液相法控制合成纳米氧化铁
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铁材料由于成本低廉,环境污染小,抗腐蚀性和稳定性强等特点,在催化剂、颜料、磁记录介质、磁性涂料、气体传感器以及生物等领域应用广泛。目前液相合成氧化铁纳米材料的方法虽然很多,各具优势,但也都存在一些缺陷。探索设备简单、操作方便、成本低、产率高的液相合成方法,以实现对纳米材料形貌、尺寸、结构的选择性控制,仍然是化学家和材料学家长期以来关心的课题之一。本论文用简单、低成本、绿色的液相法制备了不同形貌的氧化铁纳米材料,并研究了纳米结构的形成机制以及相关的物理化学性能。
     在酸性环境中,控制反应温度获得了不同形貌的α-FeOOH/α-Fe2O3纳米粒子。产物的形貌对反应温度有强烈的依赖性,在高温下易于得到纳米棒,而低温下易于形成层片堆积的1D纳米结构。与纳米棒状结构相比,层片堆积的1D纳米结构α-Fe2O3具有更高的比表面积(129.16 m2/g)和更优异的光催化性能。在紫外光照射180 min后能有效地将罗丹明降解为其他小分子。
     利用空气氧化法制备出纯相的Fe304纳米粒子,研究了空气的流速、反应温度、反应时间、碱含量对其形貌和结构的影响规律。同时发现当KN03作为氧化剂时,可以得到形态规则的八面体状的Fe304纳米粒子。
     在无还原剂、表面活性剂、硬模板得条件下,采用溶剂热法,通过控制反应温度,获得由小颗粒组装成的磁性空心微球。碱、次亚磷酸二氢钠、水的含量对空心球的产生起着重要的作用。与160℃的产物相比,在200℃获得的磁性空心球由于晶粒尺寸的差异而具有更高的饱和磁化强度Ms (80.17 emu·g-1)和低的矫顽力Hc (20.81 Oe)。这种高饱和磁化强度、低矫顽力的磁性空心微球粒子可以应用在生物医药等领域。
Because of low cost, low pollution, high resistance to corrosion and good stability, iron oxides are widely applied in many industry fields, such as catalysis, painting, magnetic recording medium, magnetic coating, gas sensor, and bioengineering etc. In spite of their numerous synthesis techniques with special advantages, the liquid-phase synthesis process still possesses some drawbacks. Up to now, for chemists and materials scientists, it still is an important challenge to explore new liquid-phase methods with the characterizes of simple equipment, easy operation, low cost, and high yield in order to facilely modulate the size and structure of the products. Therefore, in this paper, iron oxide nanomaterials with different morphologies was prepared by simple, low cost, and green liquid-phase methods, and the formation mechanism and novel physical/chemical properties of the as-made nanostructures are also studied.
     In the acidic environment,α-FeOOH/α-Fe2O3 nanostructures with different morphologies are obtained by controlling reaction temperature. The results showed that the morphologies of the products were highly dependent on the reaction temperature. among them, the nanorods were apt to form at the relatively high temperature, and the layered one-dimensional nanostructures are prone to obtain at the relatively low temperature. The layer oderedα-Fe2O3 nanostructures displayed higher BET surface area (129.16 m2/g) and better photocatalysis properties, where RhB can be effectively degradated into other small molecules after UV irradiation for 180min.
     Fe3O4 nanoparticles are obtained by an air oxidation method. The influences of experiment conditions, such as air flow rate, reaction temperature, reaction time, and alkali content etc. on the morphology and structure of Fe3O4 products were investigated in detail. It was found that the otahedral Fe3O4 nanoparticles were synthesised by using KNO3 as the oxidant.
     Magnetic hollow microspheres composed of small particles are synthesised by a solvothermal process, without addition of any reducing agent, surfactant, or template. Changing the content of alkali, sodium hypophosphites and the water can effectively tune the morphologies of magnetic hollow microspheres. Magnetic hollow microspheres obtained at 200℃exhibited higher saturation magnetization (80.17 emu·g-1) and lower coercivity (20.81 Oe) compared with those obtained at 160℃, due to the bigger paticle size, The magnetic hollow microspheres reported here can be applied in biological and medical fields.
引文
[1]Miyoshi, H.Yoneyama, H. Photochemical properties of iron oxide incorporated in clay nterlayers. J. Chem. Soc., Faraday Trans.1989,85:1873-1880.
    [2]Pierre J, Corinne C, Elisabeth T. Chem. Commun,2004,481-487
    [3]俞文海,刘皖育.晶体物理学.合肥:中国科技大学出版社,1998
    [4]Fang, F. F., Kim, J. H. and Choi, H. J. Synthesis of core-shell structured PS/ Fe3O4 microbeads and their magnetorheology. Polymer 50:2290-2293
    [5]蒋峰景,浦鸿汀,杨正龙等.Fe304包覆碳纳米管软磁性纳米复合微粒的制备及性能.新型炭材料.2007,24(4):371-374
    [6]Kim J H, Fang F F, Choi H J, et al.. Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology. Materials Letters,2008,62: 2897-2899.
    [7]Cao Z, Jiang W Q, Ye X Z, Gong X L. Preparation of superparamagnetic Fe3O4/PMMA nanocomposites andtheir magnetorheolo-gical characteristics. Journal of Magnetism and Magnetic Materials,2008,320:1499-1502.
    [8]钟俊辉.纳米粉末的制取方法.粉末冶金技术,1995,13(1):48-55
    [9]周克省,刘归,尹荔松等.纳米Fe3O4/BaTiO3复合体系的微波吸收特性.中南大学学报.2005,36(5):872-876.
    [10]周一平,刘归,周克省等.纳米Fe3O4/PANI复合体系的微波电磁特性研究.湖南大学学报.2006,33(6):81-84.
    [11]Wei J, Liu J H., Li S M. Electromagnetic and Microwave Absorption Properties of Fe3O4 Magnetic Films Plated on Hollow Glass Spheres.Journal ofMagnetism and Magnetic Materials.2007,312(2):414-417.
    [12]Weidenefller B, HMe rM, Sehilling F. Thermal and eleetrieal ProPerties of magnetite filled Polymers. Composites:PartA,2002,33:1041
    [13]Zhou K B, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis,2005,229:206-212.
    [14]Zhang X, Wang H, Xu B Q. Remarkable nanosize effect of zirconia in Au/ZrO2:catalyst for CO oxidation. Journal of Physical Chemistry B,2005,109:9678-9683
    [15]Glaspell G, Fuoeo L, El-Shall M S. Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. Journal of Physical Chemistry B,2005,109: 17350-17355
    [16]Zheng Y H, Cheng Y, Wang Y S, et al. Quasicubic a-Fe2O3 nanoparticles with excellent catalytic performance. Journal of Physical Chemistry B,2006,110:3093-3097
    [17]Fagal G A, El-Shobaky A G, El-Khouly S M. surface and catalytic pronerties of Fe2O3, Cr2O3/AI2O3 solids as being influenced by Li2O and K2O-doping. Colloid Surface A: Physicochemical and Engineering Aspects,2001,178:287-296
    [18]Reddy B V, Rasouli F, Hajaligol M R, et al. Novel pathway for CO oxidationon on a Fe2O3 cluster. Chemical Physics Letters,2004,284:242-245
    [19]娄向东,王天喜,刘双枝等.氧化铁光催化降解活性染料的研究.环境污染治理技术与设备,2006,7:97-99
    [20]刘翠,李保山,吴艳萍等.纳米棒状α-Fe2O3的制备及其催化性能.工业催化,2007,15:51-54
    [21]牛军峰,全燮,陈景文等.低有机碳含量表层土中α-Fe2O3对γ-Fe2O3光解的催化作用.环境科学,2002,23:92-95
    [22]Huang H H, Lu M C, Chen J N. Catalytic decomposition of hydrogen peroxide and 2-chloropheno with iron oxides. Water Research,2001,35:2291-2299
    [23]梁风焦,李多松,乔启成等.纳米α-Fe2O3粉体的制备及在光催化降解苯胺中的研究.苏州科技学院学报(工程技术版),2006,19:34-37
    [24]陈伟凡,李凤生,刘建勋等.纳米Co3O4的制备及其对高氯酸按热分解的催化性能.催化学报,2005,26:1073-1077
    [25]马振叶,李凤生,崔平等.纳米Fe2O3的制备及其对高氯酸按热分解的催化性能.催化学报,2003,24:795-795
    [26]Chen J, Yang L M, Liu Y F, et al. Preparation and Characterization of Magnetic Targeted Drug Controlled-Release Hydrogel Microspheres. Macromol.Symp,2005,225:71-80
    [27]Safarik I and Safarikoval M, Magnetic techniques for the isolation and purification of proteins and peptides, BioMagnetic Research and Technology 2004,2:7
    [28]Tadashi M, Yoshiaki M, Tomoko Yoshino, et al. Fully automated immunoassay for detection of prostate-specific antigen using nano-magnetic beads and micro-polystyrene bead composites,'Beads on Beads'. Analytica Chimica Acta,2007,597:331-339.
    [29]Wacker R, Ceyhan B, Alhorn P, et al. Magneto Immuno-PCR:A novel immunoassay based on biogenic magnetosome nanoparticles. Biochemical and Biophysical Research Communications,2007,357:391-396.
    [30]Jordan A, Schol R, Maier-Hauff K, et al., Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, J. Magn. Magn. Mater.2001,225,18-126.
    [31]Zhang Y, Zhang J. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells,Journal of Colloid and Interface Science, 2005,283,352-357
    [32]蔡玉荣,周廉.用作生物材料的纳米陶瓷.稀有金属快报,2002,2:1-3.
    [33]Bilkova Z, Slovakova M, Lyeka A,et al. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly (HEMA-eo-EDMA) microspheres. J.Chromatogr, B:Anal. Teehnol.Biomed.Life Sci.2002, 770(1-2):25-34.
    [34]Timko M.;Koneraeka M., Kopcansky P, et al. Application of magnetizable complex systems in biomedicine. Czeehoslovak Journal of Physics,2004,54:D599-D606.
    [35]Chai C C,Peng J.Yan B P,Characterization of a-Fe2O3 thin films deposited by atmospheric pressure CVD onto alumina substrates. Sensors and Actuators B,1996,34:412-416.
    [36]Liu X Q, Xu Z L, Liu Y F, et al. A novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials. Sensors and Actuators B,1998,52:270-273.
    [37]Kotsikau D, Ivanovskaya M, Orlik D, et al. Gas-sensitive properties of thin and thick film sensors based on Fe2O3-SnO2 nanocomposites. Sensors and Actuators B,2004,101:99-206.
    [38]Min C Y, Huang Y D, Liu L. High-yield synthesis and magnetic property of hematite nanorhombohedras through a facile solution route, Materials Letters 2007,61:4756-4758.
    [39]Kendall T, Inorganic Colour pigment. Industrial Minerals,1994,2,53-54.
    [40]黄光斗,贾泽宝,胡兵,等.透明氧化铁黄颜料的制备.无机盐工业,1999,31(5):12-14.
    [41]Sesigur h, Acma E, Addemir O, et al. The Preparation of Magnetic Iron Oxide. Mater Res Bull,1996,31(12):1573-1579.
    [42]严新,朱雪梅,吴俊方等.均匀氧化铁纳米粒子的制备及表征.盐城工学院学报,2002,15(2):50-52.
    [43]宋丽贤,卢忠远,刘德春等.分解沉淀法制备磁性纳米Fe304的研究及表征.化工进展,2006,25(1):54-57.
    [44]Xu J, Yang H B, Fu W Y. Preparation and magetic properties of magnetite nanoparticles by sol-gel method. J. Magn. Magn. Mater.,2007,309(1):307-311.
    [45]Huo L H, Li Q, Zhao H. Sol-gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization, Sensors and Actuators B,2005,107:915-920
    [46]Lu W G, Yang D Q, Sun Y, et al. Preparation and structural characterization of nanostructured iron oxide thin films. Applied Surface Science,1999,147,39-43.
    [47]Chhabra V, Ayyub P, Chattopadhyay S, Maitra A.N. Preparation of acicula γ-Fe2O3 particles fron micromulsion-mediated reaction. Mater lett.,1996,26(1):21-26.
    [48]Zhuang J Q, Wu H M, Yang Y, et al. Supercrystalline colloidal particles from artificial atoms. J. Am. Chem. Soc.,2007,129,14166-14167.
    [49]Bai F, Wang D S, Huo Z Y, et al. Versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed.,2007,46:6650-6653.
    [50]Zhang X L, Sui C H, Gong J, el at. Preparation and formation mechanism of different a-Fe2O3 morphologies from snowflake to paired microplates, dumbbell,and spindle microstructures. J. Phys. Chem. C,2007,111:9049-9054.
    [51]Liu X M, Fu S Y, Xiao H M. Preparation and characterization of shuttle-like a-Fe2O3 nanoparticles by supermolecular template, Journal of Solid State Chemistry,2005,178: 2798-2803.
    [52]Li S Z, Zhang H, Wu J B. Shape-Control Fabrication and Characterization of the Airplane-like FeO(OH)and Fe2O3 Nanostructures.Crystal Growth & Design,Vol.6,No.2,2006
    [53]Tang B, Wang G L, Zhuo L H, el at. Facile Route to a-FeOOH and a-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods,Inorganic Chemistry,2006,45,13
    [54]He K, Xu C.Y, Zhen. L, et al. Hydrothermal synthesis and characterization of single-cystalline Fe3O4 nanowires with high aspect ratio and uniformity. Mater Lett,2007,61:3 159-3162.
    [55]Zou G F, Xiang K, Jiang C L, et al. Magnetic Fe3O4 nanodisc synthesis on a large scale via a surfactant-assisted process. Nanotechnology,2005(16):1584-1588
    [56]Wang D B, Song C X, Gu G H, et al. Preparation of Fe2O3 microcages from the core/shell structures. Materials Letters,2005,59:782-78
    [57]Zeng S Y, Tang K B, Li T W. Controlled synthesis of a-Fe2O3 nanorods and its size-dependent optical absorption,electrochemical,and magnetic properties. Journal of Colloid and Interface Science,2007,312,513-521
    [58]Liu L, Kou H Z, Mo W L, et al. Surfactant-assisted synthesis of a-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. Journal of Physical Chemistry B,2006, 110:15218-15223
    [59]Huang Z B., Tang F Q. Preparation structure and magnetic properties of mesoporous magnetite hollow spheres", Journal of Colloid & Interface Science, vol.281, pp.432-436, 2005.
    [60]Yu D B, Sun X Q, Zou J W. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres. J. Phys. Chem. B 2006,110,21667-21671
    [61]Cho K S, Talapin D V. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. Amer. Chem Soc,2005,127,7140-7147.
    [62]Yang H G, Zeng H C. Self-construction of hollow SnO2 ℃ tahedra based on two-dimensional aggregation of nanocrystallites. Angew. Chem. Int. Ed.2004,43,5930-5933.
    [63]Wang W, Gu B H. Self-assembly of Two-and Three-Dimensional Particle Arrays by Manipulating Hydrophobicity of Silica Nanoparticles. J. Phs. Chem. B.2005, 109,22175-22180.
    [64]Choi W M, Park O O. The fabrication of micropatterns of a 2D colloidal assembly by electrophoretic deposition. Nanotechnology,2006,17,325-329.
    [65]Yi J B, Pan H, Lin J Y. Template-and Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires. Advanced Materials.2008,20,571-574
    [66]Xu J S, Xue D F. Fabrication of malachite with a hierarchical sphere-like architecture. J. Phs. Chem. B.2005,109,17157-17161.
    [67]Yu S H, Antonietti M, Colfen H. Growth and self-assembly of BaCrO4 and BaSO4 nanofibers toward hierarchical and repetitive superstructures by polymer-controlled mineralization reactions. Nano Letters 3(3):379-382.
    [68]Lao J Y, Huang J Y, Wang D Z. Hierarchical Oxide Nanostructures. Mater. Chem.,2004,14, 770-773.
    [69]Feng Z P, Li G R, Zhong J H. MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochemistry Communications 11,2009,706-710
    [70]Rana R K., Murthy V S, Yu J. Nanoparticle Self-assembly of Hierarchically Ordered Microcapsule Structures. Adv. Mater.2005,17,1145-1150
    [71]Li Z Q, Xiong Y J. One-step solution-based catalytic route to fabricate novel α-MnO2 hierarchical structures on a large scale. Chem. Coummun,2005,918-920
    [72]Soler-Illia G J, Sanchez C, Lebeau B. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures.. Chem. Rev.2002,102,4093-4138
    [73]Zhang D F, Sun L D. Hierarchical Assembly of SnO2 Nanorod Arrays on Fe2O3 Nanotubes. [J]. Amer. Chem Soc,2005,127,13492-13493.
    [74]Liu L, Kou H Z, Mo W L. Surfactant-Assisted Synthesis of γ-Fe2O3 Nanotubes and Nanorods with Shape-Dependent Magnetic Properties [J].Phys. Chem. B 2006,110, 15218-15223
    [75]Fan H M, You G J. Shape-Controlled Synthesis of Single-Crystalline Fe2O3 Hollow Nanocrystals and Their Tunable Optical Properties. J. Phys. Chem. C 2009,113,9928-9935
    [76]Wen X G., Wang S H, Ding Y. Controlled Growth of Large-Area, Uniform, Vertically Alig ned Arrays of r-Fe2O3 Nanobelts and Nanowires. J. Phys. Chem. B 2005,109,215-220
    [77]Jia C, heng Y, Bao F. PH value-dependant growth of a-Fe2O3 hierarchical nanostructure Cryst. Growth 2006,294,353-357
    [78]Mao B D, Kan Z H. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process.Solid State Chem.2007,180,489-495
    [79]Lina S Y, Whllg E B, Knag Z H. Synthesis of Mangetite Nanorods and Poorus Hmeatite Nnaoords. Solid State Commun.,2004,129:485-490.
    [80]Li L L, Chu Y, Liu Y. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres. Phys. Chem. C 2007,111,2123-2127.
    [81]Zheng Y H, Cheng Y, Wang Y S, et al. Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance J. Phys. Chem. B.,2006,110:3039-3097.
    [82]Salgueirin V, Miguel A. Correa-Duarte. One-dimensional assemblies of silica coated cobalt nanoparticles:Magnetic pearl necklaces.. Journal of Magnetism and Magnetic Materials 303 (2006)163-166
    [83]Sing K S W, Everett D H. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity..Pure & Appl. Chem.1985,57, 603.
    [84]Ma Y, Yao J N. Photodegradation of Rhodmine B catalyzed by TiO2 thin films. J. Photochen. Photobio,A,1998,116:167-170
    [85]Thapa D, Palkar V R, Kurup M B, et al. Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett,2004,58:2692-2694.
    [86]李发伸,王涛,王颖.H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样品的比较.物理学报,2005,54(7):3100-3105.
    [87]Yu W G, Zhang T L, Zhang J G, et al. The synthesis of otahedral nanoparticles of magnetite. Mater Lett,2006,60:2 998-3001.
    [88]于文广,张同来,乔小晶,等.不同形貌Fe3O4纳米粒子的氧化沉淀法制备与表征.无机化学学报,2006,22(7):1263-1268.
    [89]黄光斗,贾泽宝,胡兵等.透明氧化铁黄颜料的制备.无机盐工业,1999,31(5):12-14.
    [90]曹宏明,吴秋芳,陈杰等.纺锤形透明氧化铁颜料的制备及表面处理.无机盐工业,2000,32(5):7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700