吡啶盐类化合物的合成及其碳纳米复合材料的光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,碳纳米材料受到人们的广泛关注,与有机染料复合,研究其光学性质,探讨其在荧光探针、离子识别、生物显影等方面的应用具有重要的科学意义。
     1、本文基于蒽类衍生物良好的光学性质,以9-氯甲基蒽为母体,采用Knoevenagel反应合成了一系列功能化的蒽吡啶盐衍生物Y1-Y4,通过核磁共振氢谱、核磁共振碳谱、质谱、红外光谱等分析手段表征了它们的结构和组成,研究了该系列染料分子内FRET过程,发现以蒽为荧光给体,吡啶盐为荧光受体的FRET过程是一种不完全的FRET过程,使整个分子在荧光光谱上呈现双荧光。
     2、通过电化学方法合成了一种碳量子点,通过NaBH4还原进行表面功能化,还原后的碳量子点发射峰蓝移,发光增强。将碳量子点与染料复合,以Y2作为能量给体而碳量子点作为能量受体时,FRET过程没有发生,而染料的发射峰随着量子点浓度增大,呈现线性增强。当以Y2,Y4作为能量受体而碳量子点作为能量给体时,发生FRET过程。这是由于碳量子点的加入,染料分子内的能量转移过程被阻隔。因此,在碳量子点/有机染料复合体系中,碳量子点作为能量给体,更易发生FRET过程。
     3、将Y1-Y4与环糊精复合,研究两者之间的主客体化学,发现环糊精与这一系列染料都存在缔合或包合作用,使染料荧光发生不同程度的增强,Y3,Y4的发射峰发生蓝移。而环糊精与蒽的作用明显不如与吡啶盐基团的作用力强。
     4、将Y1-Y4与石墨烯复合,发现能量由蒽或吡啶盐向石墨烯转移,使得自身荧光不断淬灭,而石墨烯阻止了Y1-Y4分子内由蒽向吡啶盐基团的FRET过程。
     5、以对苯二乙腈和对[(N-甲基N-羟乙基)胺基]苯甲醛为原料,通过Knoevenagel反应合成了一种具有AIEE效应的化合物NOCN,并与己内脂等聚合。在THF-水混合溶剂中,NOCN随着水的比例增加,最大荧光发射峰从515nm到581nm发生的明显红移,而固体最大荧光发射峰在627nm;而NOCN的聚集体NOCN3,随着水的比例增加,最大荧光发射峰位置不变,而发光强度逐渐增强,体现出AIEE效应。当将NOCN与NOCN3分别与碳量子点复合后,碳量子点都体现出良好的能量给体性质,使NOCN或NOCN3在THF中荧光都得到不同程度的增强,而在水中这种能量转移过程较弱。
In recent20years, carbon nano-materials have drawn extensive attentions. The study on their photoluminescent properties is of an important scientific meaning in the applications for fluorescent probe, ion recognition, biological imaging and so on.
     1. In this dissertation, a series of organic dyes Y1-Y4from9-chlorinemethyl anthracene were designed relying on the good optical properties of anthracene, which were synthesized by Knoevenagel reaction and characterized by1H NMR,13C NMR and IR spectra. The FRET process of Y1-Y4was studied by PL spectra. It was found that the molecules, in which anthracene group acts as a donor and the pyridinium group acts as a acceptor, exhibit an incomplete fluorescence resonance energy transfer (FRET) process.
     2. Water soluble fluorescent carbon dots were synthesized by electrochemical method. The carbon dots were functionalized on the surface using NaBH4, which emit enhanced blue-shift fluorescence. No fluorescence resonance energy transfer took place for the hybrid, in which carbon dots act as a acceptor and Y2acts as a donor. However, the intensity of the fluorescence increased. While the FRET process take place when the carbon dots acts as a donor, and Y2acts as a acceptor. The energy transfer is observed from carbon dots toY2and Y4. So it is concluded that fluorescence resonance energy transfer takes place more easily for the hybrid system, when carbon dots act as a donor.
     3. When Y1-Y4was included with cyclodextrin to form complexes, which were studied based on principle of the host-guest chemistry. It was found that there is an inclusion process between the dyes and cyclodextrin. The enhanced fluorescence was observed for the complexes. The cylodextrin had a stronger interaction with pyridinium group than that of anthracene group.
     4. When Y1-Y4combine with grapheme. It was found that the energy transfer takes place from the anthracene or pyridinium groups to grapheme. The fluorescence was quenched for hybrid system, and the graphene block the intramolecular FRET process.
     5. A new compound NOCN bearing AIEE effect was synthesized through the Knoevenagel reaction, using1,4-Phenylenediacetonitrile and p-[(N-Methyl-N-hydroxyethyl)amino] benzaldehyde as starting materials. The fluorescence emission maxima exhibited a bathochromic shift from515to581nm when the ratio of H2O increases in THF/H2O mixed solvents, while emission at627nm in solid state. However, the wavelength of the fluorescence emission exhibits unchanged, while the intensity increased when the ratio of H2O increases in THF/H2O mixed solvents for the aggregation of NOCN3. When NOCN and NOCN3combined with carbon dots, the FRET process existed in both THF and H2O solvents. Although, this energy transfer process was weaker in the water than that in THF.
引文
[1]Zhang, Q. L.; Obrien, S. C.; Heath, J. R.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Smalley, R. E., Reactivity of large carbon clusters:spheroidal carbon shells and their possible relevance to the formation and morphology of soot. Nature 1985,90 (4),525-528
    [2]Ajayan, P. M., Nanotubes from carbon. Chemical Review 1999,99(7),1787-1800.
    [3]Greiner, N. R.; Philips P. S.; Johnson, J. D., Diamonds in detonation soot. Nature 1988,333(6),6172-6190.
    [4]Krijn, P.; Jong, D.; Geus, J. W., Carbon Nanofibers:Catalytic Synthesis and Applications. Catalysis Reviews:Science and Engineering 2000,42 (4),481-510.
    [5]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005,438 (7065),197-200.
    [6]Liu, Z. P.; Zhou, X. F.; Qian, Y. T., Synthetic Methodologies for Carbon Nanomaterials. Advanced Materials 2010,22 (17),1963-1966
    [7]Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene:The New Two-Dimensional Nanomaterial. Angewandte Chemie International Edition 2009,48 (42),7752-7777.
    [8]Yang, W. R.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F., Carbon Nanomaterials in Biosensors:Should You Use Nanotubes or Graphene? Angewandte Chemie International Edition 2010,49 (12),2114-2138.
    [9]Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 2004,126 (40),12736-12737.
    [10]Baker, S. N.; Baker, G. A., Luminescent Carbon Nanodots:Emergent Nanolights. Angewandte Chemie International Edition 2010,49 (38),6726-6744.
    [11]Yu, C. M.; Li, X. Z.; Zeng, F.; Zheng, F. Y.; Wu, S. Z., Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 2013,49 (4),403-405.
    [12]Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P., Surface functionalized carbogenic quantum dots. Small 2008,4 (4), 455-458.
    [13]Hu, S. L.; Niu, K. Y.; Sun, J.; Yang, J.; Zhao, N. Q.; Du, X. W., One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 2009,19 (4), 484-488.
    [14]Riggs, J.E.; Guo, Z.; Carroll, D. L.; Sun, Y. P., Strong Luminescence of Solubilized Carbon Nanotubes. J. Am. Chem. Soc 2000,122 (24),5879-5880.
    [15]Luo, Y. S.; Xia, X. H.; Liang, Y.; Zhang, Y. G.; Ren, Q. F.; Li, J. L.; Jia, Z. J.; Tang, Y. W., Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs. J Solid State Chem 2007,180 (6),1928-1933.
    [16]Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F.; Luo, P. J. G.; Yang, H.; Kose, M. E.; Chen, B. L.; Veca, L. M.; Xie, S. Y., Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 2006,128 (24),7756-7757.
    [17]Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. J. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S. Y.; Sun, Y. P., Carbon dots for multiphoton bioimaging. J Am Chem Soc 2007,129 (37),11318-+.
    [18]un, Y. P.; Wang, X.; Lu, F. S.; Cao, L.; Meziani, M. J.; Luo, P. J. G.; Gu, L. R.; Veca, L. M., Doped Carbon Nanoparticles as a New Platform for Highly Photoluminescent Dots. JPhys Chem C 2008,112 (47),18295-18298.
    [19]Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P., Photoinduced electron transfers with carbon dots. Chem Commun 2009, (25),3774-3776.
    [20]Yang, S. T.; Wang, X.; Wang, H. F.; Lu, F. S.; Luo, P. J. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y. F.; Chen, M.; Huang, Y. P.; Sun, Y. P., Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. J Phys Chem C 2009, 113 (42),18110-18114.
    [21]Yang, S. T.; Cao, L.; Luo, P. G. J.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P., Carbon Dots for Optical Imaging in Vivo. J Am Chem Soc 2009,131 (32),11308-+.
    [22]Zhou, J. G.; Booker, C.; Li, R. Y.; Zhou, X. T.; Sham, T. K.; Sun, X. L.; Ding, Z. F., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 2007,129 (4),744-745.
    [23]Zheng, L. Y.; Chi, Y. W.; Dong, Y. Q.; Lin, J. P.; Wang, B. B., Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J Am Chem Soc 2009,131 (13),4564-+.
    [24]Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A. L.; Wang, S.; Loh, K. P., One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. Acs Nano 2009,3 (8),2367-2375.
    [25]Li, Y. L.; Wang, J. J.; Li, X. F.; Geng, D. S.; Li, R. Y.; Sun, X. L., Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 2011,47 (33),9438-9440..
    [26]Liu, H. P.; Ye, T.; Mao, C. D., Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition 2007,46 (34),6473-6475.
    [27]Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R., Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. J Phys Chem C 2009,113 (43),18546-18551.
    [28]Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X. J.; Chen, S. W., Nanosized Carbon Particles From Natural Gas Soot. Chem Mater 2009,21 (13),2803-2809.
    [29]Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P., Photoluminescent carbogenic dots. Chem Mater 2008,20 (14), 4539-4541.
    [30]Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q., An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angewandte Chemie International Edition 2009,48 (25),4598-4601.
    [31]Wang, F.; Pang, S. P.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C. Y., One-Step Synthesis of Highly Luminescent Carbon Dots in Noncoordinating Solvents. Chem Mater 2010, 22 (16),4528-4530.
    [32]Peng, H.; Travas-Sejdic, J., Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates. Chem Mater 2009,21 (23),5563-5565.
    [33]Zhu, H.; Wang, X. L.; Li, Y. L.; Wang, Z. J.; Yang, F.; Yang, X. R., Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 2009, (34),5118-5120
    [34]Li, H. T.; He, X. D.; Liu, Y.; Huang, H.; Lian, S. Y.; Lee, S. T.; Kang, Z. H., One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 2011,49 (2),605-609.
    [35]Wang, X. H.; Qu, K. G.; Xu, B. L.; Ren, J. S.; Qu, X. G., Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 2011,21 (8),2445-2450.
    [36]Smith, A. M.; Nie, S. M., Semiconductor Nanocrystals:Structure, Properties, and Band Gap Engineering. Accounts Chem Res 2010,43 (2),190-200.
    [37]Wang, X.; Cao, L.; Yang, S. T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P., Bandgap-Like Strong Fluorescence in Functionalized Carbon Nanoparticles. Angewandte Chemie International Edition 2010,49 (31), 5310-5314.
    [38]Li, J.; Wang, S. W.; Yang, W.; Xie, B. H.; Yang, M. B., Mechanical and Thermal Characteristics and Morphology of Polyamide 6/Isotactic Polypropylene Blends in the Presence of a beta-Nucleating Agent. J Appl Polym Sci 2011,121 (1),554-562.
    [39]Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y.; Zhaoa, X. J.; Huang, C. Z., Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem Commun 2011,47 (9), 2604-2606.
    [40]Wei, W. L.; Xu, C.; Ren, J. S.; Xu, B. L.; Qu, X. G., Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem Commun 2012,48 (9),1284-1286.
    [41]Wang, F.; Chen, Y. H.; Liu, C. Y.; Ma, D. G., White light-emitting devices based on carbon dots' electroluminescence. Chem Commun 2011,47 (12),3502-3504.
    [42]Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008,319 (5867), 1229-1232.
    [43]Zhang, K..; Zhang, L. L.; Zhao, X. S., Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater,2010,22(4):1392-1401.
    [44]Xu, J.; Wang, K.; Zu, S. Z., Hierarchical nanocomposites of polyaniline nanowire arrays on grapheneoxide sheets with synergistic effect for energy storage. ACS Nano, 2011,4(9):5019-5026.
    [45]Tung, V. C; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nat Nanotechnol 2009,4 (1),25-29.
    [46]Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L. McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. K. Waldmann, D.; Weber, H. B.; Seyller, T., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 2009,8 (3), 203-207.
    [47]Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett 2009,9 (1),30-35.
    [48]Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009,324 (5932),1312-1314.
    [49]Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457 (7230),706-710.
    [50]Geim, A. K., Graphene:Status and Prospects. Science 2009,324 (5934), 1530-1534.
    [51]Hass, J.; de Heer, W. A.; Conrad, E. H., The growth and morphology of epitaxial multilayer graphene. JPhys-Condens Mat 2008,20 (32).
    [52]Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T. Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. JPhys Chem B 2004,108 (52),19912-19916.
    [53]Juang, Z. Y.; Wu, C. Y.; Lo, C. W.; Chen, W. Y.; Huang, C. F.; Hwang, J. C.; Chen, F. R.; Leou, K. C.; Tsai, C. H., Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 2009,47 (8),2026-2031.
    [54]Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S., Synthesis of Graphene and Its Applications:A Review. Crit Rev Solid State 2010,35 (1),52-71.
    [55]Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007,45 (10), 2017-2021.
    [56]Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S., Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 2008, P3 (11)-
    [57]Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010,5 (8),574-578.
    [58]Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X., Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 2007,7 (9),2758-2763.
    [59]Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P., Photoinduced electron transfers with carbon dots. Chem Commun 2009, (25),3774-3776.
    [60]Yu, C. M.; Li, X. Z.; Zeng, F.; Zheng, F. Y.; Wu, S. Z., Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 2013,49 (4),403-405.
    [61]Dong, H. F.; Gao, W. C.; Yan, F.; Ji, H. X.; Ju, H. X., Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules. Anal Chem 2010,82 (13),5511-5517.
    [62]Morales-Narvaez, E.; Perez-Lopez, B.; Pires, L. B.; Merkoci, A., Simple Forster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 2012,50 (8),2987-2993.
    [63]Wei, W. L.; Xu, C.; Ren, J. S.; Xu, B. L.; Qu, X. G., Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem Commun 2012,48 (9),1284-1286.
    [64]Yoon, S. J.; Kim, J. H.; Chung, J. W.; Park, S. Y., Exploring the minimal structure of a wholly aromatic organogelator:simply adding two beta-cyano groups to distyrylbenzene. J Mater Chem 2011,21 (47),18971-18973.
    [65]Seo, J.; Chung, J. W.; Cho, I.; Park, S. Y., Concurrent supramolecular gelation and fluorescence turn-on triggered by coordination of silver ion. Soft Matter 2012,8 (29), 7617-7622.
    [66]Tang, W. X.; Xiang, Y.; Tong, A. J., Salicylaldehyde Azines as Fluorophores of Aggregation-Induced Emission Enhancement Characteristics. J Org Chem 2009,74 (5),2163-2166.
    [67]Ryu, S. Y.; Kim, S.; Seo, J.; Kim, Y. W.; Kwon, O. H.; Jang, D. J.; Park, S. Y., Strong fluorescence emission induced by supramolecular assembly and gelation: luminescent organogel from nonemissive oxadiazole-based benzene-1,3,5-tricarboxamide gelator. Chem Commun 2004, (1),70-71.
    [68]Qin, A.; Lam, J. W. Y.; Tang, B. Z., Luminogenic polymers with aggregation-induced emission characteristics. Prog Polym Sci 2012,37 (1),182-209.
    [69]Yu, C. M.; Luo, M.; Zeng, F.; Wu, S. Z., A fast-responding fluorescent turn-on sensor for sensitive and selective detection of sulfite anions. Anal Methods-Uk 2012, 4 (9),2638-2640.
    [70]Shellaiah, M.; Wu, Y. H.; Singh, A.; Raju, M. V. R.; Lin, H. C., Novel pyrene-and anthracene-based Schiff base derivatives as Cu2+and Fe3+fluorescence turn-on sensors and for aggregation induced emissions. J Mater Chem A 2013,1 (4), 1310-1318.
    [71]龙立平,尤明旭,王昊等.基于分子内荧光能量转移的碘聚合膜荧光传感器.中国科学
    [72]Yu, M.; Duan, J. P.; Lin, C. H.; Cheng, C. H.; Tao Y. T., Diaminanthracene derivatives as high-performance green host electroluminescent materials. Chem.Mater,2002,14(9),3958-3963.
    [1]Santos-Figueroa, L. E.; Moragues, M. E.; Climent, E.; Agostini, A.; Martinez-Manez, R.; Sancenon, F., Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem Soc Rev 2013,42 (8),3489-3613.
    [2]Bhattar, S. L.; Kolekar, G. B.; Patil, S. R., FRET Between Anthracene and Proflavine Hemisulphate in Micellar Solution and Analytical Application on Determination of Proflavine Hemisulphate. J Disper Sci Technol 2011,32 (1), 23-27.
    [3]Speiser, S., Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems:solution and supersonic jet studies, Chem. Rev.,1996,96(2),1953-1976.
    [1]Barman, S.; Sadhukhan, M., Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J Mater Chem 2012,22 (41),21832-21837.
    [2]Mitra, S.; Chandra, S.; Patra, P.; Pramanik, P.; Goswami, A., Novel fluorescent matrix embedded carbon quantum dots for the production of stable gold and silver hydrosols. J Mater Chem 2011,21 (44),17638-17641.
    [3]Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T., Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie International Edition 2010,49 (26),4430-4434.
    [4]Zheng, H. Z.; Wang, Q. L.; Long, Y. J.; Zhang, H. J.; Huang, X. X.; Zhu, R., Enhancing the luminescence of carbon dots with a reduction pathway. Chem Commun 2011,47 (38),10650-10652.
    [5]Jiang, Y. H.; Wang, Y. C.; Yang, J. B.; Hua, J. L.; Wang, B.; Qian, S. Q.; Tian, H., Synthesis, Two-Photon Absorption, and Optical Power Limiting of New Linear and Hyperbranched Conjugated Polyynes Based on Bithiazole and Triphenylamine. J Polym Sci Pol Chem 2011,49 (8),1830-1839.
    [6]Ovsianikov, A.; Deiwick, A.; Van Vlierberghe, S.; Dubruel, P.; Moller, L.; Drager, G.; Chichkov, B., Laser Fabrication of Three-Dimensional CAD Scaffolds from Photosensitive Gelatin for Applications in Tissue Engineering. Biomacromolecules 2011,72 (4),851-858.
    [7]Aboshyan-Sorgho, L.; Besnard, C.; Pattison, P.; Kittilstved, K. R.; Aebischer, A.; Bunzli, J. C. G.; Hauser, A.; Piguet, C., Near-Infrared-> Visible Light Upconversion in a Molecular Trinuclear d-f-d Complex. Angewandte Chemie International Edition 2011,50 (18),4108-4112.
    [1]An, X. Q.; Yu, X. L.; Yu, J. C.; Zhang, G. J., CdS nanorods/reduced graphene oxide nanocomposites for photocatalysis and electrochemical sensing. J Mater Chem A 2013,1 (16),5158-5164.
    [2]Gao, W.; Li, X. Y.; Li, Y. H.; Wang, X.; Song, S. Y.; Zhang, H. J., Facile synthesis of Pt3Sn/graphene nanocomposites and their catalysis for electro-oxidation of methanol. Crystengcomm 2012,14 (21),7137-7139
    [3]Bajpai, R.; Roy, S.; Koratkar, N.; Misra, D. S., NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell. Carbon 2013,56,56-63.
    [4]Martos-Maldonado, M. C.; Quesada-Soriano, I.; Casas-Solvas, J. M.; Garcia-Fuentes, L.; Vargas-Berenguel, A., Secondary Face-to-Face 2-2' beta-Cyclodextrin Dimers Linked with Fluorescent Rigid Spacer Arms:A Cyclodextrin-Based Ratiometric Sensor for Bile Salts. Eur J Org Chem 2012, (13),2560-2571.
    [5]He, J. L.; Zou, W.; Wang, J. X.; Zeng, L. H.; Cao, Z.; Luo, D. M., Tetra-(N-phenylpyrazole)-porphyrin/beta-cyclodextrin Incorporated CNT Film Modified Hemoglobin Sensor. Advanced Materials, Pts 1-42011,239-242, 2831-2834.
    [6]Xu, M. Y.; Wu, S. Z.; Zeng, F.; Yu, C. M., Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing. Langmuir 2010,26 (6),4529-4534.
    [1]Rabinowitch, E.; Epstein, L. F., Photographic Fourier Syntheses. J. Am. Chem. Soc.,1941,63(5),67-78
    [2]Kasha, M; Rawls, H. R.; El-Bayoumi, M. A., The exciton model in molecular spectroscopy. Pure Appl. Chem,1965,11(3),371-392
    [3]Qi, X. Y.; Li, H.; Lam, J. W. Y.; Yuan, X. T.; Wei, J.; Tang, B. Z.; Zhang, H., Graphene Oxide as a Novel Nanoplatform for Enhancement of Aggregation-Induced Emission of Silole Fluorophores. Advanced Materials 2012, 24 (30),4191-4195.
    [4]Xu, X. J.; Huang, J.; Li, J. J.; Yan, J. W.; Qin, J. H.; Li, Z., A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin. Chem Commun 2011,47 (45),12385-12387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700