金属氧化物纳米结构的水热合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米材料的新颖结构引起了人们广泛的兴趣,本文旨在利用低温水热方法,设计不同的液相反应路线,合成出多种形貌的Fe2O3和ZnO纳米结构。利用各种分析手段,对产物进行表征和分析,并结合晶体生长的各种因素,对氧化物的生长取向和机理进行了初步的探讨。论文的主要内容归纳如下:
     1.利用低温水热合成方法,在表面活性剂PEG-400的协助下,成功合成出不同形貌的三氧化二铁纳米晶体,并对产物进行了各种表征。通过改变表面活性剂的量,六亚甲基四胺的量以及反应温度等实验条件,控制合成出各种形貌的三氧化二铁纳米晶体,并根据实验结果讨论了以上反应条件影响产物形貌的原因,最后提出了晶体生长的可能机理。
     2.利用水热体系,以二氧化硅纳米粒子为模板,简单,有效地合成出空心α-Fe2O3纳米球。用各种测试手段,对产品进行了表征,结果表明所得空心球分散性较好,尺寸在300-350 nm之间,外壳厚度大约为50 nm,中空部分与二氧化硅的尺寸一致。最后提出了空心球的可能形成机理。
     3.在低温水热体系中,利用三乙醇胺作为配位剂,尿素为分散剂合成出不同的氧化锌纳米球,并用各种手段对产物进行表征。三乙醇胺在体系中作为配位剂,对晶体的生长起着一定的导向作用,而尿素能够影响纳米球表面的组成。研究了反应时间,反应物的量,温度等条件对产物形貌的影响。并测定了产物的荧光性质,提出了可能的生长机理。
In recent years, nanomaterials with novel nanostructures have attracted significant attention. In this paper ,we used hydrothermal method under low temperature, designed many different solution chemical route, and synthesized Fe2O3 and ZnO nanomaterials with different morphologies. The metal oxide have been characterized and analyzed. And in base of the crystal grow condition, the crystal grow orientation and crystal grow mechanisms of the metal oxide have been discussed. The main work of this paper as following:
     1.By a low-temperature hydrothermal method, different morphological Fe2O3 nanocrystals have been successfully fabricated under the surfactant assistance. The samples were characterized by field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy. Fe2O3 various nanostructures morphologies have been obtained by changing the conditions of the system. The reasons which affect nanostructures have been analyzed ,and finally a possible crystal grow mechanisms have been discussed.
     2. In the hydrothermal system,α-Fe2O3 hollow nanospheres were successfully prepared by using SiO2 nanospheres as templates. This is a simple, effective method for fabricating hollow-spheres. The hollow nano-spheres were characterized by IR spectrum, X-raydiffraction (XRD) analysis, (SEM) images, transmission electronmicroscope (TEM) and EDAX. The hollow nanospheres were disperse, the size of the hollow nanospheres ranges from 300 to 350 nm, and the shell thickness is sbout 50 nm. The inner diameters ofα-Fe2O3 hollow nanospheres were similar to the diameter of the silica microspheres. Finally , a possible crystal grow mechanisms have been discussed.
     3. Large-scale ZnO nanospheres were successfully synthesized via a low-temperature hydrothermal process. In this process, TEA was the ligands and CO(NH)2 was the dispersant. The samples were characterized by SEM images, XRD analysis, IR, EDAX. The results revealed that TEA played a crucial role in determining the shape of the samples. And the existence of CO(NH)2 was important to the surface of nanospheres. The affect of the react-time, temperature for the nanostures have been researched. We also investigated optical properties of the samples by PL spectroscopy. At last, we proposed a possible formation mechanism.
引文
[1]李晓俊.纳米材料的制备和应用研究[M].济南:济南山东大学出版社, 2006.1-3.
    [2]张立德.纳米材料[M].北京:化学工业出版社, 2002, 6-41.
    [3](a)翟庆洲,裘式纶,肖丰收等.纳米材料研究进展[J].化学研究与应用,1998, 10(3): 226-235. (b)张小丽.含铁化合物微米结构材料的水热合成[D]:[硕士学位论文].长春:东北师范大学化学学院, 2007.
    [4]曹敏花.低维纳米结构材料的可控制备与性能研究[D]: [博士学位论文].长春:东北师范大学, 2005.
    [5] Wang L, Kong X K, Y Ding, et al. Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces[J]. 2004, 14 (10): 7-8.
    [6]杨中民,信文瑜,王月平等.纳米粒子及纳米化学研究进展[J].云南化工,2000, 27(1): 1-8.
    [7]刘珍,梁伟,许并社等.纳米材料制备方法及其研究进展[J].材料科学与工艺, 2000, 8(3): 1-6.
    [8]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001, 1-50.
    [9]张志昆,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社, 2000, 10-58.
    [10]顾宁,付刚等.纳米技术与应用[M].北京:人民邮电出版社, 2002.P3.
    [11] Wang W Z, Geng Y,Yan P, et al. A Novel Mild Route to Nanocrystalline Selenides at Room Temperature[J]. Am Chem Soc, 1999, 121(16): 4062.
    [12] K Nitin, Yu Jong-Sung, et al. Size Control Synthesis of Uniformγ-FeOOH to High Coercive Field Porous Magnetic r-Fe2O3 Nanorods[J]. J. Phys. Chem.C,2008, 112, 19957–19962.
    [13] Rossetti R, Nakahara S, Brus L E et al. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution[J]. J.Chem.Phys, 1983, 79(2): 1086-1088.
    [14] Staduik Z M, Griesbach P, Dehe P, et al. Ni M?ssbauer study of the hyperfine magnetic field near the Ni surface[J] , Phys. Rev. B ,1987, 35(13), 6588-6592.
    [15]王楠,金属氧化物空心结构的模板法制备与性质研究[D]:[硕士学位论文].长春:东北师范大学化学学院, 2008.
    [16]吴白芦.纳米技术与固体物理的新发展[J].现代科学仪器, 1998(34): 1-2.
    [17]高濂,靳喜海,郑珊.纳米复相陶瓷[M].北京:化学工业出版社, 2004.3-7.
    [18]李凤生等.超细粉体技术[M].北京:国防工业出版社, 2000.
    [19]Ball P ,Li Garwin. Science at the atomic scale[J]. Nature , 1992 (355) :761-766.
    [20]李丽丽,水热体系中表面活性剂辅助制备中空结构金属氧化物及性质研究[D]:[硕士学位论文].长春:东北师范大学化学学院, 2008.
    [21] Kittelt C. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles[J]. Physical Review, 1946 (70): 965-968.
    [22]巩雄,郭永,杨宏秀等.纳米材料及其光学特性[J].化学通报, 1998 (3): 19-21.
    [23]史金燕,申永良.纳米材料及其理化性质[J].《化学工程师》, 1999 (72): 21-23.
    [24]吕莉.纳米a- Fe203和a-Fe00H尺寸效应对结构及性质的影响[D]:[硕士学位论文].内蒙古大学, 2006.5.
    [25] Zhang Zhonghai, Md Faruk Hossain, Takakazu Takahashi, et al .Fabrication of shape-controlledα-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application[J]. Materials Letters, 2010(64): 435–438.
    [26] Liu Yang, Kang Z. H., Chen Z. H, et al. Synthesis, Characterization, and Photocatalytic Application of Different ZnO Nanostructures in Array Configurations[J]. Crystal Growth Des, 2009, 9(2): 73222–73227.
    [27]Hu Chaoquan, Gao Zhenghong, Yang Xiaorui, et al .Facile synthesis of single crystallineα-Fe2O3 ellipsoidal nanoparticles and its catalytic performance for removal of carbon monoxide[J]. Materials Chemistry and Physics , 2007 (104): 9–433.
    [28]肖旭贤,铁氧体纳米粒的制备及生物性能研究[D]:[博士学位论文].长沙:中南大学, 2008.12.
    [29]顾亚律,袁曙光,闰东等.四氧化三铁微粒与碘化油混悬液栓塞兔肾动脉的实验研究[J].中国介入影像与治疗学, 2005, 2(2): 140-144.
    [30]Oster J,Parker J,Brassard L, et al .PolyVinyl-aleohol-based magnetiebeadsfora Pidan deffieientse Parationofs Peeificoruns Pecifienueleicaeid sequenees [J] . MagnMagnMater, 2001, 225(l): 145一151.
    [31]Si Shufeng, Li Chunhui, Wang Xun, et al . Fe2O3/ZnO core–shell nanorods for gas sensors [J] . Sensors and Actuators B, 2006, 119,52–56.
    [32]梅鑫东,章明等.纳米材料的性质、制备以及在化工生产中的应用[J].江西化工,2006, 6(2): 5-6.
    [33]江今朝,涂向真等.纳米材料的性质和应用[J].江西化工, 2002, (2): 17-19.
    [34]尹继先,黎永强,温云鸽等.纳米技术与现代纺织品[J].上海纺织科技, 2007, 35(1): 8-9.
    [35]管映亭,董政娥,金志浩等.纳米材料及其在纺织等领域中的应用[J].纺织学报, 2004, 25(3): 117-118.
    [36] (a)张敬.纳米材料在涂料、精细化工生产中的应用[J].内蒙古科技与经济, 2008, (19):118. (b)张丽娟.纳米材料在化工生产中的应用[J].内蒙古石油化工, 2008(12): 17-19.
    [37]徐华蕊,李凤生,等.沉淀法制备纳米级粒子的研究[J].化工进展, 1996(5): 29233.
    [38] Liu Zhifeng, Li Junwei, Ya Jing, et al .Mechanism and characteristics of porous ZnO films by sol–gel method with PEG template[J]. Materials Letters, 2008, (62): 1190– 1193.
    [39]王笃金,吴瑾光等.反胶团或微乳液法制备超细颗粒的研究进展[J].化学通报, 1995(9):125.
    [40]曹振恒,王亚明,郭会仙等.微波在纳米和亚纳米ZnO材料制备中的应用[J].工业催化, 2007, 15(8): 8-11.
    [41]金钦汉,戴树珊,黄卡玛等.微波化学[M].北京:科学出版社, 1999.
    [42]Cao Shao-Wen, ZhuYing-Jie, et al. iron oxide hollow spheres: Microwave–hydrothermal ionicliquid preparation, formation mechanism, crystal phaseand morphology control and properties[J]. Acta Materialia, 2009, (57): 2154–2165.
    [43]胡宝云,黄剑锋,曹丽云等.声化学法的研究现状及其在纳米陶瓷粉体制备中的应用[J].中国陶瓷, 2009, 45(12):14-17.
    [44]a张颖,林书玉,房喻等.声化学新发展—纳米材料的超声制备[J].物理, 2002(2):80-83. b施尔威,夏长泰,王不国等.水热法的应用和发展[J].无机材料学报, 1996, 11(2):193-206.
    [45] Li Fei, Liu Xueqin,Qin Qinghua,et al. Sonochemical synthesis and characterization of ZnO nanorod/Ag nanoparticle composites[J].Cryst. Res. Technol, 2009, 69(1): 1-6.
    [46] Saikat Mandal. Facile route to the synthesis of porousγ-Fe2O3 nanorods[J]. Materials Chemistry and Physics, 2008 (111):438–443.
    [47]Fan H M, You G J, Li Y, et al. Shape-Controlled Synthesis of Single-Crystalline Fe2O3 Hollow Nanocrystals and Their Tunable Optical Properties [J]. J. Phys. Chem. C 2009, 113, 9928–9935.
    [48] Zhang Jiajia, Cheng Yuezhou, Yang Qing,et al. A simple complex-copolymer route to the fabrication of single crystallineα-Fe2O3 nanoplatelets in high yield[J]. Materials Letters, 2009 (63): 2075–2077.
    [49] Zhang Fenghua. Controlled synthesis and gas-sensing properties of hollow sea urchin-likeγ- Fe2O3 nanostructures andγ- Fe2O3 nanocubes[J]. Sensors and Actuators B, 2009 (141): 381–389.
    [50] Liang Xin, Xi Baojuan, Xiong Shenglin,et al. Porous soft magnetic material: The maghemite microsphere with hierarchical nanoarchitecture and its application in water purification[J]. Materials Research Bulletin, 2009 ( 44):2233–2239.
    [51] Cao Shao-Wen , Zhu Ying-Jie . Surfactant-Free Preparation and Drug Release Property of Magnetic Hollow Core/Shell Hierarchical Nanostructures [J]. J. Phys. Chem. C, 2008, 112, 12149–12156.
    [52] Du Dejuan, Cao Minhua. Ligand-Assisted Hydrothermal Synthesis of Hollow Fe2O3 Urchin-like Microstructures and Their Magnetic Properties[J]. J. Phys. Chem. C 2008, 112, 10754–10758.
    [53]MahyarMazloumi, ShadiTaghavi, HamedArami, et al. Self-assembly of ZnO nanoparticles and subsequent formation of hollow microspheres[J].Journal of Alloys and Compounds, 2009 ( 468): 303–307.
    [54]Li Xiuyan, Zhao Fenghua, FuJunxiang, et al.Double-Sided Comb-Like ZnO Nanostructures and Their Derivative Nanofern Arrays Grown by a Facile Metal Hydrothermal Oxidation Route[J]. Journal of Crystal Growth , 2009, 9:1409–1413.
    [55] Wang Dong, Zhang Jingwen, Hu Ya'nan, et al. Fabrication and optical properties of spear-like ZnO nanostructures by chemical vapor deposition[J]. Materials Letters, 2009(63): 2157–2159.
    [56] Zeng Yi, Zhang Tong, Fu Wuyou,et al. Fabrication and Optical Properties of Large-Scale Nutlike ZnO Microcrystals via a Low-Temperature Hydrothermal Route[J].J. Phys. Chem. C, 2009, 113, 8016–8022.
    [57] Zhao Min, Wu Dapeng, Chang Jiuli,et al. Synthesis of cup-like ZnO microcrystals via a CTAB-assisted hydrothermal route[J]. Materials Chemistry and Physics, 2009 (117):422–424.
    [58] Zeng Yi, Zhang Tong, Wang Lijie,et al. Synthesis and Ethanol Sensing Properties of Self-Assembled Monocrystalline ZnO Nanorod Bundles by Poly(ethylene glycol)-Assisted Hydrothermal Process[J]. J. Phys. Chem. C 2009, 113, 3442–3448.
    [59]朱雪梅.表面活性剂与纳米材料的制备[D]:[硕士学位论文].合肥:安徽大学,2006 .
    [60]周光军.表面活性剂辅助的纳米材料的控制合成和机理研究[D]:[博士学文论文].济南:山东大学, 2006.
    [61]刘阳.表面活性剂辅助的低维纳米材料的合成[D]:[硕士学位论文].长春:东北师范大学, 2004.
    [62] Zhang, D.; Ni, X.; Zheng, H, et al. J. Colloid Interface Sci. 2005, 292, 410.
    [63] Zhu Lu-Ping, Zhang Wei-Dong, Xiao Hong-Mei, et al. Facile Synthesis of Metallic Co Hierarchical Nanostructured Microspheres by a Simple Solvothermal Process[J]. J. Phys. Chem. C, 2008(112):10073–10078.
    [64] L Li, L, Chu, Y, Liu, Y, et al. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres[J].J. Phys. Chem. C, 2007, 111 (5): 2123–2127.
    [65] Chen Xing, Cai Quan, Wang Wei, et al. In-Situ Heating Study on the Structural Change of Surfactant-Templated Germanium Oxide Mesostructure[J].J. Phys. Chem. B, 2008, 112, 12297–12303.
    [66] Hu Ming, Jiang Ji-Sen, Li Xiaodong, et al. Surfactant-Assisted Hydrothermal Synthesis of Dendritic Magnetite Microcrystals[J]. Cryst Growth Des, 2009, 9 (2), 820-824.
    [67] Saikat Mandal, Axel H E, M¨uller, et al. Facile route to the synthesis of porousγ- Fe2O3 nanorods[J]. Materials Chemistry Physics, 2008, 111,438–443.
    [68] Pu Zhifa, Cao Minhua, Yang Jing, et al. mechanism of hematite nanorhombohedra, nanorods and nanocubes[J]. Nanotechnology, 2006, (17):799–804.
    [69] Zhu Lu-Ping, Zhang Wei-Dong, Xiao Hong-Mei, et al. Facile Synthesis of Metallic Co Hierarchical Nanostructured Microspheres by a Simple Solvothermal Process[J]. J. Phys. Chem. C , 2008, 112, 10073–10078.
    [70] Wang Junhong, Ma Yanwei, Wang Donglian, et al.Templating synthesis of waxberried hematite hollow spheres [J]. Materials Letters, 2009 (63):209–211.
    [71] Liang Xin, Xi Baojuan, Xiong Shenglin, et al. Porous soft magnetic material: The maghemite microsphere with hierarchical nanoarchitecture and its application in water purification[J]. Materials Research Bulletin,2009 (44):2233–2239.
    [72]Nitin K. Chaudhari, Yu Jong-Sung, et al.Size Control Synthesis of Uniformγ-FeOOH to High Coercive Field Porous Magnetic r-Fe2O3 Nanorods[J]. J. Phys. Chem. C , 2008, 112, 19957–19962.
    [73] Zhou Yu-Xue, Zhang Qiao, Gong Jun-Yan, et al. Surfactant-Assisted Hydrothermal Synthesis and Magnetic Properties of Urchin-like MnWO4 Microspheres [J].J. Phys. Chem. C, 2008, 112, 13383–13389.
    [74]Zhou Xingfu, Hu Zhaolin,Fan Yiqun, et al. Microspheric Organization of Multilayered ZnO Nanosheets with Hierarchically PorousStructures[J]. J. Phys. Chem. C 2008, 112, 11722–11728.
    [75] Zhang Fenghua, Yang Heqing, Xie Xiaoli, et al. Controlled synthesis and gas-sensing properties of hollow sea urchin-likeγ-Fe2O3 nanostructures andγ- Fe2 O3 nanocubes[J].Sensors and Actuators B, 141 (2009) 381–389.
    [76]刘翠,李保山,吴艳萍等.纳米棒状α- Fe2 O3的制备及其光催化性能工业催化[J]. 2007,15, (10):1-6.
    [77]李金换.溶胶-凝胶法制备TiO2-Fe2O3半导体异质结构光催化材料[J].佛山陶瓷, 2009, 16(12):1-4.
    [78] Z Shen G, Bando Y S, J Lee C, et al. Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process[J]. J Phys. Chem. B, 2005, 109(21): 10578-10583.
    [79] Zhang Jiajia, Cheng Yuezhou, Yang Qing., et al. A simple complex-copolymer route to the fabrication of single crystallineα- Fe2 O3 nanoplatelets in high yield[J]. Materials Letters, 2009 (63): 2075–2077.
    [80] Liang Xin, Xi Baojuan, Xiong Shenglin, et al .Porous soft magnetic material: The maghemite microsphere with hierarchical nanoarchitecture and its application in water purification[J].Materials Research Bulletin, 2009 (44): 2233–2239.
    [81] Wang Lingling, Zhang Xintong, Shao Changlu, et al. Hexamethylenediamine-assisted hydrothermal preparation of uniform ZnO particles and their morphology dependent photoluminescent properties[J]. Materials Chemistry and Physics, 2009 (115): 547–550.
    [82]Wang Guoxiu, Shen Xiaoping,Josip, et al. Horvat. Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods[J].J. Phys. Chem. C 2009, 113, 4357–4361.
    [83]施尔畏,夏长泰,王布国等.水热法的应用与发展[J].无机材料学报,1996, 11(2):1-7.
    [84] Jia Chun-Jiang, Sun Ling-Dong, LuoFeng, et al . Large-Scale Synthesis of Single-Crystalline Iron OxideMagnetic Nanorings[J]. J.am..chem.soc. 2008, 130, 16968–16977.
    [85] Zhang Fenghua, Yang Heqing, Xie Xiaoli, et al.Controlled synthesis and gas-sensing properties of hollow sea urchin-likeγ-Fe2O3 nanostructures andγ-Fe2O3 nanocubes [J].Sensors and Actuators B, 2009 (141): 381–389.
    [86] Jia Chun-Jiang, Sun Ling-Dong, Yan Zheng-Guang, et al.Iron Oxide Tube-in-Tube Nanostructures[J].J. Phys. Chem. C 2007, 111, 13022-13027.
    [87] Zhang Wu, Chen Jie, Wang Xiang, et al.Self-assembled three-dimensional ?ower-likeα-Fe2O3 nanostructures and their application in catalysis[J].Appl. Organometal. Chem. 2009, 23, 200–203.
    [88] Saikat Mandal, Axel H E .Facile route to the synthesis of porousγ-Fe2O3 nanorods[J].Materials Chemistry and Physics, 2008 (111): 438–443.
    [89]ZhuLu-Ping,IaoHong-Mei,FuShaoYun,etal .Template-FreeSynthesisofMono-dispersedandSingle-Crystalline Cantaloupe-like Fe2O3 Superstructures[J]. Crystal Growth Design, 2007, 7 (2): 177-182.
    [90] Du Dejuan, Cao Minhua. Ligand-Assisted Hydrothermal Synthesis of Hollow Fe2O3 Urchin-like Microstructures and Their Magnetic Properties[J]. J. Phys. Chem. C 2008, 112, 10754–10758.
    [91]Lili Li, Chu Ying , Liu Yang, et al.Synthesis snd characterization of ring-likeα-Fe2O3[J]. Nanotechnology, 2007, (18):105603-105609.
    [92] Chen Lingyun,Dai Hong, Shen Yongming, et al.Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route[J].Journal of Alloys and Compounds,2009,491, (1-2): 33-38.
    [93] Li Yafeng, Li Hongfang, Cao Rong, et al. Facile Fabrication of Pure a-Fe2O3 Nanoparticles via Forced Hydrolysis Using Microwave-Assisted Esterification and their Sensing Property[J].J. Am. Ceram.Soc.,2009, 92 (10):2188–2191.
    [94]马振叶,李凤生.大比表面积α-Fe2O3的制备及其催化性能研究.固体火箭技术[J]. 2006,29, (4):286-288.
    [95] Y Chang, Lye M L, Zeng H C,. et al Large-Scale Synthesis of High-Quality Ultralong Copper[J]. NanowiresLangmuir 2005, 21(6): 3746-3748.
    [96] Y Chang, J Teo J,ZengH C, et al. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres[J]. Langmuir 2005, 21(3):1074-1079.
    [97]Li L L, Chu Y, Liu Y, et al.Template-Free Synthesis and Photocatalytic properties of novel Fe2O3 Hollow Spheres[J]. J. Phy. Chem. C. 2007, 111(5): 2123-2127.
    [98]Yanna NuLi, Rong Zenga, Peng Zhanga, et al.Controlled synthesis ofγ- Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries[J]. Journal of Power Sources , 2008 ( 184):456–461.
    [99] Chen Jie, Wang Fangbin, Huang Kelong, et al .Preparation of Fe3O4 nanoparticles with adjustable morphology Journal of Alloys and Compounds[J].2009 (475) :898–902.
    [100]张元广.水热体系中氧化物的合成与取向生长机理的研究[D].[博士毕业论文].武汉:中国科学技术大学. 2006.12.
    [101] Cao, X B, Lan, X M, Guo, Y, et al. Preparation and Characterization of Bifunctional ZnO/ZnS Nanoribbons Decorated byγ-Fe2O3 Clusters[J].J. Phys. Chem. C 2007, 111(51): 18958-118964.
    [102] Jung Seung-Ho, Eugene Oh, Lee Kun-Hong, et al.Sonochemical Preparation of Shape Selective ZnO Nanostructures [J].Crystal Growth Design, 2008, 8 (1):265-269.
    [103] Mao Zhiping, Shi Qiuping, Zhang Linping, et al. The formation and UV-blocking property of needle-shaped ZnO nanorod on cotton fabric [J]. Thin Solid Films, 2009 (517):2681–2686.
    [104] Chu X Y, Hong X, Zhang X, et al T.Heterostructures of ZnO Microrods Coated with Iron Oxide Nanoparticles[J]. J. Phys. Chem. C, 2008, 112, 15980–15984.
    [105] Li Zhengquan, Xiong Yujie, Yi Xie, et al.Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route[J].Inorg. Chem. 2003, (42):8105-8109.
    [106] Gu Zhoui, Liu Jian, Wang Zhengzhou,et al. From Muticomponent Precursor to Nanoparticle Nanoribbons of ZnO[J].J.Phys. Chem. B 2005, 109, 1113-1117.
    [107] Zeng Yi, Zhang Tong, Wang Lijie, et al. Synthesis and Ethanol Sensing Properties of Self-Assembled Monocrystalline ZnO Nanorod Bundles by Poly(ethylene glycol)-Assisted Hydrothermal Process[J]. J. Phys. Chem. C 2009, 113, 3442–3448.
    [108] Zhou X F, Hu Z L, Chen Y, et al. Microscale sphere assembly of ZnO nanotubes[J]. Materials Research Bulletin , 2008 ,(43): 2790–2798.
    [109] Jia Xiaohua, Fan Huiqing, Zhang Faqiang, et al.Using sonochemistry for the fabrication of hollow ZnO microspheres[J]. Ultrasonics Sonochemistry, 2010, (17): 284–287.
    [110]Xiong S, Shen J, Xie Q,Gao, et al. A Precursor-Based Route to ZnSe Nanowire Bundles[J]. Adv.Funct. Mater, 2005, 15(11):1787.
    [111] Yu J, Guo H, Davis S A, et al. Anisotropy and Dynamic Ranges in Effective Properties of Sheared Nematic Polymer Nanocomposites[J]. Adv. Funct. Mater. 2006 (16): 2029-2035.
    [112] Zeng H C. Synthetic architecture of interior space for inorganic nanostructures[J].J. Mater.Chem[J].2006,16 (7): 649.
    [113] Mukesh Agrawal, Andrij Pich, Nick E, et al. Polystyrene?ZnO Composite Particles with Controlled Morphology[J].Chem. Mater.2007 (19): 1845–1852.
    [114]Yang J H,Takehiko Sasaki.Synthesis of CoOOH Hierarchically Hollow Spheres by Nanorod Self-Assembly through Bubble Templating[J].Chem.Mater.2008, 20(5): 2049-2056.
    [115] Arnal P M, C. Weidenthaler, Schuth F.Highly, et al. Monodisperse Zirconia-Coated Silica Spheres and Zirconia/Silica Hollow Spheres with Remarkable Textural Properties[J].Chem. Mater.2006, 18(11):2733-2739.
    [116] Sun Xiaoming, Li Yadong.Ga2O3 and GaN Semiconductor Hollow SpheresAngew[J]. Chem. Int. Ed. 2004, 43 (29): 3827-3831.
    [117] Yang Mu, Ma Jin, Zhang Chengliang, et al.General Synthetic Route toward Functional Hollow Spheres with Double-Shelled Structures[J].Angew. Chem. Int. Ed.2005, 44(41):6727-6730.
    [118] Guo Zhiyan, Fangfang, Jian Fanglin, et al .A simple method to controlled synthesis of CeO2 hollow microspheres[J]. Scripta Materialia,2010, 61 (1):48-51.
    [119] 9 Xie Xiaoli, Yang Heqing, Zhang Fenghua, et al. Synthesis of hollow microspheres constructed withγ- Fe2O3 nanorods and their photocatalytic and magnetic properties[J]. Journal Alloys Compounds. 2009 (477): 90–99.
    [120]Zhang Yanping , Chu Ying, Dong Lihong, et al. One-step synthesis and properties of urchin-like PS/α-Fe2O3 composite hollow microspheres[J]. Nanotechnology, 2007 (18): 435608-435613.
    [121]Dinesh Jagadeesan, Uzma Mansoori, Pranab Mandal, et al. Hollow Spheres to Nanocups: Tuning the Morphology and Magnetic Properties of Single-Crystalline a-Fe2O3 [J]. Nanostructures, Angew. Chem. Int. Ed, 2008 (47): 7685–7688.
    [122] Zeng S,Tang K,Li T,etal. Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment[J].J. Phys. Chem. C ,2007, 111(28): 10217-10225.
    [123]Sebahattin Gurmen, Burcak Ebin. Production and characterization of the nanostructured hollow iron oxide spheres and nanoparticles by aerosol route[J]. Journal of Alloys and Compounds.2010, 492 (1-2): 585-589.
    [124] W St?ber, A Fink. Controlled growth of monodisperse silica spheres in the micron size range[J].J. Colloid Interface Sci.,1968,26 (1): 62-69.
    [125] Lei Zhongli, Pang Xiaolong, Li Na, et al. A novel two-step modifying process for preparation of chitosan-coatedFe3O4/SiO2microspheres[J].Journalofmaterialsprocessingtechnology[J].2009(209):3218-3225.
    [126]Tang X , Liu Z, Zhang C, et al.Synthesis and Capacitive Property of Hierarchical Hollow Manganese Oxide Nanospheres with Large Specific Surface Area[J]. Journal of Power Sources,2009,193 (2): 939-943.
    [127] H Kim , J Cho.Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material [J].Chem. Mater,2008, 20 (5):1679-1681.
    [128]杨雷,唐元洪,赵世华等.溶剂热辅助法控制合成ZnO纳米结构及其光学性质研究[J].湖南大学学报2009, 36(5):57-61.
    [129]Ma Ming-Guo,ZhuYing-Jie,Cheng Guo-Feng,et al. Microwave synthesisand characterization of ZnO with various morphologies[J]. Materials Letters,2008, 62, 507–510.
    [130]Matin Sadat Mohajerani, Mahyar Mazloumi,et al.Self-assembled zinc oxide nanostructures via a rapid microwave-assisted route[J]. Journal of Crystal Growth, 2008 (310):3621–3625.
    [131] Liu Zhifeng, Li Junwei, Ya Jing,et al . Mechanism and characteristics of porous ZnO films by sol–gel method with PEG template [J].Materials Letters, 2008 ,62, 1190–1193.
    [132] M Vafaee, M Sasani Ghamsari. Preparation and characterization of ZnO nanoparticles by a novel sol–gel route[J].Materials Letters, 2007(61): 3265– 3268.
    [133]Okada T, Kawashima K, Ueda M,et al. Femtosecond laser deposited zinc oxide film[J].Applied Phys.A, 2005, 81:907-9l0.
    [134]Yang Y , Sun X W , Chen B J, et a1.Refractive indices of textured indium tin oxide and zinc oxide thin films [J].Thin Solid Films, 2006, 510(1):95- 101.
    [135]Marco Palumbo, Thierry Lutz, Cristina E Giusca, et al.From Stems (and Stars) to Roses: Shape-Controlled Synthesis of Zinc Oxide Crystals[J].Crystal Growth Design, 2009(9): 83432–83437.
    [136] Mao Zhiping, Shi Qiuping, Zhang Linping, et al. The formation and UV-blocking property of needle-shaped ZnO nanorod on cotton fabric[J]. Thin Solid Films , 2009 (517):2681–2686.
    [137] Lu Chung-Hsin, Lai Yuan-Cheng, et al .Rohidas B Kale. In?uence of alkaline sources on the structural and morphological properties of hydrothermally derived zinc oxide powders[J]. Journal of Alloys and Compounds , 2009(477):523–528
    [138]Y Liu ang, Kang Z H, Chen Z H, et al .Synthesis, Characterization, and Photocatalytic Application of Different ZnO Nanostructures in Array Configurations[J]. Crystal Growth Design,2009, 9,73222–73227.
    [139] Sunandan Baruah, Joydeep Dutta, et al. p H-dependent growth of zinc oxide nanorods [J]. Journal of Crystal Growth , 2009, 311:2549–2554.
    [140]Zhou Xingfua, Hu Zhaolina. Hollow microsphere assembly of ZnO nanosheets Materials Chemistry and Physics[J].2008, 112:592–595.
    [141]Makoto Moriya, Kyohei Yoshikawa.WSize-Controlled Submicrometer Hollow Spheres Constituted of ZnO Nanoplates from Layered Zinc Hydroxide [J]. Inorg. Chem. 2009, 48, 8544–8549.
    [142] Ni Yonghong, Wu Guogen, Zhang Xiaolei, et al.Hydrothermal preparation, characterization and property research of ?owerlike ZnO nanocrystals built up by nano?akesMaterials Research Bulletin[J]. 2008, 43:2919–2928.
    [143] Zuo Ahui, Hu Peng, Bai Liuyang, et al. Synthesis of tunable 3D ZnO architectures assemblied with nanoplates[J]. Cryst. Res. Technol,2009, 44(6): 613–618 .
    [144] Zhang Hongxia, Feng Jing, Wang Jun., et al. Preparation of ZnO nanorods through wet chemical method[J]. Materials Letters, 2007, 61: 5202–5205.
    [145] Hou Xianming, Zhou Feng, Yu Bo, et al. PEG-mediated synthesis of ZnO nanostructures at room temperature [J].Materials Letters , 2007, 61, 2551– 2555.
    [146]N Lepot, M K Van Bael, H Van den Rul, et al.Synthesis of ZnO nanorods from aqueous solution[J]. Materials Letters , 2007(61): 2624–2627.
    [147] Zhou X F , Hu Z L ,Chen Y, et al.ShangMicroscale sphere assembly of ZnO nanotubes[J]. Materials Research Bulletin, 2008(43): 2790–2798.
    [148] Shi Xixi, Pan Lingling, Chen Shuoping, et al. Zn(II)-PEG 300 Globules as Soft Template for the Synthesis of Hexagonal ZnO Micronuts by the Hydrothermal Reaction Method[J]. Langmuir 2009, 25(10): 5940–5948.
    [149] Li Dongsheng, Zhan Hui g, Yang Deren, et al.Low-Temperature Growth of Uniform ZnO Particles with Controllable Ellipsoidal Morphologies and Characteristic Luminescence Patterns[J]. J. Phys. Chem. B , 2006, 110, 19147-19153.
    [150]Mahyar Mazloumi, Shadi Taghavi.Hamed Arami, et al. aSelf-assembly of ZnO nanoparticles and subsequent formation of hollow microspheres[J]. Journal of Alloys and Compounds, 2009, 468 :303–307.
    [151] Xu Shuang, Li Zi-Heng, Wang Qun, et al.A novel one-step method to synthesize nano/micron-sized ZnO sphere[J]. Journal of Alloys and Compounds, 2008(465): 56–60.
    [152] Jiang Hao, Hu Junqing, Gu Feng, et al. Large-Scaled, Uniform, Monodispersed ZnO Colloidal Microspheres[J]. J. Phys. Chem. C 2008, 112, 12138–12141.
    [153] L Fei, Huang Xintang, Jiang Yin, et al.Synthesis and characterization of ZnO/SiO2 core/shell nanocomposites andhollow SiO2 nanostructures[J]. Materials Research Bulletin ,2009,44:437–441.
    [154]景晓燕,匡巍巍,刘婧媛等.醇热法制备ZnO纳米棒及其发光性能[J].应用化学, 2009, 26(1): 90-93.
    [155] Liu Xian-Ming, Yin Wei-Dong, Miao Shao-Bin, et al .Fabrication of CuO/Fe2O3 hollow hybrid microspheres[J]. Materials Chemistry and Physics, 2009.113: 518–522.
    [156] Yu Jiaguo, Yu Xiaoxiao, Huang Baibiao, et al. Hydrothermal Synthesis and Visible-light Photocatalytic Activity ofNovel Cage-like Ferric Oxide Hollow Spheres[J]. Crystal Growth Design, 2009, 9(3):1474–1480.
    [157] Jia Xiaohua, Fan Huiqing, Zhang Faqiang, et al.Using sonochemistry for the fabrication of hollow ZnO microspheres[J]. Ultrasonics Sonochemistry , 2010(17):284–287.
    [158] Cao Shao-Wen , Zhu Ying-Jie.Surfactant-Free Preparation and Drug Release Property of Magnetic Hollow Core/Shell Hierarchical Nanostructures[J]. J. Phys. Chem. C 2008, 112, 12149–12156.
    [159] Li Xun, Yu Xin, He Jinghui, et al .Controllable Fabrication, Growth Mechanisms, and Photocatalytic Properties of HematiteHollow Spindles[J]. J. Phys. Chem. C 2009, 113, 2837–2845.
    [160]韩冬,张树朝.溶剂热法制备六角锥形ZnO及其光致发光性能[J].物理化学学报,2008,24(3):539—542.
    [161]袁艳红,赵华,陈锐等.不同波长光激发下氧化锌纳米线的发光特性研究[J].上海电机学院学报,2009, 12(2): 151-153.
    [162]袁艳红,侯洵,高恒等.超声处理对ZnO薄膜光致发光特性的影响[J ].物理学报,2006 ,55 (1) :446-449.
    [163]宋国利,梁红,孙凯霞等.纳米晶ZnO可见发射机制的研究[J ].光子学报, 2004 , 33 (4) :485-488. [ 164 ] Vanheusden K ,Seager C H ,Warren W L , et al .relation between p hotoluminescence and oxygen vacan-cies in ZnO phosphors [J ]. Applied Physics Letters , 1996 , 68 (3) : 403-405. [ 165 ] Look D C , Reynolds D C , Fang Z Q , et al. Point defect characterization of GaN and ZnO [ J ]. Materials Science Eng B , 1999 , 66 (1) : 30-32.
    [166] Jung Seung-Ho,Eugene, LeeKun-Hong, et al .Sonochemical Preparation of Shape-Selective ZnO Nanostructures Crystal Growth Design, 2008(8): 1265–1269.
    [167] Cheng Bing , Wang Xiufeng, Liu Liying, et al .Growth mechanism and morphology dependent luminescence properties of ZnO nanostructures prepared in aqueous solution[J]. Materials Letters, 2008 (62): 3099–3102.
    [168] Mahyar Mazloumi, Shadi Taghavi.Hamed Arami a Self-assembly of ZnO nanoparticles and subsequent formation of hollow microspheres[J]. Journal of Alloys and Compounds, 2009 (468): 303–307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700