Paraconiothyrium variabile GHJ-4漆酶的发酵、分离纯化及其酶学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶(Laccase,EC 1.10.3.2)是一种含铜的多酚氧化酶,具有广泛的底物,不仅能催化氧化多种芳香族化合物,还能降解木质素、去除许多有毒酚类物质如苯氧基类除草剂等的毒性,还可以使多种染料脱色及去除石油工业废水的毒性;因此在造纸、环保、食品、医药卫生、生物检测等领域具有较大的研究和应用价值。鉴于此,以本实验室筛选到的一株高产漆酶菌株Paraconiothyrium variabile GHJ-4 (简称:GHJ-4)为研究对象。采用统计学方法对GHJ-4菌株产漆酶的发酵培养基及发酵条件进行了优化,并进一步对菌株GHJ-4所产漆酶进行了分离纯化及其酶学性质的研究,主要内容如下:
     1.通过摇瓶培养,结合统计分析方法研究了发酵培养基和发酵条件对GHJ-4产漆酶活性的影响。
     通过单次因子试验和正交试验确定了发酵培养基的最佳碳源、氮源、碳氮比、无机盐。在此基础上,通过响应面法对发酵培养基进行优化,首先采用Plackett-Burman(PB)试验设计筛选出了影响该菌产漆酶的三个重要因素:可溶性淀粉、牛肉浸膏和CuSO_4;继而采用最陡爬坡试验逼近最大响应区域,并结合中心组合试验以及响应面分析,建立了以漆酶酶活为响应值的二次回归方程模型,从中获得了最佳发酵培养基为:麸皮30 g/L,可溶性淀粉58.08 g/L,牛肉浸膏3.39 g/L,NaNO_3 1 g/L,KH_2PO_4 3 g/L,CuSO_4 0.554 g/L。
     在优化后发酵培养基的基础上,结合统计分析方法对发酵条件经了优化,首先用PB法筛选出四个影响较大的因素,即接种量、培养时间、装样量和转速;继而采用最陡爬坡试验逼近最大响应区域,并结合中心组合试验以及响应面分析,建立了以漆酶酶活为响应值的二次回归方程模型,从中获得了最佳发酵条件为:接种量6.43%(v/v),温度28℃,初始PH 4,培养时间182 h,装液量72.5 mL/250 mL,转速157 r/min,种龄96 h。
     采用最佳发酵培养基和发酵条件,供试菌株的漆酶酶活达到710.44 U/mL,较优化前漆酶的产量提高了16.4倍,其试验值与预测值基本相符,说明预测模型可靠性高,可应用于漆酶发酵条件的优化。
     2. GHJ-4漆酶的分离纯化及其酶学性质
     菌株GHJ-4液态发酵所产的漆酶通过硫酸铵分级沉淀、DEAE-sepharose Fast Flow阴离子交换树脂、Sephadex G-75分子筛柱层析三步分离纯化后,得到电泳纯的漆酶,纯化倍数为8.1倍,回收率为24.2%,其分子量约53 kDa。
     纯化后的漆酶最适温度和最适pH分别为50℃和5.0,该酶在55℃以下pH3.5~6.5范围内较为稳定;Cu~(2+)、Mg~(2+)、Zn~(2+)对漆酶酶活有明显促进作用,而Hg~(2+)、Fe~(3+)、Ag~+对漆酶酶活有显著抑制作用。以愈创木酚为底物时,测定该酶的米氏常数Km值为62.07μmol/L,最大反应速度Vmax为68.97 mmol/(L·min)。
Laccase is a type of multi copper-containing polyphenol oxidases capable of oxidizing a wide range of polyphenols and other lignin-derived aromatic compounds. Laccases can degrade lignin and phenoxy containing herbicide and waste water in petroleum industry and affect toxic phenolic materials; they can thus be widely used in paper pulp industry, food industry, medication and sanitation, biosensor and envir-onment protection. Hence, this study t a strain of high laccase producing microorganism was obtained from my laboratory. It was termed as Paraconiothyrium variabile GHJ-4 that was be called for GHJ-4 short. The fermentation medium and fermentantion conditions were statistical optimized. Lastly purification and characterization of laccase was operated from GHJ-4. The main contents were as follows.
     1. Through the cultivation in shake-flask fermentation, the effects of environmental conditions and nutrition on production of laccase by GHJ-4.
     Refering to the effects of nutrition on production of laccase, the optimum carbon, nitrogen, C/N and inorganic salt were confirmed by one-factor at a time and orthogonal test experiment. Firstly, we screened the important parameters by Plackett-Burman design. It showed that three factors playing the important roles in the medium, including soluble starch, beef extract and CuSO_4. After steepest ascent experiment approaching the optimal level of the three factors, the center composite design and response surface analysis were applied to establish the second-order equation model for the yield of laccase. On the last step, the optimal concentrations of components were determined by central composite design and response surface analysis.
     The optimal medium for GHJ-4 was composed of (in g/L): wheat bran 30, soluble starch 58.08, beef extract 3.39, NaNO_3 1, KH_2PO4 3, CuSO_4 0.554.
     Based on the optimal medium, statistical analysis methods were applied to optimize the fermentation conditions. Firstly, Plackett-Burman design was used to investigate the main factors affecting laccase yield of GHJ-4. The results showed that four factors playing the important roles in the fermentation conditions, including inoculation volume, culture time, broth content and rotating speed. After steepest ascent experiment approaching the optimal level of the four factors, central composite design and response surface analysis were applied to establish the second-order equation model for the yield of laccase. On the last step, the optimal fermentation conditions were determined by central composite design and response surface analysis.
     The optimal fermentation conditions were obtained as following: 6.43% of inoculation, 28℃of culture temperature, initial pH value 4, 182 h of culture time, 72.5 mL of broth content, 157 r/min of rotating speed, and 96 h of seed age. Under this optimum conditions, the activity of laccase increased nearly 16.4 times to 710.44 U/mL and the experimental values argreed with the predicted values. These results suggested that the predicted model was reliable and available for the optimization of laccase fermentation conditions.
     2. Purification and characterization of laccase from GHJ-4.
     The laccase produced by strain GHJ-4 in liquid-state fermentation was isolated and purified by a three-step process: ammonium sulfate precipitation, DEAE-sepharose Fast Flow aion-exchange chromatography, Sephadex G-75 gel penetration chromatography. After the three-step purification, we obtained a electrophoresis pure laccase, its purity and yield were 8.1 folds and 24.2% of the crude extract respectively. The molecular mass of the laccase was about 53 kDa.
     The laccase was stable within the range of pH between 3.5 and 6.5 and at the temperature lower than 55℃with the maximal activity at 50℃, pH 5.0. Laccase could be markedly activated by Cu~(2+), Mg~(2+) and Zn~(2+) while be inhibited by Hg~(2+), Fe~(3+) and Ag~+. The apparent Km of guajacolum was 62.07μmol/L, the Vmax was 68.97 mmol/(L·min).
引文
钞亚鹏,钱世钧.真菌漆酶及其应用[J].生物工程进展, 2001, 21(5): 23-28.
    陈华友,张春霞,马晓珂,齐向辉.蛋白质分理纯化策略[J].安徽农业科学, 2009, 37(36): 17849-17853.
    初华丽,梁宗琦.漆酶的潜在应用价值[J].山地农业生物学报, 2004, 23(6): 529-533.
    郭梅,蒲军,梁鹏,温斌,路福平,杜连祥.白腐菌Trametes versicolor产漆酶发酵条件的优化[J].食品研究与开发, 2006, 127(6): 9-12.
    何为,詹怀宇,王习文,伍红.一种改进的漆酶酶活检测方法[J].华南理工大学学报(自然科学版).2003, 31(12): 46-50.
    黄乾明,谢君,张寒飞,杨菲,杨婉身.漆酶高产菌株的诱变选育及其产酶条件[J].菌物学报, 2006, 25(2): 263-372.
    康从宝,刘巧,李清心,曲音波,高培基.白腐菌产漆酶的纯化及部分酶学性质[J].中国生物化学与分子生物学报, 2002,18(5): 638-642.
    兰瑞芳,林少琴,林玉满,冯珊.杏鲍菇漆酶的生物学特性[J].食用菌学报, 2002, 9(2): 14-16.
    李全宏,李娜.浓缩苹果汁中蛋白质的提纯与性质研究[J].食品科学, 2006, 27(11): 244-248.
    梁帅,周德明,冯友仁.白腐真菌漆酶的研究进展及应用前景[J].安徽农业科学, 2008, 36(4): 1317-1319.
    林鹿,陈嘉翔,余家鸾,高扬,黄峰,周学飞.白腐菌对纸浆CEH漂白废水的脱色、消除毒性和芳香化合物的降解[J].中国造纸学报, 1996, 11 (S1): 69-74.
    林鹿,陈嘉翔,余家鸾,高扬,王伟,周学飞,黄峰.降解木素酶和降解木聚糖酶的生物漂白及机理[J].中国造纸学报, 1997, 12 (1): 48-53.
    刘昌盛,黄凤洪,夏伏建.茶皂素脱色工艺研究[J].粮食与油脂, 2004, 12: 26-27.
    刘高强,王晓玲,韩文军,王卫.响应曲面法优化灵芝廉价型深层发酵培养基的研究[J]. 菌物学报, 2009, 28(6): 825-831.
    刘建峰,葛向阳,梁运祥.响应面分析法优化酸性蛋白酶固态发酵培养基的研究[J].饲料工业, 2006, 27(24): 7-10.
    刘娜,石淑兰,秦梦华.漆酶/丁香酸甲酯改善未漂硫酸盐浆纤维特性的EPR研究[J].中国造纸学报, 2009, 24(1): 11-15.
    刘尚旭,董佳里,张义正.糙皮侧耳Ax3产漆酶条件及部分酶学性质研究[J].四川大学学报(自然科学版), 2004, 41(1): 160-163.
    刘淑珍,钱世钧.担子菌漆酶的分离纯化及其性质研究[J].微生物学报. 2003, 43(1): 73-78.
    骆健华,金志华,岑沛霖.褐黄孢链霉菌纳他霉素发酵条件优化[J].高校化学工程学报, 2006, 20(1): 68-73.
    牟洪燕,詹怀宇,付时雨,詹谣,刘浩.漆酶处理废新闻纸脱墨浆对纤维性能的影响[J]. 中华纸业, 2009, 30(8): 26-30.
    潘春梅,樊耀亭,赵攀.发酵法产氢培养基的响应面分析优化[J].农业生物技术科学, 2008, 24(1): 38-44.
    秦梦华,傅英娟,高培基.酶预处理对麦草NaOH-AQ制浆性能的影响[J].中国造纸学报, 2000, 15(1): 33-38.
    秦小琼,傅庭治,曹幼琴,姜建明.红栓菌胞外漆酶的诱导、纯化及部分特性研究[J].微生物学报, 1996, 36(5): 360-366.
    孙臣忠,王永文,张蕾.三种聚丙烯酰胺凝胶提纯电泳在蛋白质提纯中的应用[J].检验医学, 2005, 20(5): 439-441.
    汤镇江,徐清华,秦梦华.漆酶对未漂马尾松磨木浆的酶法改性[J].纤维素科学与技术, 2004, 12(2): 10-12.
    仝向荣,王德斌,马绍宾.棒纹牛蛭体内抗凝血蛋白的提取[J].昆明师范高等专科学校学报, 2004, 26(4): 70-72.
    万云洋,杜予民.漆酶结构与催化机理[J].化学通报, 2007(9): 662-670.
    王剑锋,王璋,饶军,李江,白涛.烟管菌漆酶的分离纯化及部分酶学性质研究.菌物学报. 2008, 27(2): 297-308.
    王晋,孙立明,何军邀.响应面法优化热带假丝酵母104菌株产羰基还原酶发酵培养基[J] .生物工程学报, 2009, 25(6): 863-868.
    王宜磊,毕红卫.多孔菌漆酶性质研究[J].淄博学院学报, 2002, 4(4): 12-14.
    王宜磊,刘兴坦.彩绒革盖菌漆酶及多酚氧化酶活性研究[J].生物技术, 2000, 10(6): 15-17.
    王宜磊.高酶活菌株的筛选及漆酶特性[J].微生物学杂志, 2004, 24(1): 11-13.
    王志新,施晓燕,蔡宇杰,廖祥儒.白腐真菌SYBC-L2漆酶的分离纯化及其在毛纺染料脱色中的应用[J].生物技术通报. 2009(8): 156-165.
    望天志,李卫萍,万洪文,俞芸,屈松生.微生物法测定漆酶的活性[J].自然杂志.1997,19(6): 361.
    吴坤,闵航,朱显峰,贾新成,张世敏,喻子牛.杂色云芝漆酶的分离、纯化和酶学特性研究[J].高校化学工程学报. 2003, 17(2): 173-179.
    吴坤,朱显峰,张世敏,贾新成,闵航.杂色云芝产漆酶的发酵条件研究[J].菌物系统, 2001, 20(2): 207-213.
    席丹,陶用珍.糙皮侧耳菌漆酶的分离纯化及部分性质研究[J].纤维素科学与技术,2003, 11(4): 22-30.
    肖亚中,张敏,吴涓,王怡平,杭俊,曾王勇,施蕴.影响白腐真菌AH28-2菌株漆酶合成的因子和发酵条件[J].生物工程学报, 2001, 17(5): 579-583.
    许亚军,林俊岳.蛋白质提纯研究进展[J].天津化工, 2006, 20(4): 9-12. 许颖,兰进.真菌漆酶研究进展[J].食用菌学报, 2005, 12(1): 57-64.
    杨建明,张小敏,刑增涛,陈明杰,曹晖,谭琦,潘迎捷.毛木耳漆酶纯化及其部分漆酶特性的研究[J].菌物学报, 2005, 24(1): 61-70.
    姚朝阳,郭伟云,牛敬媛,邵强,李宗义.云芝漆酶的生物降解与染料脱色作用研究[J]. 安徽农业科学, 2009, 37(20): 9363-9365.
    叶汉玲,王传槐, John A. Buswell.新鲜香菇子实体漆酶的纯化与性质[J].南京林业大学学报, 1997, 21(2):50-53.
    袁志发,周静芋.试验设计与分析(M).北京:高等教育出版社, 2000: 339-346.
    张莉,贾志宽.白腐菌(T. pubescens MB89)漆酶的固定化及其酶学性质研究.西北农林科技大学学报(自然科学版) [J]. 2009, 37(10): 151-166.
    张鹏.以ABTS为底物测定漆酶活力的方法[J].印染助剂. 2007, 24(1): 43-45.
    张玉香,尹卓荣.甘露糖蛋白的提纯及分子量测定[J].酿酒科技, 2005, (4): 72-74.
    章毅,曾光明,汤琳,郁红艳,李建兵.基于磁性纳米粒子固定技术的漆酶传感器用于垃圾堆肥中邻苯二酚的检测[J].环境科学, 2007, 28(10): 2320-2325.
    赵凤霞,张莉.白腐菌Trametes pubescens MB89产漆酶发酵条件的优化及其部分酶学性质的研究[J].西北农业学报. 2009, 18 (4) :175-180.
    赵国柱,张天宇.腐生砖格丝孢菌的一些有趣种[J].山东农业大学学报, 2003, 34(3): 437-440.
    赵国柱,张天宇.中国单格孢属(丝孢纲)的种[J].菌物学报, 2007, 26(3): 324-335.
    赵敏,杨谦,辛颖,朱世奇,慕庆峰.扁芝漆酶诱导与产生的初步研究[J].北京林业大学学报, 2004, 26(4): 43-47.
    周雪,朱启忠.白腐真菌漆酶的纯化及性质[J].生物加工过程. 2011, 9(2): 53-57.
    朱启忠.毛栓菌胞外漆酶活性的初步研究[J].微生物学杂志, 2000, 20(1):62.
    Alfred M. M. and Richard C. S. Laccase: new function for an old enayme [J]. Phytochemistry, 2002. 60: 551-565.
    Arias M. E., Arenas M., Rodríguez J., Soliveri J., Ball A. S. and Hernandez M. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335 [J]. Appl. Environ. Microbiol. 2003, 69: 1953-1958.
    Baldrian P. Fungal laccase-occurrence and properties [J]. FEMS Microbiol. Rev. 2006, 30: 215-242.
    Baldrian P. Fungal laccases-occurrence and properties [J]. FEMS Micro. Rev. 2006(30): 215-242.
    Baldrian P. Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme [J]. Appl. Microbiol.
    Biotechnol. 2004, 63: 560-563.
    Bose S., Mazumder S. and Mukherjee M. Laccase production by the white-rot fungus Termitomyces clypeatus [J]. Journal of Basic Microbiology, 2007, 47: 127-131.
    Brinch D. S. and Pedersen P. B. Toxicological studies on laccase from Myceliophthora thermophila expressed in Asperigillus oryzae [J]. Regul. Toxicol. Pharmacol. 2002, 35: 296-308.
    Camarero S., Ibarra D., Martínez A. T., Romero J., Gutiérrez A. and JoséC. del Ro. Paper pulp delignification using laccase and natural mediators [J]. Enzyme Microbiol. Technol. 2007, 40: 1264-1271.
    Claus H. and Filip Z. The evidence of a laccase-like enzyme activity in a Bacillus sphaericus strain [J]. Microbiol. Res. 1997, 152:209-216.
    Claus H. Laccases: structure, reactions, distribution [J]. Micron. 2004: 93-96.
    Coll P. M., Fernández-Abalos J. M., Villanueva J. R. and Pérez P. Purification and characterization of a phenoloxidas (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971) [J]. Appl. Environ. Microbiol. 1993, 59: 2607-2613.
    Crowe J. D. and Olsson S. Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments [J]. Appl. Environ. Microbiol. 2001, 67: 2088-2094.
    Dedeyan B., Klonowska A., Tagger S., Tron T., Iacazio G., Gil G. and Petit J. L. Biochemical and molecular characterization of a laccase from Marasmius quarcophilus [J]. Appl. Environ. Microbiol. 2000, 66: 925-929.
    Fukushima Y. and Kirk T. K. Laccase component of the Ceriporiopsis subvermispora lignin-degrading system [J]. Appl. Environ. Microbiol. 1995, 61: 872-876.
    Galhaup C. and Haltrich D. Enhanced formation of laccase activity by the white rot fungus Trametes pubescens in the presence of copper [J]. Appl. Microbiol. Biotechnol. 2001, 56: 225-232.
    Galhaup C., Goller S., Peterbauer C. K., Strauss J. and Haltrich D. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions [J]. Microbiol. 2002, 148: 2159-2169.
    Garzillo A. M., Colao M. C., Buonocore V., Oliva R., Falcigno L., Saviano M., Santoro A. M., Zappala R., Bonomo R. P., Bianco C., Glardina P., Palmieri G. and Sannia G. Structure and kinetic charcterization of native laccase from Pleurotus ostreatus, Rigidoporus lignosus and Trametes trogii [J]. J. Protein Chem. 2001, 20: 191-201.
    Givaudan A., EffosseA., Faure D., Potier P., Bouillant M. L. and Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in nonmotile strains of Azospirillum lipoferum [J]. FEMS Microbiol. Lett. 1993, 108(2): 205-210.
    Hakulinen N., Kiiskinen L. L., Kristiina K., Saloheimo M., Paananen A., Koivula A. and Rouvinen J. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site [J]. Nature Stuctureal Biology. 2002, 9: 601-605.
    Hall M., Scott T., Sugumaran M., S?derh?ll K. and Law J. H. Proenzyme of Manduca sexta phenol oxidase: purification, activation, substrate specificity of the active enzyme, and molecular cloning [J]. Proc. Natl. Acad. Sci. 1995, 92: 7764-7768.
    Héla Z. M., Tahar M., Abdelhafidh D., Sami S., Angel T. M. and Maria J. M. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme [J]. Enzyme Microbiol. Technol. 2006, 39: 141-148.
    Jaouania A., Guillén F., Penninckx M. J., Martínez A. T. and Martínez M. J. Role of Pycnoporus laccase in the degradation of aromatic compounds in olive mill wastewater [J]. Enzyme Microbiol. Technol. 2005, 36: 478-486.
    Jordaan J., Leukes W. D. Isolation of a thermostable laccase with DMAB and MBTH oxidative coupling activity from a mesophilic white rot fungus. Enzyme Microbial Technol. 2003, 33: 212-219.
    Kowalski S. K., Vining G. G., Montgomery D. C., and Borror C. M. Modifying a central composite design to model the processmean and variance when there are hard-to-change factors [J]. Appl. Statist. 2006, 55: 615-630.
    Labat E., Morel M. H. and Rouau X. Effects of laccase and ferulic acid on wheat flour doughs [J]. Cereal Chem. 2000, 77: 823-828.
    Leonowicz A, Cho N. S., Luterek J. Fungal laccase:properties and activity on lignin [J]. J. Basic Microb. 2001, 41:185-227.
    Li C., Bai J. H., Cai Z. L. and Ouyang F. Culture medium optimization and primary kinetics analysis for nisin production [J]. Chinese Journal of Biotechnolo. 2001, 17: 187-192.
    Liers C., Ullrich R., Pecyna M., Schlosser D. and Hofrichter M. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha [J]. Enzyme Microb. Technol. 2007, 41: 785-793.
    Linden R. M., Schilling B. C., Germann U. A. and Lerch. Regulation of laccase synthesis in induced Neurospora crassa cultures [J]. Curr. Genetics. 1991, 19:375-381.
    Litthauer D., Vuuren M. J. V., Tonder A. V. and Wolfaardt F. W. Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108) [J]. Enzyme Microb. Technol. 2007, 40: 563-568.
    Liu C. Q., Ruan H. and Shen H. F. Optimization of the fermentation medium for Alpha-galactosidase production from Aspergillus foetiduszu-g1 using response surface methodology [J]. Food Microbilogy and Safety. 2007, 72: 120-125.
    Liu N., Shi S. L., Gao Y and Qin M. H. Fiber modification of kraft pulp with laccase in presence of methyl syringate [J]. Enzyme and Microb. Technol. 2009, 44: 89-95.
    Minussi R. C., Pastore G. M. and Durán N. Potential applications of laccase in the food industry [J]. Trends in Food Science & Technology. 2002, 13: 205-216.
    Murugesan K., Arulmani M., Nam I. H., Kim Y. M., Chang Y. S. and Kalaichelvan P. T. Purification and characterization of laccase produced by a white rot fungus Pleurotus sajor-caju under submerged culture condition and its potential in decolorization of azo dyes [J]. Appl. Microbiol. Biotechnol. 2006, 72: 939-946.
    Nagai M., Kawata M., Watanabe H., Ogawa M., Saito K., Takesawa T., Kanda K. and Sato T. Important role of fungal intracellular laccase formelanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies [J]. Microbiol. 2003, 149: 2455-2462.
    Nina H., Laura-Leena K., Kristiina K. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site [J]. Nature Stuctureal Biology, 2002, 9(8): 601-605.
    Ohga S. and Royse D. J. Transcriptional regulation of laccase and cellulase genes during growth and fruiting of Lentinula edodes on supplemented sawdust [J]. FEMS Microbiol. Lett. 2001, 201: 111-115.
    Palmieri G., Giardina P., Bianco C., Fontanella B. and Sannia G. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus [J]. Appl. Environ. Microbiol. 2000, 66: 920-924.
    Palmieri G., Giardina P., Bianco C., Scaloni A., Capasso A. and Sannia G. A novel white laccase from Pleurotus ostreatus [J]. The Journal of Biological Chemistry. 1997, 272: 31301-31307.
    Palmieri G., Giardina P., Desiderio B., Marzullo L., Giamberini M. and Sannia G. A new enzyme immobilization procedure using copper alginate gel: application to a fungal phenol oxidase [J]. Enzyme Microbiol. Technol. 1994, 16: 151-158.
    Petersen B. R. and Mathiasen T. E. Deoxygenation of a food item using a laccase [Z]. PCT Int Appl WO, 96/31133 A1.
    Petit-Conil M., Semar S., Niku-Paavola M.–L., Sigoillot J. C., Asther M., Anke H. and Viikari L. Potential of laccases in softwood-hardwood high-yield pulping and bleaching [J]. Prog. Biotechnol. 2002, 21: 193-201.
    Rodríguez Couto S. and Toca Herrera J. L. Industrial and biotechnological applications of laccases: a review [J]. Biotechnology Advances, 2006, 24: 500-513.
    Rodríquez E., Pickard M. A. and Vazquez-Duhalt R. Industrial dye decolorization by laccases from ligninolytic fungi [J]. Curr. Microbiol. 1999, 38: 27-32.
    Schlosser D., Grey R. and Fritsche W. Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood [J]. Appl. Microbiol. Biotechnol. 1997, 47: 412-418.
    Scott C. B., Hyug-Han K. and Gary B. Electoreduction of O2 to water on the“wired”laccase cathode [J]. Phys. Chem. B. 2001, 105: 11917-11921.
    Sharma K. K. and Kuhad R. C. Laccase: enzyme revisited and function redefined [J]. Indian Journal of Microbiology. 2008, 48: 309-316.
    Shin K. S and Lee Y. J. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus [J]. Arch. Biochem. Biophys. 2000, 384: 109-115.
    Solano F., Garcia E., De Egea E. P. and Sanchez-Amat A. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl. Environ. Microbiol [J]. 1997, 63:3499-3506.
    SvobodováK., Majcherczyk A., Novotny ?. and Kües U. Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes [J]. Bioresource Technol. 2008, 99: 463-471.
    Tang X. J., He G. Q., Chen Q. H., Zhang X. Y. and Ali M. A. M. Medium optimization for the production of thermal stableβ-glucanase by Bacillus subtilis ZJF-1A5 using response
    surface methodology [J]. Bioresource Technology, 2004, 93: 175-181. Thurston C. F. The structure and function of fungal laccases [J]. Microbiology. 1994, 140: 19-26.
    Valá?kováV. and Baldrian P. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus [J]. Res. Microbiol. 2006, 157:119-124.
    Wang J. W., Wu J. H., Huang W. Y. and Tan R. X. Laccase production by Monotospora sp., an endophytic funguns in Cynodon dactylon [J]. Bioresource Technol. 2006, 97: 786-789.
    Waterman S. R., Hacham M., Panepinto J., Hu G., Shin S. and Williamson P. R. Cell wall targeting of laccase of Cryptococcus neoformans during infection of mice [J]. Infec. Immunity. 2007, 75(2): 714-722.
    Willner I. Biomaterials for sensors, fuel cells and circuitry [J]. Science, 2002, 298: 2407-2408.
    Wong K. K. Y. and Mansfield S. D. Enzymetic processing for pulp and paper manufacture - A review [J]. Appita J, 1999, 52: 409-418.
    Wood D. A. Production, purification and properties of extracellular laccase of Agaricusbisporus [J]. J. Gen. Microb. 1980, 117: 327-338.
    Wu H. Q., Tian L., Zhang J. M., Sun Z. B. and Huang L. P. Culture medium optimization for pigment production with RSM method [J]. Acta Oceanologica Sinica, 2005, 24: 145-149.
    Yamaguchi H., Maeda Y. and Sakata I. Bonding among woody fibers by use of enzymatic phenol dehydroge native polymerization: mechanism ofgeneration of bonding strength [J]. Mokuzai Gakkaishi. 1994, 40: 185-190.
    Yaropolov A. I., Skorobogat’ko O. V., Vartanov S. S. and Varfolomeyev S. D. Laccase: properties, catalytic mechanism, and applicability [J]. Appl. Biochem. Biotechnol. 1994, 49: 257-280.
    Yatsu J. and Asano T. Cuticle laccase of the silkworm, Bombyx mori:Purification, gene identification and presence of its inactive precursor in the cuticle [J]. Insect Biochemistryand Molecular Biology, 2009, 39: 254-262.
    Yoshida H. Chemistry of Lacquer (Urusht) part 1 [J]. Chem. Soc. 1883, 43: 472-486.
    Zhang B. B., Zhao M., Lu L., Dong L., Zhao L. Y. and Liang S. C. Characterization and decolorization ability of a laccase from white rot fungus Cerrena unicolor LS0547 [J]. Mycosystema. 2009, 28: 737-743.
    Zhao G. Z., Liu X. Z. and Wu W. P. Helicosporous hyphomycetes from China [J]. Fungal Diversity. 2007, 26: 313-524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700