Klebsiella pneumoniae 342 基因组尺度代谢网络的构建与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
代谢工程20年来的发展表明,从基因组水平对其代谢网络进行建模与分析十分必要。如今随着系统生物学等相关学科的发展,虽然已经建立了87个基因组尺度代谢网络模型,但是每个模型的建立都很耗时耗力,而且对这些模型的更新同样是十分不便。分析原因主要是由于生物自身数据的复杂性以及由此造成的KEGG对构建代谢网络模型的不适应性,所以有必要建立一个更适合代谢网络建模的数据库,实现代谢网络建模的系统化与规范化操作。
     克雷伯氏菌作为一种兼性厌氧菌,被广泛地应用在各种发酵过程中,特别是在发酵甘油生产1,3-丙二醇的过程中,克雷伯氏菌以其较高的转化率和1,3-丙二醇生产能力而最受关注。但是截至目前,尚未能找到稳定地提高其1,3-丙二醇生产能力的有效改造策略,对菌株的改造工作往往是顾此失彼,究其原因是对克雷伯氏菌的代谢调控机制缺乏系统水平的理解,所以对其基因组尺度代谢网络模型进行建立与分析显得尤为重要。但是,迄今还未见有关克雷伯氏菌基因组尺度代谢网络模型的报道。
     为此,本文首先以KEGG为基础,综合其它数据库的数据和文献资料,对已有代谢数据进行重新整理,建立起了更加适合代谢网络建模与分析的数据库,其中包含七个独立表,2471个生物的8601条反应记录。然后利用建立的数据库对K. pneumoniae 342的基因组尺度代谢网络进行了建模:首次提出以基因作为边,以反应物作为节点构建的结构分析模型,使其代谢网络层次能够反映基因信息,所建立的模型共包含7735条记录,涉及1209个基因,1998个反应的共计2143个反应对。最后,通过对其应用复杂网络理论进行分析发现,K. pneumoniae 342菌株的基因组尺度代谢网络的聚合系数为0.038,度分布符合幂率分布,属于无标度网络,对随机节点删除具有较高的鲁棒性,但对目的性攻击比较脆弱。对巨强连通体的分析表明最大路径长度为30,半径为16,特征路径长度为8.155,符合小世界网络特征,这使得环境因素造成的影响能够迅速传遍网络,对菌体快速适应复杂多变的环境具有重要意义。
     此外,本文利用建立的本地数据库,建立了K. pneumoniae 342菌株用于动力学分析的基因组尺度代谢网络模型。但由于调控信息等的缺乏,暂未进行动力学模拟与分析。
     对K. pneumoniae 342基因组尺度代谢网络模型的建立与分析,填补了克雷伯氏菌在这方面研究的空白,为今后对其进行基因组尺度的代谢调控动力学研究奠定了基础。
It is necessary to construct and analyze the genome-scale metabolic network after the 20 years development of metabolic engineering. Although, following the development of system biology and its related study, it has been constructed over 87 genome-scale network now, each one is very time-consuming, labor-intensive, and troublesome to update. Since the complexity of biological data led to the KEGG could not directly be used to construct the metabolic network, it's necessary to build a new database, more suitable to construction of metabolic network.
     Klebsiella pneumoniae as a facultative anaerobe is widely used in various fermentation processes, especially in the bioconversion of glycerol to produce 1,3-propanediol due to its high conversion rate and the 1,3-propanediol production capacity. However, it has not been developed with an available way to steadily increase the yield of 1,3-propanediol through gene engineering heretofore, and it is particularly important to model and analyze its genome-scale metabolic network. Regretfully, there was no publication about the genome-scale metabolic network of Klebsiella pneumoniae.
     Therefore, we firstly establish a database from databases such as KEGG and Brenda. This new metabolic network database contains seven separate tables and 8601 chemical reaction records of 2471 organism, which actually suit for the modeling and analysis of metabolic network. And then, we constructed the genome-scale metabolic network of K. pneumoniae 342 based on the new database. This network totally contains 7735 records,1209 genes,2143 reaction pairs comes from 1998 reactions. The metabolic network is constructed by choosing the gene as edge and the compounds as node, respectively, which is advantage in reflecting gene information at the level of metabolic network. Moreover, it is found that the genome scale metabolic network of K. pneumoniae 342 has clustering coefficient of 0.038 which accords with power law connection degree distribution so it belongs to scale-free network which has a higher robustness against random node deletion and weakly purposeful attacking according to the theory of complex network. It also shows that the maximum path length of giant strongly connected component is 30, the radius is 16 and its characteristic path length is 8.155 which is consistent with the characteristics of small-world network. The small-word network could response quickly to the variation of the environmental factors and made the organism to adapt to the complex environment.
     It shows that the construction of metabolic network is convenient, fast and accurate according to our database. Therefore, the construction of genome-scale metabolic network of K. pneumoniae 342 filled the blank of this area and contributed to its dynamic research in future.
引文
[1]Bailey J E. Toward a Science of Metabolic Engineering [J]. Science,1991,252:1668-1675.
    [2]Strohl W R. Biochemical engineering of natural product biosynthesis pathways [J]. Metab Eng, 2001,3:4-14.
    [3]孙丽萍,吴海珍,张惠展.第三代基因工程—代谢工程[J].药物生物技术,2000:71-76.
    [4]Park J H, Lee S Y, Kim T Y et al. Application of systems biology for bioprocess development [J]. Trends Biotechnol,2008,26:404-412.
    [5]Keasling J D. Synthetic biology for synthetic chemistry [J]. ACS Chem Biol,2008,3:64-76.
    [6]Endy D. Foundations for engineering biology [J]. Nature,2005,438:449-453.
    [7]张学礼.代谢工程发展20年[J].生物工程学报,2009:1285-1295.
    [8]Park J H, Lee K H, Kim T Y et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation [J]. Proc Natl Acad Sci U S A,2007,104:7797-7802.
    [9]Lartigue C, Vashee S, Algire M A et al. Creating Bacterial Strains from Genomes That Have Been Cloned and Engineered in Yeast [J]. Science,2009,325:1693-1696.
    [10]Gibson D G, Glass J I, Lartigue C et al. Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome [J]. Science,2010,329:52-56.
    [11]Lee S K, Chou H, Ham T S et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels [J]. Curr Opin Biotechnol,2008,19:556-563.
    [12]Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J]. Nature,2008,451:86-U13.
    [13]于金龙,黄英武,徐琪寿.系统生物技术——组学时代的代谢工程[J].军事医学科学院院刊,2007:481-483.
    [14]Colon G E, Jetten M S, Nguyen T T et al. Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799 [J]. Appl Environ Microbiol, 1995,61:74-78.
    [15]Jetten M S, Sinskey A J. Recent advances in the physiology and genetics of amino acid-producing bacteria [J]. Crit Rev Biotechnol,1995,15:73-103.
    [16]Tobimatsu T, Azuma M, Matsubara H et al. Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae [J]. J Biol Chem,1996,271:22352-22357.
    [17]Zheng P, Wereath K, Sun J B et al. Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae [J]. Process Biochemistry,2006,41:2160-2169.
    [18]Hao J, Wang W, Tian J et al. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01 [J]. J Ind Microbiol Biotechnol,2008,35:735-741.
    [19]Chen Z, Liu H J, Liu D H. Regulation of 3-hydroxypropionaldehyde accumulation in Klebsiella pneumoniae by overexpression of dhaT and dhaD genes [J]. Enzyme and Microbial Technology, 2009,45:305-309.
    [20]Zhao L, Zheng Y, Ma X et al. Effects of over-expression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1,3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions [J]. Bioprocess Biosyst Eng,2009,32:313-320.
    [21]Schmid J W, Mauch K, Reuss M et al. Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli [J]. Metab Eng,2004,6:364-377.
    [22]Zhu J G, Li S, Ji X J et al. Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme [J]. World Journal of Microbiology & Biotechnology,2009,25:1217-1223.
    [23]Pfleger B F, Pitera D J, D Smolke C et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes [J]. Nature Biotechnology,2006,24:1027-1032.
    [24]Park J M, Kim T Y, Lee S Y. Constraints-based genome-scale metabolic simulation for systems metabolic engineering [J]. Biotechnol Adv,2009,27:979-988.
    [25]Gombert A K, Nielsen J. Mathematical modelling of metabolism [J]. Curr Opin Biotechnol, 2000,11:180-186.
    [26]Varner J, Ramkrishna D. Mathematical models of metabolic pathways [J]. Curr Opin Biotechnol, 1999,10:146-150.
    [27]Wiechert W. Modeling and simulation:tools for metabolic engineering [J]. J Biotechnol, 2002,94:37-63.
    [28]Zhang Q R, Teng H, Sun Y Q et al. Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae [J]. Bioprocess and Biosystems Engineering,2008,31:127-135.
    [29]Xu Y Z, Guo N N, Zheng Z M et al. Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae [J]. Biotechnol Bioeng,2009,104:965-972.
    [30]Stephanopoulos G, Alper H, Moxley J. Exploiting biological complexity for strain improvement through systems biology [J]. Nat Biotechnol,2004,22:1261-1267.
    [31]Ewings K N, Doelle H W. Further kinetic characterization of the non-allosteric phosphofructokinase from Escherichia coli K-12 [J]. Biochim Biophys Acta,1980,615:103-112.
    [32]Sabatine M S, Liu E, Morrow D A et al. Metabolomic identification of novel biomarkers of myocardial ischemia [J]. Circulation,2005,112:3868-3875.
    [33]Yuan K, Kong H, Guan Y et al. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2007,850:236-240.
    [34]Psihogios N G, Kalaitzidis R G, Dimou S et al. Evaluation of tubulointerstitial lesions' severity in patients with glomerulonephritides:an NMR-based metabonomic study [J]. J Proteome Res, 2007,6:3760-3770.
    [35]Lyall A. Bioinformatics in the pharmaceutical industry [J]. Trends Biotechnol,1996,14:308-312.
    [36]Palfreyman M G Human tissue in target identification and drug discovery [J]. Drug Discov Today, 2002,7:407-409.
    [37]Aouacheria A, Navratil V, Lopez-Perez R et al. In silico whole-genome screening for cancer-related single-nucleotide polymorphisms located in human mRNA untranslated regions [J]. BMC Genomics, 2007,8:2.
    [38]Zhang Y, Thiele 1, Weekes D et al. Three-dimensional structural view of the central metabolic network of Thermotoga maritima [J]. Science,2009,325:1544-1549.
    [39]Garcia-Viloca M, Gao J, Karplus M et al. How enzymes work:Analysis by modern rate theory and computer simulations [J]. Science,2004,303:186-195.
    [40]Csete M E, Doyle J C. Reverse engineering of biological complexity [J]. Science, 2002,295:1664-1669.
    [41]Heinrich R, Schuster S. The modelling of metabolic systems. Structure, control and optimality [J]. Biosystems,1998,47:61-77.
    [42]Edwards J S, Ibarra R U, Palsson B O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data [J]. Nat Biotechnol,2001,19:125-130.
    [43]Fleischmann R D, Adams M D, White O et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd [J]. Science,1995,269:496-512.
    [44]Durot M, Bourguignon P Y, Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications [J]. FEMS Microbiol Rev,2009,33:164-190.
    [45]Selkov E, Maltsev N, Olsen G J et al. A reconstruction of the metabolism of Methanococcus jannaschii from sequence data (Reprinted from Gene-Combis, vol 197, pg GC11-GC26,1997) [J]. Gene,1997,197:Gc11-Gc26.
    [46]Edwards J S, Palsson B O. Systems properties of the Haemophilus influenzae Rd metabolic genotype [J]. Journal of Biological Chemistry,1999,274:17410-17416.
    [47]Genomes OnLine Database (GOLD) [DB]. [2011-04-22]: http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi.
    [48]王晖,马红武,赵学明.基因组尺度代谢网络研究进展[J].生物工程学报,2010:1340-1348.
    [49]Kell D B. The virtual human:towards a global systems biology of multiscale, distributed biochemical network models [J]. IUBMB Life,2007,59:689-695.
    [50]郝彤.枯草芽孢杆菌高质量代谢网络的初步构建[D].天津:天津大学,2007.
    [51]Karp P D, Paley S, Romero P. The Pathway Tools software [J]. Bioinformatics,2002,18 Suppl 1:S225-232.
    [52]Pinney J W, Shirley M W, McConkey G A et al. metaSHARK:software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella [J]. Nucleic Acids Res,2005,33:1399-1409.
    [53]Feist A M, Scholten J C, Palsson B O et al. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri [J]. Mol Syst Biol,2006,2:2006 0004.
    [54]Oberhardt M A, Palsson B O, Papin J A. Applications of genome-scale metabolic reconstructions [J]. Mol Syst Biol,2009,5:320.
    [55]Hanisch D, Zien A, Zimmer R et al. Co-clustering of biological networks and gene expression data [J]. Bioinformatics,2002,18 Suppl 1:S145-154.
    [56]王卓,陈琦,刘雷.代谢网络进化过程中拓扑结构与功能之间的关联[J].科学通报,2009:187-192.
    [57]赵静.细胞代谢网络的结构、功能与进化研究[D].上海:上海交通大学,2008.
    [58]Feist A M, Palsson B O. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli [J]. Nat Biotechnol,2008,26:659-667.
    [59]Newman M E. Spread of epidemic disease on networks [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2002,66:016128.
    [60]Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks [J]. Nature,1998,393:440-442.
    [61]Barabasi A L, Albert R. Emergence of scaling in random networks [J]. Science,1999,286:509-512.
    [62]Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks [J]. Phys Rev Lett,2001,87:278701.
    [63]Newman M E. Assortative mixing in networks [J]. Phys Rev Lett,2002,89:208701.
    [64]Brown K S, Hill C C, Calero G A et al. The statistical mechanics of complex signaling networks:nerve growth factor signaling [J]. Phys Biol,2004,1:184-195.
    [65]Guimera R, Danon L, Diaz-Guilera A et al. Self-similar community structure in a network of human interactions [J]. Phys Rev E Stat Nonlin Soft Matter Phys,2003,68:065103.
    [66]Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks [J]. Phys Rev Lett, 2001,86:3200-3203.
    [67]Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks [J]. Nature, 2000,407:651-654.
    [68]Ma H W, Zeng A P. The connectivity structure, giant strong component and centrality of metabolic networks [J]. Bioinformatics,2003,19:1423-1430.
    [69]Schilling C H, Edwards J S, Palsson B O. Toward metabolic phenomics:analysis of genomic data using flux balances [J]. Biotechnol Prog,1999,15:288-295.
    [70]Segre D, Vitkup D, Church G M. Analysis of optimality in natural and perturbed metabolic networks [J]. Proc Natl Acad Sci U S A,2002,99:15112-15117.
    [71]Alper H, Jin Y S, Moxley J F et al. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli [J]. Metab Eng,2005,7:155-164.
    [72]Lee J M, Gianchandani E P, Papin J A. Flux balance analysis in the era of metabolomics [J]. Brief Bioinform,2006,7:140-150.
    [73]Schuster S, Dandekar T, Fell D A. Detection of elementary flux modes in biochemical networks:a promising tool for pathway analysis and metabolic engineering [J]. Trends Biotechnol,1999,17:53-60.
    [74]Schuster S, Fell D A, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks [J]. Nat Biotechnol,2000,18:326-332.
    [75]Schuster S, Pfeiffer T, Moldenhauer F et al. Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae [J]. Bioinformatics, 2002,18:351-361.
    [76]Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks [J]. Nature, 2000,407:651-654.
    [77]Segre D, Zucker J, Katz J et al. From annotated genomes to metabolic flux models and kinetic parameter fitting [J]. OMICS,2003,7:301-316.
    [78]Klamt S, Stelling J, Ginkel M et al. FluxAnalyzer:exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps [J]. Bioinformatics,2003,19:261-269.
    [79]Becker S A, Feist A M, Mo M L et al. Quantitative prediction of cellular metabolism with constraint-based models:the COBRA Toolbox [J]. Nat Protoc,2007,2:727-738.
    [80]Luo R Y, Liao S, Zeng S Q et al. FluxExplorer:A general platform for modeling and analyses of metabolic networks based on stoichiometry [J]. Chinese Science Bulletin,2006,51:689-696.
    [81]Lee S Y, Lee D Y, Hong S H et al. MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli [J]. Genome Inform,2003,14:23-33.
    [82]Wagner A, Fell D A. The small world inside large metabolic networks [J]. Proc Biol Sci, 2001,268:1803-1810.
    [83]Ravasz E, Somera A L, Mongru D A et al. Hierarchical organization of modularity in metabolic networks [J]. Science,2002,297:1551-1555.
    [84]Light S, Kraulis P, Elofsson A. Preferential attachment in the evolution of metabolic networks [J]. BMC Genomics,2005,6:159.
    [85]Akesson M, Forster J, Nielsen J. Integration of gene expression data into genome-scale metabolic models [J]. Metabolic Engineering,2004,6:285-293.
    [86]Vitkup D, Kharchenko P, Wagner A. Influence of metabolic network structure and function on enzyme evolution [J]. Genome Biol,2006,7:R39.
    [87]Raman K, Rajagopalan P, Chandra N. Flux balance analysis of mycolic acid pathway:targets for anti-tubercular drugs [J]. PLoS Comput Biol,2005,1:e46.
    [88]Li F T, Long T, Lu Y et al. The yeast cell-cycle network is robustly designed [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101:4781-4786.
    [89]Teng H, Huang X, Xiu Z L et al. An integrative model and analysis of cell cycle in fission yeast [J]. Chinese Science Bulletin,2005,50:1896-1903.
    [90]Xiu Z L, Zeng A P, Deckwer W D. Multiplicity and stability analysis of microorganisms in continuous culture:effects of metabolic overflow and growth inhibition [J]. Biotechnol Bioeng,1998,57:251-261.
    [91]Xiu Z L, Song B H, Wang Z T et al. Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures [J]. Biochemical Engineering Journal, 2004,19:189-197.
    [92]Xiu Z L, Chen X, Sun Y Q et al. Stoichiometric analysis and experimental investigation of glycerol-glucose co-fermentation in Klebsiella pneumoniae under microaerobic conditions [J]. Biochemical Engineering Journal,2007,33:42-52.
    [93]Liu H J, Zhang D J, Xu Y H et al. Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale [J]. Biotechnol Lett, 2007,29:1281-1285.
    [94]Gillespie D T. Stochastic simulation of chemical kinetics [J]. Annu Rev Phys Chem,2007,58:35-55.
    [95]Barbano P E, Spivak M, Flajolet M et al. A mathematical tool for exploring the dynamics of biological networks [J]. Proc Natl Acad Sci U S A,2007,104:19169-19174.
    [96]Xing J, Chen J. The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder [J]. PLoS One,2008,3:e2140.
    [97]Zhang Q R, Xiu Z L. Metabolic Pathway Analysis of Glycerol Metabolism in Klebsiella pneumoniae Incorporating Oxygen Regulatory System [J]. Biotechnology Progress,2009,25:103-115.
    [98]Fouts D E, Tyler H L, DeBoy R T et al. Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice [J]. PLoS Genet, 2008,4:e1000141.
    [99]Sun Y Q, Qi W T, Teng H et al. Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane [J]. Biochemical Engineering Journal,2008,38:22-32.
    [100]Feist A M, Henry C S, Reed J L et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information [J]. Mol Syst Biol, 2007,3:121.
    [101]Lee J, Yun H, Feist A M et al. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network [J]. Appl Microbiol Biotechnol,2008,80:849-862.
    [102]Edwards J S, Palsson B O. The Escherichia coli MG1655 in silico metabolic genotype:its definition, characteristics, and capabilities [J]. Proc Natl Acad Sci U S A,2000,97:5528-5533.
    [103]Reed J L, Vo T D, Schilling C H et al. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) [J]. Genome Biol,2003,4:R54.
    [104]Ma H W, Zeng A P. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms [J]. Bioinformatics,2003,19:270-277.
    [105]Shannon P, Markiel A, Ozier O et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks [J]. Genome Res,2003,13:2498-2504.
    [106]Li C, Courtot M, Le Novere N et al. BioModels.net Web Services, a free and integrated toolkit for computational modelling software [J]. Brief Bioinform,2010,11:270-277.
    [107]Finney A, Hucka M. Systems biology markup language:Level 2 and beyond [J]. Biochem Soc Trans, 2003,31:1472-1473.
    [108]Hucka M, Finney A, Sauro H M et al. The systems biology markup language (SBML):a medium for representation and exchange of biochemical network models [J]. Bioinformatics,2003,19:524-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700