 2004,76:1 316-1 321.
    [41] R. Abu-Reziq, H. Alper, D. Wang, M. L. Post. Metal Supported on Dendronized Magnetic Nanoparticles:Highly Selective Hydroformylation Catalysts[J]. J. Am.Chem. Soc. 2006,128:5 279-5 282.
    [42} X. Q. Liu, Z. Y. Ma, J. M. Xing, H. Z. Liu. Preparation and Characterization of Amino-silane Modified Superparamagnetic Silica Nanospheres[J]. J. Magn. Magn.Mater., 2004,270:1-6.
    [43] J. I. Taylor, C. D. Hurst, M. J. Davies, N. Sachsinger, I. J. Bruce. Application of Magnetite and Silica-magnetite Composites to the Isolation of Genomic DNA[J].Journal of Chromatogr. A, 2000, 890:159-166.
    [44] A. K. Gupta, M. Gupta. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications[J]. Biomaterials, 2005, 26:3 995-4021.
    [45] C. C Berry, A. S. G Curtis. Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine[J]. J. Phys. D: Appl. Phys., 2003,36:R198-R206.
    [46] S. Mornet, S. Vasseur, F. Grasset, E. Duguet. Magnetic Nanoparticle Design for Medical Diagnosis and Therapy[J]. J. Mater. Chem., 2004,14(14):2 161-2 175.
    [47] A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, R. Felix. Endocytosis of Dextran and Silan-coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in Vitro[J].J.Magn.Magn.Mater.,1999,194:185-196.
    [48]A.Jordan,R.Scholz,K.Maier-Hauff,M.Johannsen,P.Wust,J.Nadobny,H.Schirra,H.Schmidt,S.Deger,S.Loening,W.Lanksch,R.Felix.Presentation of a New Magnetic W.Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Fyperthermia[J].J.Magn.Magn.Mater.,2001,225:118-126.
    [49]W.R.Zhao,J.L.Gu,L.X.Zhang,H.R.Chen,J.L.Shi.Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure[J].J.Am.Chem.Soc.,2005,127(25):8916-8917.
    [50]D.K.Yi,S.S.Lee,J.Y.Ying.Synthesis and Applications of Magnetic Nanocomposite Catalysts[J].Chem.Mater.,2006,18(10):2459-2461.
    [51]M.J.Jacinto,P.K.Kiyohara,S.H.Masunaga,R.F.Jardim,L.M.Rossi.Recoverable Rhodium Nanoparticles Synthesis,Characterization and Catalytic Performance in Hydrogenation Reactions[J].Appl.Catal.,A,2008,338:52-57.
    [52]S.C.Tsang,C.H.Yu,X.Gao,K.Tam.Silica-Encapsulated Nanomagnetic Particle as a New Recoverable Biocatalyst Carrier[J].J.Phys.Chem.B,2006,110:16914-16922.
    [53]S.Yasuhiro,H.Takayuki.Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquid-Liquid Extraction[J].Energy Fuels,2004,18(1):37-40.
    [54]S.Murata,K.Murata,K.Kidena,M.Nomura.A Novel Oxidative Desulfurization System for Diesel Fuels with Molecular Oxygen in the Presence of Cobalt Catalysts and Aldehydes[J].Energy Fuels,2004,18:116-121.
    [55]余国贤,陆善祥,陈辉,朱中南.FCC柴油催化氧化深度脱硫的研究[J].石油炼制与化工,2004,35(4):63-66.
    [56]李忠铭,余国贤,陆善祥.亚铁离子及甲酸催化过氧化氢氧化柴油深度脱硫研究[J].石油与天然气化工,2006,35(4):285-288.
    [57]戴咏川,亓玉台,赵德智.柴油超声波-Fenton试剂氧化脱硫反应研究[J].石油炼制与化工,2007,38(1):35-38.
    [58]C.Li,Z.X.Jiang,J.B.Gao.Ultra-Deep Desulfurization of Diesel:Oxidation with a Recoverable Catalyst Assembled in Emulsion[J].Chem.Eur.J.,2004,10:2277-2 280.
    [59]C.Li,J.B.Gao,Z.X.Jiang.Selective Oxidations on Recoverable Catalysts Assembled in Emulsions[J].Top.Catal.,2005,35(1-2):169-175.
    [60]H.Y.Lu,J.B.Gao,Z.X.Jiang.Ultra-Deep Desulfurization of Diesel by Selective Oxidation with[C_(18)H_(37)N(CH_3))3]_4[H_2NaPW_(10)O_(36)]Catalyst Assembled in Emulsion Droplets[J].J.Catal.,2006,239(2):369-375.
    [61]J.B.Gao,S.G.Wang,Z.X.Jiang.Deep Desulfurization from Fuel Oil via Selective Oxidation Using an Amphiphilic Peroxotungsten Catalyst Assembled in Emulsion Droplets[J].J.Mol.Catal.A:Chem.,2006,258(1-2):261-266.
    [62]H.Y.Lu,J.B.Gao,Z.X.Jiang.Oxidative Desulfurization of Dibenzothiophene with Molecular Oxygen Using Emulsion Catalysis[J].Chem.Commun.,2007,(2):150-152.
    [63]D.Huang,Y.J.Wang,L.M.Yang.Chemical Oxidation of Dibenzothiophene with a Directly Combined Amphiphilic Catalyst for Deep Desulfurization[J].Ind.Eng.Chem.Res.,2006,45(6):1 880-1 885.
    [64]L.C.Caero,E.Hernandex,P.Francisco.Oxidative Desulfurization of Synthetic Diesel Using Supported Catalysts Part Ⅰ.Study of the Operation Conditions with a Vanadium Oxide Based Catalyst[J].Catal.Today,2005,(107-108):564-569.
    [65]Y.M.A.Yamada,M.Ichinohe,H.Takahashi.Development of a New Triphase Catalyst and Its Application to the Epoxidation of Allylic Alcohols[J].Org.Lett.,2001,3(12):1 837-1 840.
    [66]Y.M.A.Yamada,H.Tabata,M.Ichinohe.Oxidation of Allylic Alcohols,Amines,and Sulfides Mediated by Assembled Triphase Catalyst of Phosphotungstate and Non-Cross-Linked Amphiphilic Copolymer[J].Tetrahedron,2004,60(18):4087-4 096.
    [67]H.Hamamoto,Y.Suzuki,Y.M.A.Yamada.A Recyclable Catalytic System Based on a Temperature-Responsive Catalyst[J].Angew.Chem.Int.Ed.,2005,44:4536-4 538.
    [68]H.Hamamoto,M.Kudoh,H.Takahashi.Novel Use of Cross-Linked Poly(N-isopropylacrylamide) Gel for Organic Reactions in Aqueous Media[J].Org.Lett.,2006,8(18):4 015-4 018.
    [69]V.Hulea,F.Fajula,J.Bousquet.Mild Oxidation with H_2O_2 over Ti-Containing Molecular Sieves-A Very Efficient Method for Removing Aromatic Sulfur Compounds from Fuels[J].J.Catal.,2001,198(2):179-186.
    [70]K.Yamaguchi,C.Yoshida,S.Uchida,N.Mizuno.Peroxotungstate Immobilized on Ionic Liquid-Modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide[J].J.Am.Chem.Soc.,2005,127(2):530-531.
    [71]K.Jun,N.Yoshinao,U.Sayaka.[γ-1,2-H_2SiV_2W_(10)O_(40)]Immobilized on Surface-Modified SiO_2 as a Heterogeneous Catalyst for Liquid Phase Oxidation with H_2O_2[J].Chem.Eur.J.,2006,12(15):4 176-4 184.
    [72]B.Karimi,M.Ghoreishi-Nezhad,J.H.Clark.Selective Oxidation of Sulfides to Sulfoxides Using 30%Hydrogen Peroxide Catalyzed with a Recoverable Silica Based Tungstate Interphase Catalyst[J].Org.Lett.,2005,7(4):625-628.
    [73]Y.Shiraishi,T.Harai,I.Komasawa.A Deep Desulfurization Process for Light Oil by Photochemical Reaction in an Organic Two-Phase Liquid-Liquid Extraction System[J].Ind.Eng.Chem.Res.,1998,37:203-211.
    [74]D.H.Wang,E.W.Qian,H.Amano.Oxidative Desulfurization of Fuel Oil Part Ⅰ.Oxidation of Dibenzothiophenes Using tert-butyl Hydroperoxide[J].Appl.Catal.,A,2003,253:91-99.
    [75]A.Ishihara,D.H.Wang,F.Dumeignil.Oxidative Desulfurixation and Denitrogenation of a Light Gas Oil Using an Oxidation/Adsorption Continuous Flow Process[J].Appl.Catal.,A,2005,279:279-287.
    [76]李建源,周新锐,赵德丰.过氧化环己酮对二苯并噻吩的氧化脱硫研究[J].燃料化学学报,2006,34(2):49-51.
    [77]大庆石油学院化学化工学院.用高铁酸钾氧化生产超低硫油品的方法:中国,200510069861.6[P].2006-01-25.
    [78]S.Z.Liu,B.H.Wang,B.C.Cui,L.L Sun.Deep Desulfurization of Diesel Oil Oxidized by Fe(Ⅵ) Systems[J].Fuel,2008,87(3):422-428.
    [79]杨金荣,侯影飞,孔瑛.柴油臭氧氧化脱硫研究[J].石油大学学报(自然科学版),2002,26(4):84-89.
    [80]唐晓东,刘亮.一种柴油催化氧化脱硫的方法:中国,200410040923.6[P].2005-06-08.
    [81]Y.Shiraishi,Y.Taki,T.Harai,I.Komasawa.Visible Light-induced Desulfurization Technique for Light Oil[J].Chem.Commun.,1998,2 601-2 602.
    [82]Y.Shiraishi,Y.Taki,T.Harai,I.Komasawa.Visible Light-Induced Deep Desulfurization Process for Light Oils by Photochemical Electron-Transfer Oxidation in an Organic Two-Phase Extraction System[J].Ind.Eng.Chem.Res.,1999,38:3 310-3 318.
    [83]Y.Shiraishi,Y.Taki,T.Harai.Visible Light-Induced Desulfurization Process for Catalytic-Cracked Gasoline Using an Organic Two-Phase Extraction System[J].Ind.Eng.Chem.Res.,1999,38:4 538-4 544.
    [84]Y.Shiraishi,T.Harai,I.Komasawa.Identification of Desulfurization Products in The Photochemical Desulfurization Process for Benzothiophenes and Dibenzothiophenes from Light Oil Using an Organic Two-Phase Extraction System[J].Ind.Eng.Chem.Res.,1999,38:3 300-3 309.
    [85]A.A.Abdel-Wahab,A.E.M.Gaber.TiO_2-Photocatalytic Oxidation of Selected Heterocyclic Sulfur Compounds[J].J.Photochem.and Photobiol.,A,1998,114:213-218.
    [86]E.Jochen,W.Peter,J.Andreas.Deep Desulfurization of Oil Refinery Streams by Extraction with Ionic Liquids[J].Green Chem.,2004,(6):316-322.
    [87]C.P.Huang,B.H.Chen,J.Zhang,Z.C Liu,Y.X.Li.Desulfurization of Gasoline by Extraction with New Ionic Liquids[J].Energy Fuels,2004,18:1 862-1 864.
    [88]B.Castro,M.J.Whitcombeb,E.N.Vulfson.Molecular Imprinting for the Selective Adsorption of Organosulphur Compounds Present in Fuels[J].Anal.Chim.Acta.,2001,435:83-90.
    [89]A.Takashi,R.T.Yang.New Sorbents for Desulfurization by Complexation:Thiophene/Benzene Adsorption[J].Ind.Eng.Chem.Res.,2002,41(10):2 487-2496.
    [90]A.S.H.Salem.Naphtha Desulfurization by Adsorption[J].Ind.Eng.Chem.Res.,1994,33(2):336-340.
    [91]C.O.Ania,J.B.Parra,A.Arenillas.On the Mechanism of Reactive Adsorption of Dibenzothiophene on Organic Waste Derived Carbons[J].A.Surf.Sci.,2007,253(13):5 899-5 903.
    [92]C.O.Ania,T.J.Bandosz.Sodium on the Surface of Activated Carbons as a Factor Enhancing Reactive Adsorption of Dibenzothiophene[J].Energy Fuels,2006,20(3):1 076-1 080.
    [93]K.Tawara,J.Imai,H.Iwanami.Ultra-Deep Hydrodesulfurization of Kerosene for Fuel Cell System.Part 1.Evaluations of Conventional Catalysts[J].Sekiyu Gakkai Shi.,2000,43(1):35-41.
    [94]N.Chen,R.T.Yang.Ab Initio Molecular Orbital Study of Adsorption of Oxygen,Nitrogen,and Ethylene on Silver-Zeolite and Silver Halides[J].Ind.Eng.Chem.Res.,1996,35(11):4 020-4 027.
    [95]H.Y.Huang,J.Padin,R.T.Yang.Anion and Cation Effects on Olefin Adsorption on Silver and Copper Halides:Ab Initio Effective Core Potential Study of Complexation[J].J.Phys.Chem.B.,1999,103:3 206-3 212.
    [96]R.T.Yang,A.J.Hernandez-Maldonado,F.H.Yang.Desulfurization of Transportation Fuels with Zeolites under Ambient Conditions[J].Science,2003,301:79-81.
    [97]A.J.Hernandez-Maldonado,F.H.Yang,G.Qi.Desulfurization of Transportation Fuels by p-complexation Sorbents:Cu(Ⅰ)-,Ni(Ⅱ)-,and Zn(Ⅱ)-zeolites[J].Appl.Catal.,B,2005,56(1-2):111-126.
    [98]S.K.Rhee,J.H.Chang,Y.K.Chang.Desulfurization of Dibenzothiophene and Diesel Oils by a Newly Isolated Gordona Strain CYKS1[J].Appl.Environ.Microbiol.,1998,64(6):2 327-2 331.
    [99]B.R.Folsom,D.R.Schieche,P.M.Digrazia.Microbial Desulfurization of Alkylated Dibenzothiophenes from a Hydrodesulfurized Middle Distillate by Rhodococcus Erythropolis I-19[J].Appl.Environ.Microbiol.,1999,65(11):4967-4 972.
    [100]M.Kobayashi,T.Onaka,Y.Ishi.Desulfuriztion of Alkylated Forms of Both Dibenzothiophenea and Benzothiophene by a Single Bacterial Strain.FEMS[J].Microbiol.Lett.,2000,187(2):123-126.
    [101]张竹梅.生产低硫汽油的新技术[J].石油化工环境保护,2004,27(1):53-56.
    [102]X.J.Zhao,G.Krishnaiah,K.R.Novak.What will Gasoline Sulfur Compliance Cost You S-Brane Membrane Technology Economic Analysis[C].NPRA AM205206,San Antonio,TX,200.
    [103]H.Mei,B.W.Mei,T.F.Yen.A New Method for Obtaining Ultra-Low Sulfur Diesel Fuel via Ultrasound Assisted Oxidative Desulfurization[J].Fuel,2003,82:405-414.
    [104]刘万楹,雷正兰,吕伟.有机硫化物的等离子体液相氧化脱硫[J].应用化学,1997,5:83-85.
    [105]W.Y.Liu.Kinetics and Mechanism of Plasma Oxidative Desulfurization in Liquid Phase[J].Energy Fuels,2001,15:38-43.
    [106]J.Manassen.Catalysis:Progress in Research[M].London:Plenum Press.,1973,177:183.
    [107]吴已丑,袁刚,周启昭.用水溶性铑膦络合催化剂制备高碳醛.石油化工,1991,22(2):79-85. 代脲反应中的应用[J].催化学报,2004,25(8):607-610.
    [109]毕颖丽,阚秋斌,杜秉忱.MCM-41负载型过氧磷钨杂多酸季铵盐催化剂的制备和结构性能的考察[J].燃料化学学报,2001,29:46-48.
    [110]R.F.Chen,X.Z.Liu,Z.L Jin.Thermoregnlated Phase-transfer Ligands and Catalysis.Part Ⅵ.Two-phase Hydroformylation of Styrene Catalyzed by the Thermoregulated Phase-transfer Catalyst OPGPP/Rh[J].J.Organomet.Chem.,1998,571(2):201-204.
    [111]P.J.Robinson,P.Dunnill,M.D.Lilly.The Properties of Magnetic Supports in Relation to Immobilized Enzyme Reactors[J].Biotechnol.Bioeng.,1973,15:603-606.
    [112]X,Gao,K.M.K.Yu,K.Y.Tam,S.C.Tsang.Colloidal Stable Silica Encapsulated Nano-magnetic Composite as a Novel Bio-catalyst Carrier[J].Chem.Commun.,2003,2 998-2 999.
    [113]B.Gottenbosa,H.C.van der Meia,F.Klatterb.In vitro and in vivo Antimicrobial Activity of Covalently Coupled Quaternary Ammonium Silane Coatings on Silicone Rubber[J].Biomaterials,2002,23:1 417-1 423.
    [114]M.Okubo,H.Minami,T.komura.Prepatation of Micrometer-sized Monodiperse,Magnetic Polymer Particles[J].J.App.Poly.Sci.,2003,88(2):428-433.
    [115]R.Si,Y.W.Zhang,H.P.Zhou,L.D.Sun,C.H.Yan.Controlled-Synthesis,Self-Assembly Behavior,and Surface-Dependent Optical Properties of High-Quality Rare-Earth Oxide Nanocrystals[J].Chem.Mater.,2007,19(18):18-27.
    [116]刘海弟,赵璇,陈运法.纳米磁性Fe_3O_4/SiO_2复合材料的制备和表征[J].化学研究,2007,18(2):21-23.
    [117]C.C.Guo,T.G.Ren,J.X.Song.Synthesis,Characterization and Fluorescence Properties Study of meso-tetrakis(1-arylpyrazole-4-yl)Porphyrins[J].J.Porphrins Phthalocyanines,2005,9(6):430-436.
    [118]G.De,D.Kundu,B.Karmakar,D.Gangnli.FTIR Studies of Gel to Glass Conversion in TEOS-Fumed Silica-Derived Gels[J].,J.Non-Cryst.Solids,1993,155:253-258.
    [119]M.Tomozawa,K.M.Davis.An Infrared Spectroscopic Study of Water-Related Species in Silica Glasses[J].J.Non-Cryst.Solids,1996,201:177-198.
    [120]W.P.Tang.Preparation of Anatase-Type TiO_2 Nanocrystal/acetylene Black Composites by a Dry Process,and Their Electrochemical Lithium Insertion[J].J. Mater.Chem.,2004,14(23):3 457-3 461.
    [121]M.A.Osman,G.Seyfang,U.W.Suter.Two-Dimensional Melting of Alkane Monolayers Ionically Bonded to Mica[J].J.Phys.Chem.B,2000,104:4 433-4439.
    [122]S.M.Abo El Ola,R.Kotek,W.C.White.Unusual Polymerization of 3-(trimethoxysilyl)-propyldimethyloctadecylammonium Chloride on PET Substrates[J].Polymer,2004,45(10):3 215-3 225.
    [123]邹涛,郭灿雄,段雪,张密林.强磁性Fe_3O_4纳米粒子的制备及其性能表征[J].精细化工,2002,19(12):707-710.
    [124]赵新强,韩岩涛,孙潇磊,王延吉.几种方法制备的H_3PW_(12)O_(40)/SiO_2催化剂的结构和催化性能[J].催化学报,2007,28(1):91-96.
    [125]Q.Deng,W.H.Zhou,X.M.Li,Z.S.Peng,S.L.Jiang.Microwave Radiation Solid-phase Synthesis of Phosphotungstate Nanoparticle Catalysts and Photocatalytic Degradation of Formaldehyde[J].J.Mol.Catal.,A,2007,262:149-155.
    [126]温朗友,沈师孔,闵恩泽.二氧化硅负载磷钨杂多酸催化剂的表征及催化性质[J].催化学报,2000,21(6):524-528.
    [127]A.Treiber,P.M.Dansette,H.E.Amri,J.P.Girault,D.Ginderow,J.P.Mornon,D.Mansuy.Chemical and Biological Oxidation of Thiophene:Preparation and Complete Characterization of Thiophene S-Oxide Dimers and Evidence for Thiophene S-Oxide as an Intermediate in Thiophene Metabolism in ViVo and in Vitro[J].J.Am.Chem.Soc.,1997,119:1 565-1 571.
    [128]S.Otsuki,T.Nonaka,N.Takashima,W.H.Qian,A.Ishihara,T.Imai,T.Kabe.Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction[J].Energy Fuels,2000,14:1232-1239.
    [129]M.Te,C.Fairbridge,Z.Ring.Oxidation Reactivities of Dibenzothiophenes in Polyoxometalate/H_2O_2 and Formic Acid/H_2O_2 Systems[J].Appl.Catal.,A,2001,219:267-280.
    [130]F.M.Collins,A.R.Lucy,C.Sharp.Oxidative Desulphurisation of Oils via Hydrogen Peroxide and Heteropolyanion Catalysis[J].J.mol.Catal.A:chemistry,1997,117:397--403.
    [131]朱洪法.催化剂载体[M].北京:化学工业出版社,1980.
    [132]Dupont,F.Lefebvre.Esterification of Propanoic Acid by Butanol and 2-ethylhexanol Catalyzed by Heteropolyacids Pure or Supported on Carbon[J].J. Mole.Catal.,A.,1996,114:229-307.
    [133]周原,刘新玲.硅胶固载磷钼杂多酸催化合成醋酸异戊酯[J].精细石油化工,2002,5:14-16.
    [134]V.Kozhevnikov,A.Sinnema,R.J.J.Jansen,K.Pamin,H.Bekkum.New Acid Catalyst Comprising Heteropolyacid on a Mesoporous Molecular Sieve MCM-41[J].Catal.lett.,1994,30(1-4):241-252.
    [135]S.L.Regen.Triphase Catalysis[J].Angew.Chem.Int.Ed.,1979,18:421-429.
    [136]J.M.Campos-Martin,M.C.Capel-Sanchez,J.L.G.Fierro.Highly Efficient Deep Desulfurization of Fuels by Chemical Oxidation[J].Green chem.,2004,6:557-562.
    [137]樊能廷.有机合成事典[M].北京:北京理工大学出版社,1992:857.
    [138]周运友,严正权,汪乐余,王伦,佘世科,胡蕾.新型荧光试剂N-9-吖啶基氨基乙酸的合成及其光谱性质[J].应用化学,2003,20(12):1 176-1 179.
    [139]J.Joseph,E.Kuruvilla,A.T.Achuthan,D.Ramaiah,G.B.Schuster.Tuning of Intercalation and Electron-Transfer Processes between DNA and Acridinium Derivatives through Steric Effects[J].Bioconjugate Chem.,2004,15:1 230-1 235.
    [140]朱燕舞,赵广超,周运友.潜在的抗肿瘤试剂二吖啶胺衍生物的合成新方法[J].合成化学,2002,10:65-67.
    [141]严正权,周运友,聂丽.新型荧光试剂N-9-吖啶-α-氨基酸的合成及表征[J].应用化学,2005,22(11):1 259-1 261.
    [142]C.E.Robert.Heterccyclic Compounds[M].Michigan:University of Michigan Press,1952,498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700