发酵产氢菌的分离及其产氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染和能源枯竭的日益恶化,寻找一种清洁可再生能源是人类当务之急。氢气以其燃烧值高、清洁、可再生等为人类首选。在众多制氢方法中,暗发酵法制取氢气在利用有机废液和农作物秸秆同时,起到了清洁环境和获得能源的双重作用。发酵产氢细菌的分离在产氢机理的研究、菌种改造和耦合制氢有中很大的意义。
     本文主要是对厌氧发酵产氢过程进行初步研究,研究内容主要包括:产氢菌种的筛选、鉴定;接种量和接种时间对累积产氢量和平均产氢速率的影响;初始pH值对累积产氢量和平均产氢速率的影响;调查三种无机氮源NH4C、CH3COONH4和(NH2)2CO在葡萄糖和果渣为碳源的条件下,对产氢量的影响;纯菌种(CP)与混合菌种(MB)比较,以果渣、玉米秆和葡萄糖为碳源发酵产氢随时间的影响;不同浓度(0.5、1.0、2.0、3.0、4.0、5.0 g·L-1)下葡萄糖中累积产气量和平均产氢速率随时间的变化;初始pH值为7,发酵过程中控制pH值在4.7-5.0、5.5-5.8、6.3-6.6的范围内累积产氢量(mL·L-1-glu.和mL·g-1-glu.)随时间的影响;初始pH值为7,用NaOH溶液和氨水调节pH值及无调节下,累积产氢量(m1·L-1-glu.和m1·g-1-glu.)随浓度(0.5、1.0、2.0、3.0、4.0、5.0 g·L-1)的变化;把纯菌种还原到原污泥环境中的产氢实验(灭菌)和纯菌种与污泥(处理过的产氢污泥)耦合产氢实验。
     实验结果表明:经16S rRNA基因特征基因测序得到,与Clostridium perfringens ATCC 13124(CP)的16S rRNA基因相似性达99%,可以认为分离得到的菌种为该菌,菌种静态培养得到,在培养8小时菌种达到最佳浓度,动态培养时可以看出菌数量1~9小时增加,9~11小时下降,产氢实验证明CP为高效产氢菌;最佳的接种量和接种时间为1/50(v/v)和8h;当初始pH值为7时得到了最佳的为最适产氢初始pH;CH3COONH4为无机氮源,与果渣为碳源时能有效降低产氢成本,分析可知产氢菌CP对纤维素有一定的分解能力;产氢菌CP分解生物质产氢能力没有混菌能力强,但利用单糖能力却比混菌强,充分说明在利用单糖产氢时应该选用纯菌;产氢菌CP利用葡萄糖产氢时,底物浓度越低时底物利用率越高,但单位体积累积产氢量为2 g·L-1时为最大,所以在选着产氢底物浓度是应该按运行成本核算选择最低产氢成本;初始pH值为7,发酵过程中控制pH为4.7-5.0时为最佳控制范围,底物浓度越高过程中控制pH产氢量增加越大。以3g··L-1的葡萄糖为发酵底物,把产氢菌还原到原污泥环境中时:污泥为无菌时,污泥在发酵液中的重量和驯化时间会影响累积产氢量的大小,最佳污泥重量为15 g,最佳的驯化时间为12h;产氢菌CP与混合菌耦合时,随着驯化时间的增加累积产氢量先增加后减少,最佳的驯化时间为3 h。
The increasing crisis of global fossil fuels shortage, climate change, environmental pollution and associated health problems are all driving the need of a clean and alternative energy. Hydrogen, a high combustion value, clean, safe and renewable energy carrier, is considered as a preferred resource. Nowadays, people concentrate their attentions on the development of hydrogen energy, and more and more researches have focused on this field. Among the numerous hydrogen production methods, dark fermentation appears to be the most attractive method because it can utilize a variety of cheap carbon sources such as organic wastewater and crops straw,and this method can clean environment and obtain energy. The isolation of fermented bacteria can contribute to study the mechanism of producing hydrogen, spawning transformation and co-culturing hydrogen production.
     In this work, bio-hydrogen technological skills have been researched, such as screening and identifying the hydrogen producing strains; the influence of inoculation quantity and vaccination time on cumulative hydrogen yield and the average production rate of hydrogen; effect of initial pH on the cumulative hydrogen yield and the average hydrogen producing rate. Surveying the influence of inorganic nitrogen source on hydrogen production, with three kinds of inorganic nitrogen source NH4Cl, CH3COONH4 and (NH2)2CO in glucose and apple pomace for carbon sources; influence of pure strains (CP) and the mixed bacteria (MB) hydrogen production on fermentative time, with apple pomace, cornstalk and glucose as carbon sources; change of accumulate hydrogen production and average hydrogen production rate from glucose on time in different concentration (0.5,1.0,2.0 and 3.0,4.0 and 5.0 g·L-1); change of accumulate hydrogen production(ml·L-1-glu and ml·g-1-glu) on time with initial pH value as 7 and controlling fermentative process pH in 4.7-5.0,5.5-5.8 and 6.3-6.6 range; change of accumulate hydrogen production (ml·L-1-glu and ml·g-1-glu) on the concentrations (0.5,1.0,2.0 and 3.0,4.0 and 5.0 g·L-1), with initial pH value as 7 and comparison of no adjustment and adjusting the pH by NaOH as well as ammonia solution; putting the strains isolated from the sludge back to pure hydrogen production environment (sterilization) and pure strains as well as sludge (processed produce hydrogen sludge produced hydrogen experiment) co-culturing to investigate the hydrogen productive effect.
     The the genetic traits 16 SrRNA gene sequencing experimental results show that the isolated bacteria gets the 16SrRNA genetic similarity as 99% with Clostridium perfringens ATCC13124 (CP), which recognize the strains isolated from sludge. The strains static training achieved the best concentration when cultivate strains for 8h., In dynamic training, bacteria number increased 1~9 hours, and declined in 9~11 hours. The hydrogen production experiments substantiate that CP appears to be the high efficient hydrogen production bacteria. The best quantity and vaccination time prove to be 1/50 (v/v) and 8 h respectively,and the optimal initial pH for hydrogen producing appears to be 7; The production cost can be effectively reduced when utilizing CH3COONH4 as inorganic nitrogen source and apple pomace as carbon source. In addition, the analysis of experiment results suggest that CP has the ability to utilize cellulose. And CP utilizes biomass to producing hydrogen is no better than mixed bacteria, but it favors to use simple sugars, which suggest that pure bacteria should be chosen to utilize simple sugars. The hydrogen production by CP from glucose suggests that the lower the substrate concentration is, the higher the substrate utilizing effect. And unit volume cumulative yield as 2g·L-1 is the largest, so it is chosen to be the optimal hydrogen production substrate concentration considering the productive cost. When the initial pH value is 7, fermentation process controlling pH in 4.7-5.0 proves to be the optimal control range, and the higher the substrate concentration is, the more hydrogen production increases in the process of on-line controlling pH.
     With using 3g·L-1 glucose as the fermentation substrate, replacing the CP to sludge environment results in two different phenomenon. If the sewage sludge are sterilized, the weight and domestication in fermented liquid hydrogen production time affects the quantity of accumulation, and the best sludge weight is 15 g, the best domesticated time is 12 h. If CP is co-cultured with the mixed bacteria in sewage sludge, the accumulated hydrogen production elevated at first and then decreased with the increase of domesticated time, and the best domesticated time appeared to be 3 h.
引文
[1]Ni M., Leung D., Leung M., Sumathy K., An overview of hydrogen production from biomass[J]. Fuel Process Technol 2006,87(5):461-472
    [2]B. P Statistical Review of World Energy June 2010. http://www.bp.com/statisticalreview.
    [3]Hallenbeck P.C., Benemann J.R., Biological hydrogen production; fundamentals and limiting processes[J]. Int. J. Hydrogen Energy,2002,27:11851193
    [4]任南琪,郭婉茜,刘冰峰,生物制氢技术的发展及应用前景[J].哈尔滨工业大学学报,2010,42(6):855-863
    [5]Hallenbeck P.C., Ghosh D., Advances in fermentative biohydrogen production:the way forward[J]. Trends in Biotechnology,2009,27(5):287-297
    [6]Hallenbeck P.C., Fundamentals of the fermentative production of hydrogen[J]. Water Sci. Technol.,2005,52:21-29
    [7]Hawkes F.R., Continuous dark fermentative hydrogen production by mesophilic microflora:principles and progress[J]. Int. J. Hydrogen Energy,2007,32:172-184
    [8]Kapdan I.K., Kargi F., Bio-hydrogen production from waste materials[J]. Enz. Micro. Tech.,2006,38,569-582
    [9]Das D., Veziroglu T.N., Advances in biological hydrogen production processes[J]. Int. J. Hydrogen Energy,2008,33:6046-6057
    [10]Cheng S.A., Bruce E., Logan. Sustainable and efficient biohydrogen production via electrohydrogenesis[J]. PNAS,2007,104(47):18871-18873
    [11]Asada Y., Tokumoto M., Aihara Y., Oku M., Ishimi K., Wakayama T., Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaerides RV[J]. Int. J. Hydrogen Energy,2006,31:1509-1513
    [12]Clarke T., Howard G., Biological Formation of Molecular Hydrogen:A" hydrogen valve" facilitates regulation of anaerobic energy metabolism in many microorganisms[J]. Science,1965,148(3667):186-192
    [13]Kumar N., Das D., Enhancement of Hydrogen Production by Enterobacter cloacae IIT-BT 08[J]. Process Biochemistry,2000,35(6):589-593
    [14]Kumar N., Das D., Continuous Hydrogen Production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices[J]. Enzyme and Microbial Technology,2001,29(4-5):280-287
    [15]林明,高效产氢发酵新菌种的产氢机理及生态学研究[J].哈尔滨,哈尔滨工业大学,2002
    [16]Xing D.F., Ren N.Q., Li Q.B., Ethanoligenens harbinense gen. Isolated from Molasseswastewater[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56:755-760
    [17]李永峰,发酵产氢新菌种及纯培养生物制氢工艺研究[J].哈尔滨:哈尔滨工业大学,2005
    [18]Ren N.Q., Cao G.L., Wang A.J., Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16[J]. Int. J. Hydrogen Energy,2008,33(21):6124-6132
    [19]牛莉莉,刘晓黎,陈双雅,东秀珠,一个新的高温产氢菌及产氢特性的研究[J].微生物学报,2006,44(2):280-284
    [20]陈双雅,东秀珠,一个新的产氢细菌的鉴定及产氢特性的研究[J].2004,44(4):411-416
    [21]Chen W.M., Tseng Z.J., Lee K.S., Chang J.S., Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge[J]. Int. J. Hydrogen Energy,2005,30:1063-1070
    [22]Lo Y.C., Lu W.C., Chen C.Y., Chang J.S., Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5[J]. Bioresource Technology,2010,101:5885-5891
    [23]Pan C.M., Fan Y.T., Xing Y., Hou H.W., Zhang M.L., Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2[J]. Bioresour Technol,2008,99:3146-3154
    [24]Zhao P., Fan S.Q., Tian L., Pan C.M., Fan Y.T., Hou H.W., Hydrogen production characteristics from dark fermentation of maltose by an isolated strain F.P 01[J]. Int. J. Hydrogen Energy,2010,35:7189-7193
    [25]Valdez-Vazquez I., Sparling R., Risbey D., Rinderknecht-Seijas N., Poggi-Varaldo H.M., Hydrogen generation via anaerobic fermentation of paper mill wastes[J]. Bioresource Technol,2005,96:1907-1913
    [26]Niessen J., Harnisch F., Rosenbaum M., Schroder U., Scholz F., Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation[J]. Electrochem Commun,2006,8:869-873
    [27]Fan Y.T., Li C.L., Lay J.J., Hou H.W., Zhang G.S., Optimization of intial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost[J]. Bioresourse Technology,2004,91:189-193
    [28]Ren N.Q., Xu J.F., Gao L.F., Xin L., Qiu J., Su D.X., Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures[J]. Int. J. Hydrogen Energy,2010,35:2742-2746
    [29]Wang Y., Wang H., Feng X.Q., Wang X.F., Huang J.X., Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge[J]. Int. J. Hydrogen Energy,2010,35(7):3092-3099
    [30]Nishio N., Nakashimada Y., Recent development of anaerobic digestion processes for energy recovery from wastes [J]. J. Biosci. Bioeng.,2007,103:105-112
    [31]Roychowdhury S., Cox D., Levandowsky M., Production of hydrogen by microbial fermentation[J]. Int. J. Hydrogen Energy,1988,13(7):2407-2410
    [32]Pan C.M., Pan Y.T., Hou H.Y., Fermentative production of hydrogen from wheat bran by mixed anaerobic cultures[J]. Applied Chemistry and Chemres.,2008,47:5812-5818
    [33]Ozkan L., Erguder T.H., Demirer G.N., Investigation of the effect of culture type on biological hydrogen production from suger industry wastes[J]. Waste Management,2010, 30(5):792-798
    [34]Leyla O., Tuba H., Erguder, G.N., Demirer Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield[J]. Int. J. Hydrogen Energy, 2011,36:382-389
    [35]Nima N., Morteza A., Saeid M., Renatus W., Development of a method for biohydrogen production from wheat straw by dark fermentation [J]. Int. J. Hydrogen Energy,2010,36: 411-420
    [36]Prawit K., Booki M., Irini A., Biohydrogen production from xylose at extreme thermophilic temperatures (708C) by mixed culture fermentation[J].Water research,2009, 43:1414-1424
    [37]刘克鑫,徐洁泉,廖多群,沼气池中产氢菌的研究[J].微生物学报,1980,20(4):385-389
    [38]任南琪,有机废水处理生物产氢原理与工程控制对策研究[M].哈尔滨:哈尔滨建筑大学,1993
    [39]Fan Y.T., Li C.L., Lay J.J., Hou H.W., Zhang G.S., Optimization of intial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compose[J]. Bioresourse Technology,2004,91:189-193
    [40]李永峰,任南琪,郑国香,碳氮质量比对发酵细菌产氢性能的影响[J].化学工程,2005,33(4):4143
    [41]Li Z., Wang H., Tang Z.X., Wang X.F., Bai J.B., Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose[J]. Int. J. Hydrogen Energy,2008,33(24):7413-7418
    [42]Wu X.M., Yang H.H., Guo L.J., Effect of operation parameters on anaerobic fermentation using cow dung as a source of microorganisms[J]. Int. J. Hydrogen Energy,2010,35: 46-51
    [43]Long M.N., Jin L.H., Xiao B.W., Isolation and characterization of a high H2-producing strain Klebsiella oxytoca HP1 from a hot spring[J]. Research in Micribiology,2005, 156(1):76-81
    [44]http://baike.baidu.com/view/802912.htm
    [45]Lin C.Y., Lee C.Y., Tseng I.C., Shaio I.Z., Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora[J]. Process Biochem,2006,41:915-919
    [46]Lee K.S., Su Y.F., Lo Y.C., Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora[J]. Int. J. Hydrogen Energy,2008,33:1565-1572
    [47]宗文明.安徽农业大学博士学位论文,2009
    [48]李永峰,李雯,刘琨,徐菁利,暗发酵制氢的研究进展[J].现代化工,2009,29(2):35-40
    [49]刘波,王海岩,赵静玫,几株产氢微生物的产氢能力及协同作用[J].食品与发酵工业,2002,29(8):23-26
    [50]Yokoi H., Mori S., Hirose J., H2 Produetion from starch byamixed culture of Clostridium butyricum and Rhodobaeter sp.M-19[J]. Biotecllllology Letters,1998,20(9):895-899
    [51]Tao Y.Z., Yang C., Wu Y.Q., High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose[J] Int. J. Hydrogen Energy,2007,32:200-206
    [52]Vatsala T.M., Mohan Raj S., Manimaran A., A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture[J]. Int. J. Hydrogen Energy,2008,33:5404-5415
    [53]Liu, Y, Yu, P., Song, X., Qu, Y.B., Hydrogen production from cellulose by coculture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17[J]. Int. J. Hydrogen Energy,2008,33:2927-2933
    [54]Geng A., He Y.L., Qian C.L., Yan X., Zhou Z.H., Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium[J]. Bioresource Technology,2010,101:4029-4033
    [55]Wang A.J., Ren N.Q., Shi Y.G., Lee D.J., Bioaugmented hydrogen production from microcrystalline cellulose using co-culture-Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49[J]. Int. J. Hydrogen Energy,2008,33,912-917
    [56]Ren N.Q., Li J.Z., Lin M., Study on the mechanism of bacterial hydrogen evolution by fermentation[J]. Acta energiae solaris sinica,2002,23:1-5
    [57]Wang Y., Ren N.Q., Sun Y.J., Li J.Z., Sun X.W., Analysis on the mechanism and capcity of two types of hydrogen production-ethanol fermentation and butyric acid fermentation[J]. Acta energiae solaris sinica,2002,23:366-373
    [58]张希衡,废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996,10-15.
    [59]Ma K., Zhou Z.H., Adams M., Hydrogen productionfrom pyruvate by enzymes purified from the hyperther-mophilic archaeon[J]. Pyrococcus furiosus Microbiol Lett,1994,122: 245-250
    [60]张续春,黄兵,曹东福.微生物厌氧发酵制氢技术现状和展望[J].云南化工,2007,3(02):67-69
    [61]王娜,杨涛,韩静,厌氧发酵生物制氢的研究进展及应用前景[J].中国农学通报,2008,4(07):454-458
    [62]贺小贤,生物工艺原理,北京:化学工业出版社,2003
    [63]沈萍,陈向东,微生物学(二版).北京:高等教育出版社,2006
    [64]Song Y., Logan B.E., Effect of 02 exposure on perchlorate reduction by Dechlorosom[J]. Water Res,2004,38:1626-1632
    [65]Yuan Z.L., Yang H.J., Zhi X.H., Shen J.Q., Enhancement effect of L-cysteine on dark fermentative hydrogen production[J]. Int. J. Hydrogen Energy,2008,33:6535-6540
    [66]林明,任南琪,马汐平,产氢发酵细菌培养基的选择和改进[J].哈尔滨工业大学学报,2003,35(4):398-402
    [67]任南琪,王爱杰,厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [68]丁杰,金属离子和半胱氨酸对产氢能力的影响及调控对策研究[M].哈尔滨:哈尔滨工业大学,2005
    [69]Hungate R.E. A roll-tube method for cuhivation of strict anaerobes[M] N()RRIs J R, RIBBONS DW. Methods in Microbiology. New York:Academic Press Inc,1969,3B: 117-132
    [70]李永峰,任南琪,陈瑛,发酵产氧细菌分离培养的厌氧实验操作技术[J].哈尔滨工业大学学报,2004,36(12)
    [71]Hungate R. E., The anaerobic mesophilic cellulolytic bacteria [M]. Bacteriol. Rev.1950, 14:1-49.
    [72]李永峰,任南琪,陈瑛,发酵产氧细菌分离培养的厌氧实验操作技术[J].哈尔滨工业大学学报,2004,36(12)
    [73]陈三凤,现代微牛物遗传学[M].北京:化学工业出版社,2003
    [74]Zhua D.L., Wang G.C., Qi H.J., Cai J.L., Fermentative hydrogen production by the new marine Pantoea agglomerans isolated from the mangrove sludge[J]. Int. J. Hydrogen Energy 2008,33:6116-6123
    [75]http://www.china-cicc.org/service/
    [76]管斌.发酵试验技术与方案[M].北京:化学工业出版社,2010:55-59
    [77]林明,任南琪,马汐平等.产氢发酵细菌培养基的选择和改进[J].哈尔滨工业大学 学报,2003,35(4):398-402
    [78]Taguchi F., Chang J. D., Mizukami N., et al. Isolation of a hydrogen—producing bacterium Clostridium beijerinckii strain AM21B from termites[J]. Can. J. Microbiol., 1993,39:726-730
    [79]Li D., Chen H. Z., Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation[J]. Int. J. Hydrogen Energy,2007,32(12): 1742-1748
    [80]李永峰,任南琪,陈瑛,等.发酵产氢细菌分离培养的厌氧实验操作技术[J].哈尔滨工业大学学报,2004,36(12):1589-1694
    [81]Weisburg W. G., Barns S. M., Pelletier D. A., et al.16S ribosomal DNA amplification for phylogenetic study[J]. J. Bacteriol.,1991,173:697-703
    [82]Jorquera O., Kiperstok A., Sales E. A., et al. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors[J]. Bioresour. Technol.,2010,101:1406-1413
    [83]Fatjh D. M., Hydrogen from various biomass species via pyrolysis and steam gasification processes[J]. Energy Sources,2006,28(3):245-252
    [84]Wang Y., Wang H., Feng X. Q., et al. Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge[J]. Int. J. Hydrogen Energy,2010,35: 3092-3099
    [85]Ren N. Q., Li J. Z., Li B. K., et al. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system[J]. Int. J. Hydrogen Energy,2006,31: 2147-2157
    [86]Ren N. Q., Wang, D. Y., Yang, C. P., et al. Selection and isolation of hydrogen-producing fermentative bacteria with high yield and rate and its bioaugmentation process[J], Int. J. Hydrogen Energy,2010,35:2877-2882
    [87]Hamilton C., Hiligsmann S., Beckers L., et al. Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode[J]. Int. J. Hydrogen Energy,2010, 35:1089-1098
    [88]Pan C. M., Fan Y. T., Zhao P., et al. Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3[J]. Int. J. Hydrogen Energy,2008,33:5383-5391
    [89]Quemeneur M., Hamelin J., Latrille E., et al. Development and application of a functional CE-SSCP fingerprinting method based on [Fe-Fe]-hydrogenase genes for monitoring hydrogen-producing Clostridium in mixed cultures[J]. Int. J. Hydrogen Energy,2010,35: 13158-13167
    [90]Skillman L. C., Bajsa O., Ho L., et al. Influence of high gas production during thermophilic anaerobic digestion in pilot-scale and lab-scale reactors on survival of the thermotolerant pathogens Clostridium perfringens and Campylobacter jejuni in piggery wastewater[J]. Water Research,2009,43:3281-3291
    [91]Kong Q., He G. Q., Chen F., et al. Studies on a kinetic model for butyric acid bioproduction by Clostridium butyricum[J]. Lett. Appl. Microbiol,2006,43:71-77
    [92]Wang X., Monis P.T., Saint C.P., et al. Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5[J]. Int. J. Hydrogen Energy,2009,34:791-798
    [93]Pan M. C., Fan Y. T., Zhao P., et al. Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3[J]. Int. J. Hydrogen Energy,2008,33:5383-5391
    [94]朱玉红,曹广丽,郭婉茜等.高温产氢菌的分离及其发酵木糖产氢特性研究哈尔滨商业大学学报(自然科学版)[J].2009,25
    [95]Li Z., Wang H., Tang Z.X., et al. Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose[J]. Int. J. Hydrogen Energy,2008,33(24):7413-7418
    [96]Yu W., Hui W. Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge[J]. Int. J. Hydrogen Energy,2010,35(7):3092-3099
    [97]Cong M. L., Ren N. Q., Li Y.F., Comparison of biohydrogen production capacity from different types of fermentation in continuous-flow reactors[J]. J. Harbin Ins. Technol., 2006,38(11):1-5
    [98]袁传敏,颜涌捷,曹建勤.生物质氢气的研究[J].煤炭转化,2002,25(1):18-22
    [99]冯树,周樱桥,张忠泽.微生物混合培养及其应用[J].微生物学通报,2001,28(3):92-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700