荞麦种质资源遗传多样性及繁殖遗传完整性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荞麦(Fagopyrum)属于双子叶蓼科(Polygonaceae)荞麦属(Fagopyrum Mill),是一种粮药兼备的重要作物。荞麦有苦荞和甜荞两个栽培种。本研究就苦荞种质资源的遗传多样性和甜荞种质资源的繁种更新技术两个方面分别开展了一定的研究,旨在为我国荞麦种质资源的保护、研究和利用提供一定的依据。
     本研究利用AFLP分子标记技术对14个不同地理来源的165份苦荞种质进行了遗传多样性分析,从分子水平研究苦荞种质资源的遗传多样性,为综合评价苦荞种质资源提供了依据。筛选出的20对AFLP引物共扩增出938条清晰的条带,其中314(33.48%)条呈多态性,平均每对引物组合的条带数和多态性带数分别为46.9个和15.7个。不同地理来源苦荞种质的Shannon-Weaver多样性指数为0.1093~0.2661,四川资源群最高,青海、云南和甘肃/宁夏等资源群次之,湖南资源群最低。利用Popgen Ver.1.32软件,依不同地理来源苦荞资源群间Nei's遗传一致度可聚类成5个组,聚类结果与苦荞地理分布相关。基于Structure 2.2软件分析,165份苦荞资源分为5大组群,并与Popgen Ver.1.32聚类结果呼应得较好,其中云南和四川资源的群体结构最复杂,最为多样化,分别被聚到了5个组群中。结果表明,苦荞类群的亲缘关系以及遗传多样性与其地理分布有一定相关性,并认同中国西南部四川、云南、西藏一带是栽培苦荞的起源中心和遗传多样性中心的观点和苦荞从中国西藏_不丹→尼泊尔→克什米尔→波兰的传播路线。
     甜荞是典型的异花授粉作物,异交率达100%,保持甜荞繁殖更新前后最大的遗传相似性和遗传完整性,是目前荞麦繁种工作的重要课题。根据甜荞的授粉方法(虫媒和风媒)及繁殖生物学特性,本研究设计了空间隔离、纱网隔离和无隔离的繁殖方式,并以种质库取出的原种作为对照,分别从形态标记和分子标记两个方面对甜荞种质繁殖更新前后的遗传完整性进行了研究。观察记载主要农艺性状,并对其进行差异显著性分析;基于AFLP标记数据计算原种与不同隔离方法繁殖后代的遗传相似系数;根据SSR结果分析比较不同隔离处理与原种群体间等位基因频率的变异,并对其进行遗传一致度聚类分析。结果表明,甜荞繁殖更新时不设置隔离,繁殖后代与原种遗传差异显著;纱网隔离能够有效地防止外来花粉混杂,对保持甜荞种质遗传完整性效果最佳;而空间隔离则以500米以上间隔距离最为有效。
The buckwheat is a multipurpose plant which is belongs to the family Polygonaceae, Genus fagopyrum Mill.The buckwheat has two cultivated species, tartary buckwheat and common buckwheat.In this study, the genetic diversity of tartary buckwheat germplasm resources was assessed and the genetic integrity of common buckwheat germplasm resources regenerated with different methods was studied in order to obtain useful information for conservation and use of buckwheat genetic resources.
     This work analyzed the genetic diversity of 165 accessions of tartary buckwheat from 14 different geographical regions using 20 informative primer pairs of AFLP markers,and further obtained the helpful information for breeding and germplasm evaluation.Totally 938 loci were detected among which 314 (33.48%) were polymorphic.The number of amplified fragments and polymorphic fragments per primer combination were 46.9 and 15.7,respectively. Shannon's information index of different geographical groups was 0.1093-0.2661.The group from Sichuan possessed the highest level of genetic diversity, followed by those from Qinghai,Yunnan and Gansu/Ningxia;The group from Hunan was the lowest in genetic diversity. Five cluster groups were identified based on the dendrogram of pairwise Nei's genetic identity. The clustering results revealed that the genetic diversity of accessions of tartary buckwheat closely related to their origins. Five types of population structure within 165 tartary buckwheat accessions were inferred by Structure analysis,which also correlated to their geographic origins.The population structure of accessions from Yunnan and Sichuan provinces were the most complicated and multiplex.The result showed that the genetic relationship and diversity of tartary buckwheat populations correlated to their geographic distribution to a certain extent. Moreover, the current study supported that southwest in china is the original birthplace and the center of genetic diversity of cultivated tartary buckwheat. And we supported the spreading route from the origin of tartary buckwheat in China: Tibet in China-Bhutan-Nepal-Kashmir-Karakoram Hindukush route.
     Common buckwheat is a typical cross-pollinated species with the outcrossing rate of 100%.Maintaining the genetic integrity of germplasm resources during regeneration is an important subject for buckwheat multiplication. According to the method of pollination (insect and wind) and the reproductive biology of common buckwheat, spatial isolation, gauze net isolation and no isolation was designed for this reseach, with the genebank seeds as a control.In this study, we compared the impact of different isolation methods on genetic integrity changes in common buckwheat using morphological markers and molecular markers.The t-test was used to compare the agronomic traits of common buckwheat between the genebank seeds and their offsprings regenerated with different isolation methods. Genetic similarity index between the genebank seeds and their offsprings regenerated with different isolation methods was calculated based on the data of AFLP markers.The allele frequency and dendrogram comparison between the genebank seeds and their offsprings regenerated with different isolation methods was analyzed using SSR markers.The results indicated that the difference between genebank seeds and their offsprings was significant when isolation was not set during the regeneration of common buckwheat germplasm resources. Gauze net isolation could avoid pollen adulteration effectively. The offsprings regenerated by gauze net isolation possessed the highest level of genetic identity and genetic resemblance with the genebank seeds.For the spatial isolation, the internal distance more than 500 meters was the most effective.
引文
[1]夏明忠,王安虎.野生荞麦资源研究.北京,中国农业出版社,2008,7-8.
    [2]林汝法.中国荞麦.北京,中国农业出版社,1994,1-104.
    [3]赵佐成,周明德,王中仁,侯鑫.中国苦荞麦及其近缘种的遗传多样性研究.遗传学报,2002,29(8):723-734.
    [4]Tsuji K, Ohnishi O. Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tataricum Gaertn.) populations revealed by AFLP analyses. Genes and Genetic Systems,2001,76(1):47-52.
    [5]Lin R F, Chai Y. Production, research and academic exchanges of China on buckwheat. Advances in Buckwheat Research,2007:7-12.
    [6]林汝法,柴岩,廖琴,孙世贤.中国小杂粮.北京,中国农业科学技术出版社,2002,27-67.
    [7]施立明,贾旭,胡志昂.遗传多样性.见:陈灵芝主编中国的生物多样性.北京,科学出版社,1993,99.
    [8]葛颂,遗传多样性.见:蒋志刚,马克平,韩兴国主编.保护生物学.杭州,浙江科学技术出版社,1997,11.
    [9]Bruno B, Schmid B.Spatial and temporal patterns of genetic diversity within species. In:Kevin J.Biodiversity:A Biology of Numbers and Difference. London, Blackwell Science Institute,1996,169.
    [10]陈灵芝,马克平.生物多样性科学:原理与实践.上海,上海科学技术出版社,2001.93.
    [11]World Resources Institute(WRI)等.中国科学院生物多样性委员会译.全球生物多样性策略.北京:中国标准出版社,1993.
    [121罗定泽,赵佐成,周明德,沈国坤.苦荞麦栽培居群的聚类分析和主成分分析.四川师范大学学报,2000,23(3):272-276.
    [13]张小燕,苏敏,卢宗凡,武田和羲.荞麦品种资源聚类分析.西北农业学报,2000,9(2):121-124.
    [14]高金锋,张慧成,高小丽,卓嘎,柴岩,李瑞国,冯佰利.西藏苦荞种质资源主要农艺性状分析.河北农业大学学报,2008,31(2):1-5.
    [15]张宏志,管正学,刘湘元,刘玉红.甜荞和苦荞染色体核型分析.内蒙古农业大 学学报,2000,21(]):69-74.
    [16]陈庆富.五个中国荞麦种的核型分析.广西植物,2001,21(2):107-110.
    [17]Ohnishi O, Asano N. Genetic diversity of Fagopyrum homotropicum, a wild species related to common buckwheat. Genetic Resources and Crop Evolution,1999,46, 389-398.
    [181罗定泽,侯鑫,赵佐成.西南地区硬枝野荞麦(Fagopyrum urophyllum(Bur. et Franch.)H. Gross)天然居群的等位酶变异.四川师范大学学报(自然科学版),2002,25(1):62-65.
    [19]赵佐成,周明德,王中仁,侯鑫.中国苦荞麦及其近缘种的遗传多样性研究.遗传学报,2002,29(8):723-734.
    [201王莉花,殷富有,刘继梅,叶昌荣.利用RAPD分析云南野生荞麦资源的多样性和亲缘关系.分子植物育种,2004,2(6):807-815.
    [21]Kump B, Javornik B.Genetic diversity and relationships among cultivated and wild accessions of tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD markers.Genetic Resources and Crop Evolution,2002,49(6):565-572.
    [22]Tsuji K, Ohnishi O. Phylogenetic relationships among cultivated landraces and natural populations of Tartary buckwheat (Fagopyrum tataricum) revealed by RAPD analyses. Advances in Buckwheat Research(Section VI),1998:41-49.
    [23]Tsuji K, Ohnishi O.Phylogenetic position of east Tibetan natural populations in Tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genetic Resources and Crop Evolution,2001,48(1):63-67.
    [24]赵丽娟,张宗文,黎裕,王天宇.苦荞种质资源遗传多样性的ISSR分析.植物遗传资源学报,2006,7(2):159-164.
    [25]Iwata H, Imon K, Tsumura Y, Ohsawa R. Genetic diversity among Japanese indigenous common buckwheat (Fagopyrum esculentum) cultivars as determined from amplified fragment length polymorphism and simple sequence repeat markers and quantitative agronomic traits.Genome,2005,48(3):367-377.
    [26]夏冰,卢新雄,林凤.种质遗传完整性研究进展.安徽农业科学,2007,35(15):4415-4417.
    [27]Murata M, Tsuchiya T, Roos E.E.Chromosome damages induced by artificial seed aging in barley. Theor.Appl.Genet.1984,67,161-170.
    [28]Crossa J, Jewell D C, Deutsch J A, et al.Gene action and the bottleneck effect in relation to sample size for maintenance of cross-pollinated populations. Field Crops Research,1992,29,225-239.
    [29]马缘生,范传珠,王述民,谭富娟,周红立,周涛.五种作物基因库种子繁殖更新技术研究.植物遗传资源科学,2002,3(2):1-7.
    [30]马缘生,谭富娟,李灵芝,柴建方,范传珠,马榕荫,周红立,周涛.异花授粉作物大白菜和荞麦基因库种子繁殖技术研究.中国农业科学,2000,33(2):16-22.
    [3l]张晗,卢新雄,张志娥,陈晓玲,任守杰,辛萍萍.种子老化对玉米种质资源遗传完整性变化的影响.植物遗传资源学报,2005,6(3):271-275.
    [32]Navashin M S.Origin of spontaneous mutations.Nature, Lond,1933a,131,436.
    [33]Navashin M S.Aging of seed is a cause chromosome mutations.Plant,1933b,20, 233-243.
    [34]乔燕祥,高平平,王果萍,周建萍,田齐建,张素梅.玉米种子老化过程中EST同工酶变化与染色体畸变的研究.植物遗传资源学报,2003,4(2):114-118.
    [35]Parzies H K, Spoor W, Ennos R A. Genetic diversity of barley landrace accessions (Hordeum vulgare ssp.Vulgare) conserved for different lengths of time in ex situ gene banks. Heredity,2000,84,476-486.
    [36]张晗,卢新雄,张志娥.种子老化诱导小麦染色体畸变及大麦醇溶蛋白带型频率变化的研究.植物遗传资源学报,2004,5(1):56-61.
    [37]Alekseij,Konnarev, Nataliya, Gubareva, Dimitri, et al.Gliadin electrophoretic analysis of the genetic integrity of wheat(Triticum aestivum L.)accessions after frequent seed reproductions.Genetic Resources and Crop Evolution,2005,52,519-523.
    [38]Fernando Angel, Victoria Ebarney, Joseph Tohme,et al. Stability of cassava plants at the DNA level after retrieval from 10 years of in vitro storage. Euphytica,1996,90, 307-313.
    [39]Rio A H, Bambergj B,Huaman, et al.Assessing changes in the genetic diversity of potato gene banks. I. Effects of seed increase. Theor Appl Genet,1997,95,191-198.
    [40]Rob van Treuren, Theoj L van Hintum.Identification of intra-accession genetic diversity in selfing crops using AFLP markers, implications for collection management, Genetic Resources and Crop Evolution,2001,48,287-295.
    [41]Borner A, Chebotar S,Korzun V. Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) gernplasm after longterm maintenance.Theor Appl Genet,2000,100,494-497.
    [42]Chebotar S, Roder M S,Korzun V, et al.Molecular studies on genetic integrity of open-pollinating species rye(Secale cereale L.) after longterm genebank maintenance. Theor Appl Genet,2003,107(8):1469-1476.
    [431王转花,马文丽.荞麦同工酶多态分析.山西农业科学,1998,26(2):24-26.
    [44]Dvoracek V,Cepkova P, Michalova A, Kreft I.Seed storage protein polymorphism of buckwheat varieties (Fagopyrum esculentum Moench; Fagopyrum tataricum L.). Advances in Buckwheat Research,2004,412-418.
    [45]朱新产,王宝维,魏益民.荞麦种子蛋白组分差异研究.种子,2000,6,9-10.
    [461周明德,等译.种质资源科学管理、鉴定、评价和创新.国际植物遗传资源委员会培训班教材汇编2.北京,农业出版社,1992,12-15.
    [47]Manubens A, Lobos S, Jadue Y, Toro M, Messina R, Lladser M, Seelenfreund D. DNA isolation and AFLP fingerprinting of nectarine and peach varieties (Prunus persica). Plant Molecular Biology Reporter,1999,17(3):255-267.
    [48]Vos P, Hoger R, Bleeker M, Reijans M, Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nuclear Acids Research,1995,23(21):4407-4414.
    [491赵丽娟,荞麦种质资源遗传多样性分析[硕士学位论文].北京,中国农业科学院,2006.
    [50]Yeh F C, Boyle T J B.Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany,1997,129:157.
    [51]Weir B S.Genetic Data Analysis:Methods for Discrete Population Genetic Data. Sunderland:Simauer Associates,1990.
    [52]Shannon C E. A mathematical theory of communication. Bell System Technical Journal,1948,27:379-423 and 623-656.
    [53]Nei M. Genetic distance between populations. American. Naturalist,1972,106: 283-292.
    [54]Rohlf F J.NTSYSpc:Numerical Taxonomy System, ver.2.20.Setauket:Exeter Publishing Ltd,2008.
    [55]Pritchard J K, Stephens M, Donnelly P.Inference of population structure using multilocus genotype data. Genetics,2000,155(2):945-959.
    [56]Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data:Linked loci and correlated allele frequencies. Genetics, 2003,164(4):1567-1587.
    [57]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure:a simulation study. Molecular Ecology,2005,14(8): 2611-2620.
    [58]Senthilkumaran R, Bisht I S,Bhat K V, Rana J C. Diversity in buckwheat (Fagopyrum spp.) landrace populations from north-western Indian Himalayas. Genetic Resources and Crop Evolution,2008,55(2):287-302.
    [59]Wei Y M. Buckwheat production in China. Current Advances in Buckwheat Research, 1995:7-10.
    [60]Murai M, Ohnishi O. Diffusion routes of buckwheat cultivation in Asia revealed by RAPD markers. Current Advances in Buckwheat Research,1995:163-173.
    [61]Takehiko Konishi, Hiroyoshi Iwata, Kazutoshi Yashiro, Yoshihiko Tsumura, Ryo Ohsawa,Yasuo Yasui and Ohmi Ohnishi.Development and Characterization of Microsatellite Markers for Common Buckwheat.Breeding Science,2006,56: 277-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700