自组装FeOOH/TiO_2纳米膜光催化降解有机物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,新型高效环保材料成为当前治理环境问题的研究热点之一。在多相催化领域,纳米TiO2是典型的光催化剂,广泛应用于有机物降解、杀菌、空气、水的净化等方面。FeOOH具备良好的吸附性能,其光响应的波长在自然光区,能够较好的利用自然光对环境中的有机物进行光催化降解。目前,TiO2的复合材料成为研究热点,纳米Ti02和相对窄的带隙能半导体的复合能减小其禁带宽度,扩展光响应能至可见光范围内,提高光能利用率和复合材料的光催化性能。以石英玻璃片为基体制备纳米FeOOH/TiO2复合材料,一方面能实现薄膜材料的固定,提高光催化剂的利用率;另一方面,两种材料的复合能提高对自然光的利用率。本实验研究了FeOOH/TiO2纳米薄膜的制备、表征及其光催化活性,为实现薄膜制备及应用从小型实验室研究向工业化应用迈进提供了理论依据和指导作用。
     本文介绍了采用分子自组装方法,以SH为功能团、石英玻璃片为基底,低温液相反应体系中制备纳米FeOOH/TiO2复合薄膜。并以甲基橙为目标物,探讨了不同实验因素对FeOOH/TiO2光催化活性的影响,最后对FeOOH/TiO2薄膜的失活现象与原因以及薄膜的再生方法进行了探讨。论文的主要研究进展如下:
     (1)通过分子自组装方法制得FeOOH/TiO2薄膜,利用高分辨透射电子显微镜和扫描电子显微镜对该复合薄膜进行表征,最终确定Ti02为锐钛矿结构,FeOOH为针铁矿(a-FeOOH)结构,并判断FeOOH与Ti02为层状-岛状式生长。
     (2)通过胶带削离、超声以及冲洗实验定性地对比分析了分子自组装法与溶胶-凝胶法制备的FeOOH/TiO2与石英玻璃片间的附着力大小,说明了分子自组装法制备的FeOOH/TiO2与石英玻璃片附着力较强。
     (3)以甲基橙为目标物,通过几组光催化对比实验,探讨了薄膜制备时间、光源能量、H202、目标物浓度、薄膜复合作用等因素对FeOOH/TiO2的光催化活性的影响。FeOOH/TiO2(其中,TiO2 0.0073g, FeOOH 0.0009g)具有最高光催化活性下的最优实验条件为:制备Ti02的最佳反应时间为4h,甲基橙溶液浓度为1mg/L。可见光下,FeOOH/TiO2光催化lmg/L甲基橙溶液6h,脱色率达99.7%。
     (4) FeOOH/TiO2薄膜经重复利用20次后,其对甲基橙溶液光催化6h后的脱色率由99.7%降至42.5%,其活性丧失近一半。
     (5)真空和酸处理均能在一定程度上能实现FeOOH/TiO2的再生。FeOOH/TiO2经真空处理后,活性恢复15.3%;经HCl处理后,活性恢复33.6%。
Recently, new,high-efficiency, environmental protection materials are becoming one of research focuses. In the area of multiphase photocatalysis, nano TiO2 is a typical photocatalyst, which is widely used in degrading organics, killing baterial, puring air and water. FeOOH, a kind of substance with good adsorptive capacity, on account of its spectral response wavelenghth is at visible district, can photocatalytic degrade organics in environment by well using visilble light. Recently, TiO2 compound materials are researched as focus, because nano TiO2 composited with relatively narrow bandgap semiconductor can diminish forbidden gap of TiO2, extend photoresponses of TiO2 at visible district, enhance its utilization rate to visible light and photocatalysis properties of composite materials. Nano FeOOH/TiO2 compound materials which are prepared on quartz glass, on the one hand, can realize the immobilization of film materials, improve the rate of utilization of photocatalyst; On the other hand, composite of two kinds of materials can enhance the rate of utilization of sunlight. The experiment have studied the preparation, characterization and photocatalysis properities of FeOOH/TiO2 nano thin firm, which provides theory evidence and reference for realizing preparation of thin film from the small laboratory study to industrial application.
     The paper introduced nano FeOOH/TiO2 compound thin film was prepared from low-temperature aqueous system by molecular self-assembly method, in base of SH functional group and surstrate of quartz glass. Meanwhile, Methyl Orange as target, it discussed some experimental factors affected FeOOH/TiO2 photocatalysis activity. Lastly, it discussed the phenomenon and reason of inactivation when Fe00H/Ti02 compound thin film photocatalysis Methyl Orange, as well as the methods of regeneration for FeOOH/TiO2 compound thin film. The main conclusions of this research was shown as followed:
     (1) Prepared FeOOH/TiO2 thin film by molecular self-assembly method, characterized FeOOH/TiO2 thin film under TEM and SEM, the result of which was that TiO2, FeOOH were in the form of anatase, goethite(a-FeOOH) and the growing mode between them was layered-island.
     (2) Qualitative comparison analyse analyse the adhesion between FeOOH/TiO2 thin film, prepared by molecular self-assembly method and sol-gel method, and quartz glass by tape-spalling, ultrasonic and washing methods. The result showed that adhesion between FeOOH/TiO2, prepared by SAMs method, and quartz glass was very strong.
     (3) Methyl Orange as target, through several phocatalytic comparison experiments, the photocatalysis properties of FeOOH/TiO2 was researched, which was affected by preparation time for film, light energy, H2O2, concentration of object, complexity and substrate material. The best experimental condition in which FeOOH/TiO2 including TiO2 0.0073g, FeOOH 0.0009g was of the highest photocatalysis properties, was that 4h was the best reaction time for preparing TiO2 and the concentration of Methyl Orange aqueous solution was lmg/L. Under the visible light, the decoloration rate of lmg/L Methyl Orange aqueous solution after photocatalysed 6h by FeOOH/TiO2 reached to 99.7%.
     (4) FeOOH/TiO2 after repeatly used 20 times, the decoloration rate of Methyl Orange solution photocatalysed 6h by FeOOH/TiO2 was fell from 99.7%to 42.5%, the activity of which approximately losted to half.
     (5) FeOOH/TiO2 could be in a certain extent regenerated vis Vacuum and acid treatment. FeOOH/TiO2 after vacuum treatment, its activity restored by 15.3%. FeOOH/TiO2 after treatment by HCl, its activity restored by 33.6%.
引文
[1]陈光华,邓金祥.纳米薄膜技术与应用[M].北京:化学工业出版社,2003:30~55.
    [2]邓文礼,杨林静,王琛,等.烷基硫醇分子自组装研究进展[J].科学通报,1998,43(5):449~456.
    [3]曾鹏举,刘云圻,胡文平.朱道本分子自组装成膜技术[J].物理,1999,28(12):731-719.
    [4]蒲利春,崔旭梅.自组装技术及其影响因素分析[J].化学进展,2004,32(10):18-20.
    [5]K.A. Ritley, K-P. Just, F.Schreiber, et al. X-ray reflectivity study of solution-deposited ZrO2 thin films on self-assembled mololayers:Growth, interface properties, and thermal densification[J]. J. Mater. Res,2000,15(12):2706~2713.
    [6]A.K. Garg, A.K. Tripathi, T.C. Goel, et al. Preparation and characterization of lead lanthanum zirconate titanate (PLZT) thin films using an organic self-assembled monolayer template[J]. Materials Science and Engineering,2001,1(1):87-91.
    [7]H. Shin, R J. Collins, M.R. De Guire, et al. Synthesis and characterization of TiO2 thin films on organic self-assembled monolayers[J]. J. Mater. Res.,1995,10(3):699~704.
    [8]刘艳,苗鸿雁,谈国强,等.自组装功能膜诱导沉积Ti02薄膜的研究[J].2009,8(38):141~144.
    [9]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2003:162~164.
    [10]龚建华,杨有财,张永胜.镀膜玻璃膜层的针孔和结合力[J].合肥工业大学学报,2008,31(4):580~584.
    [11]中国环境科学学会.中国环境科学学会学术年会优秀论文集[C][出版地不详]:2007.
    [12]程年寿,陈君华.纳米二氧化钛光催化降解苯酚废水[J].河南科技,2010,2(41):93~94.
    [13]任志凌,袁磊,杨睿戆,等.碳气凝胶复合Ti02光催化降解甲苯研究[J].能源环境保护,2010,1(24):23~25.
    [14]陈艳敏,钟晶,陈锋,等.氟掺杂纳米Ti02薄膜的低温制备及其光催化性能[J].催化学报,2010,1(31):120~125.
    [15]李乔,王进喜,王亚军,等.纳米TiO2/聚糠醛复合材料NTP的制备及其光催化活性[J].环境科学与管理,2008,10(33):108-110.
    [16]Coleman H M, Vimonses V, Leslie G et al. Journal of Hazardous Materials[J],2007, 146(3):496.
    [17]Wei Wu, Zhao Gaoling, Han Gaorong et al. Materials Letters[J],2007,61(8):1922.
    [18]LeeKunmu, Vembu Suryanarayanan, Ho Kuochuan. Solar Energy Materials and Solar Cells[J],2007,91(15):1416.
    [19]Miao L, lna Y, Tanemura S et al.Surface Science[J],2007,601(13):2792.
    [20]Han Jaekil, Choi Sungmin, Lee Gaeho. Materials Letters[J],2007,61(18):3798.
    [21]Overschelde O V, Guisbiers G, Wautelet M. Applied Surface Science[J],2007,253(19):7890.
    [22]Kishan H, Awana VPS, Oliveira TM D et al. Physica C:Superconductivity[J],2007, 458(1):1.
    [23]Kun Gao. Physica B:Condensed Matter[J],2007,398(1):33.
    [24]孙晓君,蔡伟民,井立强,等.二氧化钛半导体光催化技术研究进展[J].哈尔滨工业大学学报,2-1,33(4):534~541.
    [25]VOGEL R quantum-sized PbS, CdS, Ag2S, Sb2S, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J].J Phys Chem,1994,98:3183-3191.
    [26]liu D,KAMAT P v. Electrochemical rectification in CdSe+TiO2 cupled semiconductor flms[J] J Elec-troanal Chem.1993,347:451-460.
    [27]BEDJA I, KAMAT P V Capped semiconductor colloids synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallines[J]. J Phys Chem.1995,99(22):9182-9188.
    [28]Do Y R, IEE W. DWIGHT K, et al.The effect Of W03 on the photocatalytic activity of TiO2[J]J Solid State Chem.1994,108(1):198-201.
    [29]于红,孙振亚.自组装制备铁氢氧化物纳米薄膜[J].矿物岩石地球化学通报,2009,28(2):131~136.
    [30]吴吉权,孙振亚,蒋蓉,等.自然光下羟基氧化铁处理水溶液中甲基橙的研究[J].矿物岩石地球化学通报,2006,25(4):299-303.
    [31]游海霞,孙振亚.pH值对SH/SiO2自组装FeOOH纳米膜形成的影响[J].武汉理工大学学报,2008,30(9):61~63.
    [32]姜利荣,赵超,黄应平,等.可见光照射下a-FeOOH光催化降解有机污染物的研究[J].环境化学,2007,4(26):434-437.
    [33]熊慧欣,周立祥.a-FeOOH纳米微粒的凝胶网格沉淀法制备及光谱性质[J].光谱学与光谱分析,2009,6(29):15~1593.
    [34]董玉明,蒋平平,张爱民,等.介孔结构的a-FeOOH对苯酚的催化臭氧化降解[J].无机化学学报,2009,9(25):1595~1600.
    [35]鲁金凤,邱娇,马军,等.FeOOH催化臭氧氧化滤后水中NOM的小分子副产物的生成[J].环境科学,2009,3(30):765~770.
    [36]杜卫,平李臻,冷文华,等.氧化铁和羟基氧化铁光催化还原银离子[J].物理化学学报,2009,25(8):1530-1534.
    [37]Manning BA, Fendorf SE, Goldberg S.Surface structures and stability of arsenic(III) on goethite:Spectroscopic evidence for inner-sphere complexes[J]. Environ Sci Technol,1998, 32(16):2383~2388.
    [38]Sun XH, Doner HE.Adsorption and oxidation of arsenite on goethite[J].Soil Sci,1998, 163(4):278~287.
    [39]Leckie JO, Redden GSorption of heavy metals and radionuclides on mineral surfaces in the presence of organic co-contaminants[J].Govt Reports Announcements &Index.2000.
    [40]李佑稷,李效东,李君文,等.纳米TiO2复合材料的研究进展[J].材料科学与工艺,2006,14(3):282~286.
    [41]龚潇,陈大虎,庆承松,等.TiO2/a-Fe2O3复合光催化剂的制备及表征[J].硅酸盐学报,2008,36(6):838-843.
    [42]刘柳,孙振亚,吴吉权.蒙脱石基纳米FeOOH/TiO2复合材料的制备与光催化活性研究[J].矿物学报,2009,29(3):578-579.
    [43]杨爱丽,钱晓良,刘石明.Fe2O3-TiO2负载型光催化剂的制备和性能研究[J].化工环保,2004(24):332-334.
    [44]裘小宁.Fe2O3-TiO2复合氧化物催化柠檬酸三丁酯合成的研究[J].上海化工,2008,6(33):6-8.
    [45]刘宗耀,李立清,唐新村等.Fe2O3/TiO2纳米材料的制备及其紫外~可见光催化性能[J].现代化工,2006(26):255~259.
    [46]梁德荣.TiO2/Fe2O3纳米微粒光催化降解二氯乙烷研究[J].江西财经大学学报,2008,1(11):40~48.
    [47]Sun RenDe, Nakajima Akira, Watanabe Toshiya, et al.Decompo-sition of gas-phase octamet hyltrisiloxane on TiO2 thin film photo-catalystscatalytic activity, deactivation, and regeneration[J] Journal of Photochemistry and Photobiology A:Chemistry,2003,154 (223):203-209.
    [48]Peral J, Ollis D F. TiO2 photocatalyst deactivation by gas-phase oxidation of heteroatom or ganics[J] Journal of Molecular Catalysis A:Chemical,1997,115 (2):347-354.
    [49]李英柳,吴凤丽,李爱莲.光催化剂失活与再生研究新进展[J].化学与生物工程,2005,4(25):4-6.
    [50]周尧.自组装负载型铁(氢)氧化物制备及其吸附性能研究[D].武汉:武汉理工大学,2009.
    [51]陈金媛,彭图治.磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能[J].化学学报,2004,62(20):2093-2097.
    [52]王怡中,符雁.不同类型染料化合物太阳光催化降解研究[J].太阳能学报,1998,19(2):117-125.
    [53]黄川,刘元元,罗宇,等.印染工业废水处理的研究现状[J].重庆大学学报(自然科学版),2001,24(6):139~141.
    [54]李庄.高浓度染料废水(含偶氮染料废水)处理技术的研究[D].湖南:湖南大学,2007.
    [55]刘琪,冒国兵,敖建平,等.化学水浴沉积CIGS太阳电池缓冲层znS薄膜的研究[J].太阳能学报,2007,2(28):155~158.
    [56]孟飞,张谷一,何建平,等.化学水浴法制备ZnS薄膜[J].电源技术研究与设计,2007,12(31):998~1000.
    [57]王硕,高柏,陈泽堂.改性二氧化钛光催化剂的研究进展[J].浙江化工,2007,38(7):16~19.
    [58]丁敦煌,关鲁雄,杨松青,等.TiO2/H2O2光催化体系降解亚甲基蓝的动力学研究[J].中南工业大学学报(自然科学版),2003,34(5):513~515.
    [59]滕洪辉,吴新兴,刘潘,等.不同态二氧化钛处理模拟印染废水的研究[J].环境工程学报,2010,2(4):327~330.
    [60]孙振亚,杜建华,陈和生,等.氧氢氧化铁对偶氦染料脱色作用的红外光谱研究[J].光谱学与光谱分析,2006,26(7):1226-1229.
    [61]Peral J,Ollis D F. TiO2 photocatalyst deactivation by gas-phase oxidation of heteroatom or ganics[J].Journal of Molecular Catalysis A:Chemical,1997,115 (2):347-354.
    [62]Sun Ren De, Nakajima Akira, Watanabe Toshiya, et al.Decompo-sition of gas-phase octamet hyltrisiloxane on TiO2 thin film photo-catalysts catalytic activity, deactivation, and regeneration[J].Journal of Photochemistry and Photobiology A:Chemistry,2003, 154(223):203~209.
    [63]Chang Chiuping, Chen Jongnan, Lu Mingchun,et al. Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst[J].Chemosphere,2005,58(8):1071~1078.
    [64]曹亚安,谢腾峰,张昕彤,等.TiO2纳米粒子膜表面性质的研究[J].物理化学学报,1999,15(8):680~683.
    [65]陈爱华,陈爱平,曾炽涛,等.负载型催化剂的失活研究[J].华东理工大学学报,2003,29(4):376~379.
    [66]唐玉朝,胡春,王怡中.无机阴离子对TiO2/SiO2光催化降解酸性红B活性的影响[J].环境化学,2002,21(4):376~379.
    [67]陆水辉,任艳群,彭峰.环境治理中光催化剂的失活与再生[J].环境污染与防治,2004,26(2):133-135.
    [68]Muggli D S, Ding L. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics[J] Applied Catalysis B:Environmental,2001,32(3):181-194.
    [69]梁鹏,孟耀斌,黄霞.膜~悬浮光催化降解反应器中光催化剂活性及其影响因素分析[J].环境化学,2002,21(4):380~384.
    [70]王永强,于秀娟,李朝林,等.二氧化钛光催化剂的中毒机理及再生技术分析[J].现代化工,2005,7(6):16~18.
    [71]Obuchi E, Sakamoto T, Nakano K,et al.Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst [J].Chemical Engineering Science,1999,54 (10):1525-1530.
    [72]Shang J, Zhu Y F, Du Y G, et al. Comparative studies on the deactivation and regeneration of TiO2 nanoparticles in three photocatalytic systems:C7H16, SO2 and C7H16 SO2 [J].Solid State Chemistry,2002,166 (2):395-399.
    [73]张音波.Ti02光催化降解甲基橙的试验及机理研究[D].广州:广东工业大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700