非均相化学反应对矿质颗粒物光学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿尘是对流层气溶胶的主要成分,主要由Al2O3、Fe2O3、SiO2和CaO等氧化物组成,可以通过直接散射和吸收太阳光对地气辐射收支平衡造成影响。矿尘气溶胶是大气多相反应特性最活跃的气溶胶粒子之一,能够与SO2气体发生非均相化学反应,进而改变矿尘气溶胶的化学组成、光学性质等微观特性。矿尘与海盐气溶胶在大气传输过程中形成的混合气溶胶与SO2反应也会对气溶胶粒子造成类似的影响。迄今为止,有关SO2在矿尘气溶胶表面非均相反应的研究多集中于反应机理等方面,然而其对矿尘粒子光学特性影响的研究相对较少。
     本文利用傅立叶红外光谱仪、红外漫反射(DRIFTS)及怀特池等实验系统,并结合离子色谱、透射电镜等分析手段和光学理论计算,对SO2在矿尘、矿尘-海盐混合颗粒物表面非均相化学反应导致的硫酸盐生成量及颗粒光学性质变化进行了研究。此外,还采用Xe灯对反应进行照射,模拟太阳光对非均相反应过程及矿尘颗粒光学性质的影响。
     SO2与矿尘气溶胶典型组分(SiO2、a-Fe2O3、a-Al2O3和CaO)、含铁气溶胶典型代表(a-Fe2O3、Fe3O4、y-Fe2O3和a-FeOOH)非均相化学反应的模拟结果表明,SO2与不同氧化物组分非均相反应对粒子光学特性和硫酸盐生成的影响存在很大的差别,并且SO2与不同氧化物组分非均相反应过程中粒子光学性质剧烈变化仅出现在红外波段800-1300 cm-1。另外,Xe照射对SO2与不同氧化物组分非均相反应有一定的抑制作用。
     不同反应条件下SO2与a-Fe2O3非均相化学反应的模拟结果显示,温度、SO2和O2浓度对非均相反应产生重要影响。粒子光学性质和硫酸盐生成量随温度的升高而呈现先增加(15-35℃)后减小(35-45℃)的趋势,随SO2浓度(0.51-18.6ppm)的升高呈现增加的趋势,随O2浓度的升高呈现先增加(0%-21%)后减小(21%-40%)的趋势。此外,光学系数和硫酸盐生成量呈现反应初期快速增加、中期递减、后期缓慢减小的变化趋势。
     SO2与混合气溶胶(a-Fe2O3-NaCl)、(a-Fe2O3-KCl)和(中国黄土样品-NaCl)非均相化学反应的模拟结果显示,粒子光学性质和硫酸盐生成量随混合气溶胶(a-Fe2O3-NaCl)和(a-Fe2O3-KCl)中NaCl、KCl比例的增加而呈现先增加后减小的趋势。对于SO2与纯中国黄土反应,其吸收系数、后向散射系数以及硫酸盐生成量均在Xe灯照射下比无Xe照射大,而SO2与NaCl-中国黄土混合物反应,吸收系数、后向散射系数以及硫酸盐生成量在无Xe灯照射下比Xe照射大。可见Xe灯照射对SO2与中国黄土反应有一定的促进作用,但对SO2与NaCl-中国黄土混合物反应起到一定的抑制效果。
Mineral aerosol, one of main components of atmospheric aerosols (including Al2O3, Fe2O3, SiO2, CaO et al) in the troposphere, can impact the climate system by direct radiative forcing through absorbing and scattering solar and terrestrial radiation in the atmosphere, and act as cloud condensation nuclei (CCN) to indirectly influence the optical property and lifetime of clouds. Mineral aerosol can act as one kind of most activated species to react with SO2 and then change their optical properties and chemical composition etc. The similar reactions of SO2 also occour on the particle surface of mineral-sea salt mixture. Until now, the researches of SO2 heterogeneous reaction with aerosols have been mainly focusing on the reaction mechanism. However, studies on the impacts of SO2 heterogeneous reactions on mineral particle optical properties were limited.
     Combined with Transmission Electronic Microscopy(TEM), Ion Chromatogram (IC) and theory calculation of optical factors, the attempt was afforted to observe the optical variation and sulfate production of gaseous SO2 conversion on mineral aerosol particles using an in suit diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) and White cell. In addition, the variation of optical properties and sulfate production in the heterogeneous reaction was also simulated under Xe irradiation.
     Firstly, the variation of optical properties and sulfate production of gaseous SO2 heterogeneous reactions on typical oxides (SiO2,α-Fe2O3, CaO,α-Al2O3) and Iron oxidants(α-Fe2O3、Fe3O4、γ-Fe2O3和α-FeOOH) was studied using DRIFTS. The results revealed that the changes of optical properties and sulfate pruducts were great different for the heterogeneous reactions of SO2 with above oxides. Furthermore, it was approved that the rapid variation of optical coefficients appeared in the infrared band of 800-1300 cm-1 for the heterogeneous reactions of SO2 on different oxides. It was noted that Xe irradiation showed certain restrained effect to the heterogeneous reaction.
     Secondly, hematite as the representation of mineral aerosol, the variation of optical properties and sulfate production of the gaseous SO2 reacted on hematite (α-Fe2O3) was studied under different conditions of temperature, SO2 and O2 concentrations. The results revealed that optical properties and sulfate production showed an trend of initial increase and final decreasing with the increasing of temperature and O2 concentration, and an increasing trend with SO2 concentration. In addition, optical coefficients and sulfate production performed an evolution of initial increasing, midterm decreasing and final stabilizing.
     Finally, NaCl/KCl as the representation of sea salts, the variation of optical properties and sulfate production of the gaseous SO2 on hematite (α-Fe2O3)/Chinese loess-KCl/NaCl mixtures was studied. The results revealed that optical properties and sulfate production showed an trend of initial increasing and final decreasing with the increasing of NaCl/KCl mass fraction in the mixtures of a-Fe2O3-NaCl andα-Fe2O3-KCl. Optical coefficients and sulfate production of SO2 reacted on the Chinese loess were much larger under Xe irradiation than no Xe irradiation, and it was opposite for the SO2 reaction on the mixtures of Chinese loess-NaCl. This also revealed that Xe irradiation restrained the heterogeneous reactions of SO2 on of China loess-NaCl mixtures.
引文
[1]Whitby K T. The physical characteristics of sulfur aerosols[J]. Atmospheric Environment,1978,12:135-159.
    [2]Bufalini M. Oxidation of Sulfur Dioxide in Polluted Atmospheres-A Review[J]. Environmental Science and Technology,1971,5:685-700.
    [3]Faust B C, Hoffmann M R, Bahnemann D W. Photocatalytic Oxidation of Sulfur Dioxide in Aqueous Suspensions of a-Fe2O3[J]. Journal of Physical Chemistry,1989,93:6371-6381.
    [4]Halstead J A, Armstrong R, Pohlman B, et al. Nonaqueous Heterogeneous Oxidation of Sulfur Dioxide[J]. Journal of Physical Chemistry,1990,94: 3261-3265.
    [5]Zhuang G S, Yi Z, Duce R A, et al. Link between Iron and Sulfur Cycles Suggested by Detection of Fe(Ⅱ) in Remote Marine Aerosols[J]. Nature,1992, 355:537-539.
    [6]Wang L, Zhang F, Chen J M. Carbonyl Sulfide Derived from Catalytic Oxidation of Carbon Disulfide over Atmospheric Particles[J]. Environmental Science and Technology,2001,35:2543-2547.
    [7]Usher C R, Al-Hosney H, Carlos-Cuellar S, et al. A Laboratory Study of the Heterogeneous Uptake and Oxidation of Sulfur Dioxide on Mineral Dust Particles[J]. Journal of Geophysical Research,2002,107:4713-4721.
    [8]Ullerstam M, Vogt R, Johnson M S, et al. DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust [J]. Atmospheric Chemistry and Physics Discussions,2003,3:4069-4096.
    [9]Theodore L Anderson, Robert J Chanson, Stephen E Schwartz, et al. Climate forcing by aerosols hazy picture [J]. Science,2003,300(5622):1103-1104.
    [10]Richard A Kert. Reducing uncertainties of global warming [J]. Science,2002, 295(5552):29-31.
    [11]Satheesh S K, Ramanathean V. Large differences in tropical aerosol forcing at the top of the atmosphere and earth's surface [J]. Nature,2000,405:60-63.
    [12]Joyce E P, Leon D R. Indirect aerosol forcing[J]. Science,2000,290(5491): 407.
    [13]Tegen I, Lacis A A, Fung I. The influence of mineral aerosols from disturbed soils on the global radiation budget[J]. Nature,1996,380:419-422.
    [14]Theodore L A, Robert J C, Stephen E S, et al. Climate forcing by aerosols-a hazy picture[J]. Science,2003,300(5622):1103-1104.
    [15]Stephen E S, Meinrat O A. Uncertainty in climate change caused by aerosols[J]. Science,1996,272(5265):1121-1122.
    [16]IPCC. Climate Change:The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2007.
    [17]Whitby K T. The Physical Characteristics of Sulfur Aerosols[J]. Atmospheric Environment,1978,12:135-159.
    [18]Usher C R, Michel A E, Grassian V H. Reactions on Mineral Dust[J]. Chemical Review,2003,103(12):4883-4940.
    [19]刘菲.沙尘气溶胶辐射特性的初步研究.南京信息工程大学硕士学位论文.2006.
    [20]Lilensten J, Kretzschmar M. The solar spectrum in the UV, EUV, and X ranges: Observations, Modelling, and Effects on the Earth Upper Atmosphere in the Frame of Space Weather[J]. Lecture Notes in Physics,2006,699:53-91.
    [21]Tegen I, Lacis A A, Fung I. The influence on climate forcing of mineral aerosols from distrubed soils. Nature,1996,380(16):419-422.
    [22]Tegen I, Lacis A A. Modelling of particle size distrubution and its influence on the radiative properties of mineral dust aerosol. Journal of Geophysical Research,1996,101(14):19237-19244.
    [23]Ginoux P, Chin M, Tegen I, et al. Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research,2001, 106(17):20255-20273.
    [24]IPCC. Climate Change:The Scientific Basis, Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2001.
    [25]黄美元,王自发.东亚地区黄沙长距离输送模式设计.大气科学,1998,22(4):625-637.
    [26]赵琳娜,孙建华,赵思雄.一次引发华北和背景沙尘(暴)天气起尘机制的数值模拟研究.气候与环境研究,2002,7(3):279-294.
    [27]宣捷.中国北方地面起尘总量分布.环境科学学报,2000,20(4):426-430.
    [28]庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响.科学通报,2001,46(3):191-197.
    [29]Sheng P X, Meng G L, Dou W Y, et al. Trajectory analyses of the dust storms over East Asia. Acta Meteorologica Sinica,1994,8(2):238-246.
    [30]刘毅,周明煜.北京及近中国海春季沙尘气溶胶浓度变化规律的研究.环境科学学报,1999,19(6):642-647.
    [31]杨东贞,房秀梅,李兴生.我国北方沙尘暴变化趋势分析.应用气象学报,1998,9(3):352-358.
    [32]Zhou M Y, Chen Z, Huang R H, et al. Effects of two dust storms on solar radiation in the Beijing-Tianjin aera. Geophysical Research Letters,1994, 21(24):2697-2700.
    [33]钱云,符淙斌,王淑瑜.沙尘气溶胶与气候变化.地球科学进展,1999,14(4):391-394.
    [34]毛节泰,张军华,王美华.中国大气气溶胶研究综述.气象学报,2002,60(5):625-634.
    [35]王宏,石广玉,Aoki T.2001年春季东亚-北太平洋地区沙尘气溶胶的辐射强迫.科学通报,2004,49(19):1993-2000.
    [36]刘红年,蒋维楣.沙尘表面非均相化学过程的气候效应的初步模拟研究.地球物理学报,2004,47(3):417-422.
    [37]Kim J, Yoon S-C, Kim S-W, et al. Chemical apportionment of shortwave direct aerosol radiative forcing at the Gosan super-site, Korea during ACE-Asia. Atmospheric Environment,2006,40:6718-6729.
    [38]Lyamani H, Olmo F. J. Arboledas A-L. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmospheric Environment,2008,42:2630-2642.
    [39]Mogili P K, Yang K H, Young M A, et al. Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components:Broadband IR-UV extinction spectra. Journal of Geophysical Research,2007,112, D21204, doi:10.1029/2007JD008890.
    [40]Levin Z, Ganor E, Gladstein V. J. The Effects of Desert Particles coated with Sulfate on Rain Formation in the Eastern Mediterranean [J]. Journal of Applied Meteorology,1996,35:1511-1523.
    [41]Sander S P, Seinfeld J H. Chemical Kinetics of Homogeneous Atmospheric Oxidation of Sulfur Dioxide [J]. Environmental Science and Technology,1976, 12:1114-1123.
    [42]Maahs H G. Kinetics and Mechanism of Oxidation of S (Ⅳ) by Ozone in Aqueous Solution with Particular Reference to SO2 Conversion in Nonurban Tropospheric Clouds [J]. Journal of Geophysical Research,1983,88: 10721-10732.
    [43]Waqif M, Mohammed-Saad A B, Bensitel M, et al. Comparative Study of SO2 Adsorption on Metal Oxides [J]. Journal of Chemical Society, Faraday Transaction.1992,88:2931-2936.
    [44]Goodman A L, Li P, Usher C R, et al. Heterogeneous Uptake of Sulfur Dioxide on Aluminum and Magnesium Oxide Particles [J]. Journal of Physical Chemistry,2001,105:6109-6120.
    [45]Ullerstam M, Vogt R, Langer S, et al. The Kinetics and Mechanism of SO2 Oxidation by O3 on Mineral Dust [J]. Physical Chemistry Chemical Physics, 2002,4:4694-4699.
    [46]Usher C R, Al-Hosney H, Carlos-Cuellar S, et al. Heterogeneous Uptake and Oxidation of SO2 on Mineral Dust [J]. Journal of Geophysical Research,2002, 107, doi:10.1029/2002JD002051.
    [47]Zhang X Y, Zhuang G. S, Chen J M, et al. Heterogeneous reactions of sulfur dioxide on typical mineral particles[J]. Journal of Physical Chemistry B,2006, 110:12588-12596.
    [48]Mamane Y, Gottlieb J. Heterogeneous Reaction of Minerals with Sulfur and Nitrogen Oxides [J]. Journal of Aerosol Science,1989,20:303-311.
    [49]Usher C R, Al-Hosney H, Carlos-Cuellar S, et al. A Laboratory Study of the Heterogeneous Uptake and Oxidation of Sulfur Dioxide on Mineral Dust Particles [J]. Journal of Geophysical Research,2002,107:4713-4721.
    [50]Fu H B, Wang X, Wu H B, et al. Heterogeneous uptake and oxidation of SO2 on iron oxides[J]. Journal of Physical Chemistry C,2007,111:6077-6085.
    [51]Dentener F J, Carmichael G R, Zhang Y, et al. Role of Mineral Aerosol as a Reactive Surface in the Global Troposphere [J]. Journal of Geophysical Research-Atmospheres,1996,101:22869-22889.
    [52]刘红年,蒋维楣.沙尘表面非均相化学过程的气候效应的初步模拟研究.地球物理学报,2004,47(3):417-422.
    [53]Pozzoli L, Bey I, Rast s, et al. Trace gas and aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ:2. Impact of heterogeneous chemistry on the global aerosol distributions. Journal of Geophysical research,2008,113, D07309, doi:10.1029/2007JD009008.
    [54]MOhler O, Benz S, Saathoff H, et al. The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environmental Research Letters,2008,3,025007, doi:10.1088/1748-9326/3/2/025007.
    [55]崔虎雄,成天涛,陈建民,等.SO2在Fe2O3颗粒表面不同温度下非均相反应的实验模拟[J].物理化学学报,2008,24(12):2331-2336.
    [56]Cui H X, Cheng T T, Yu X N, et al. Laboratory simulation of SO2 heterogeneous reactions on hematite surface under different SO2 concentrations. Journal of Environmental Science,2009,21:1103-1107.
    [57]Niimura N K. Okada X. Fan K. et al. Formation of Asian dust-storm particles mixed internally with sea salt in atmosphere [J]. Journal of Meteorology Society Japan,1998,76:275-288.
    [58]Chun K C, Quon J E. Capacity of Ferric Oxide Particles to Oxidize Sulfur Dioxide in Air[J]. Environmental Science and Technology,1973,7(6):532-538.
    [59]Low M J D, Goodsel A J, Takezawa N. Reactions of Gaseous Pollutants with Solids. Ⅰ. Infrared Study of the Sorption of Sulfur Dioxide on Calcium Oxide[J]. Environmental Science and Technology,1971,5(12):1191-1195.
    [60]Goodsel A J, Low M J D, Takezawa N. Reactions of Gaseous Pollutants with Solids. Ⅱ. Infrared Study of the Sorption of Sulfur Dioxide on Magnesium Oxide[J]. Environmental Science and Technology,1972,6(3):268-273.
    [61]Karge H G, Dalla Lana I G. IR Studies of Sulfur Dioxide Adsorption on a Claus Catalyst by Selective Poisoning of Sites[J]. Journal of Physical Chemistry,1984, 88(8):1538-1543.
    [62]Datta A, Cavell R G, Tower R W, et al. Claus Catalysis.1. Adsorption of Sulfur Dioxide on the Alumina Catalyst Studied by FTIR and EPR Spectroscopy[J]. Journal of Physical Chemistry,1985,89(3):443-449.
    [63]Mitchell M B, Sheinkar V N, White M G. Adsorption and Reaction of Sulfur Dioxide on Alumina and Sodium-Impregnated Alumina[J]. Journal of Physical Chemistry,1996,100(18):7550-7557.
    [64]Vogt R, Finlayson-Pitts, B J. A diffuse reflectance Infrared Fourie Transform Spectroscopic Study of the surface reaction of NaCl with gases NO2 and HNO3 [J]. Journal of Physical Chemistry,1994,98:3747-3755.
    [65]Wang L, Zhang F, Chen J M. Carbonyl Sulfide Derived from Catalytic Oxidation of Carbon Disulfide over Atmospheric Particles[J]. Environmental Science and Technology,2001,35:2543-2547.
    [66]Wang L., Zhang F, Chen J M. Studies on Catalytic Oxidation of CS2 over Atmospheric Particles and Oxide Catalysts[J]. Science in China (Series B), 2001,44(6):587-595.
    [67]Chen H H, Kong L D, Chen J M, et al. Heterogeneous Uptake of Carbonly Sulfide on Hematite and Hematite-NaCl Mixtures. Environmental Science and Technology,2007,41(18):6484-6490.
    [68]Iwasaka Y, Minoura H, Nagaya K. The Transport and Spatial Scale of Asian Dust Storm Cloud:A Case Study of the Dust Storm Event of April 1979[J]. Tellus,1982,35B(3):189-196.
    [69]Yaacov M, Judith G. Heterogeneous reactions of minerals with sulfur and nitrogen oxides [J]. Journal of Aerosol Science,1989,20 (3):303-311.
    [70]Hug S J. In situ Fourier Transform Infrared Measurements of Sulfate Adsorption on Hematite in Aqueous Solution [J]. Journal of Colloid Interface Science,1997, 188:415-422.
    [71]邰菁菁,付洪波,孔令东,等.SO2与矿物气溶胶组分α-Fe2O3的光化学反应机制研究,中国环境科学,2008,28(5):401-406.
    [72]张秋菊,王晓,陈建民,等.SO2与Fe2O3生成Fe(Ⅱ)(aq)和硫酸盐的复相反应机理.高等学校化学学报,2006,27(7):1347-1350.
    [73]Bufalini M. Oxidation of Sulfur Dioxide in Polluted Atmospheres-A Review[J]. Environmental Science and Technology,1971,5:685-700.
    [74]Luria M, Sievering H. Heterogeneous and Homogeneous Oxidation of SO2 in the Remote Marine Atmosphere [J]. Atmospheric Environment,1991,25(8): 1489-1496.
    [75]吴洪波,陈建民,薛华欣,等.羰基硫与气溶胶典型组分的复相反应机制.过程工程学报,2004,4:818-822.
    [76]Ali M A, Dzombak D A. Competitive sorption of simple organic acids and sulfate on goethite. Environmental Science and Technology,1996,30:1061.
    [77]Urone P, Lutsep H, Noyes C M, et al. Static studies of sulfur dioxide reactions in air. Environmental Science and Technology,1968,2(8):611-618.
    [78]Judeikis H S, Stewart T B, Wren A G. Laboratory studies of heterogeneous reactions of SO2. Atmosphere Environment,1978,12:1633-1641.
    [79]Foster P M. The oxidation of sulfur dioxide in power station plumes. Atmosphere Environment,1969,3:157-175.
    [80]马晓燕,石广玉,郭裕福,等.温室气体和硫酸盐气溶胶的辐射强迫作用.气象学报,2005,63(1):41-47.
    [81]马晓燕,石广玉,郭裕福,等.硫酸盐气溶胶辐射强迫的数值模拟研究.气候与环境研究,2004,9(3):454-463.
    [82]Andreae M O, Schmid O, Yang H, et al. Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China. Atmospheric Environment,2008,42(25):6335-6350.
    [83]Lyamani H, Olmo F J, Arboledas L A, Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmospheric Environment,2007,42(11):2630-2642.
    [84]Meszaros E, Molnar A, Ogren J. Scattering and absorption coefficients vs. chemical composition of fine atmospheric aerosol particles under regional condition in Hungary. Journal of Aerosol Science,1998,29(10):1171-1178.
    [85]Slater J F, Dibb J E, Keim B D, et al. Light extinction by fine atmospheric particles in the White Mountains region of New Hampshire and its relationship to air mass transport. The Science of the Total Environment,2002,287: 221-239.
    [86]王晓.SO2与铁氧化物复相反应研究.复旦大学硕士学位论文,2006.
    [87]Borensen C, Kirchner U, Scheer V, Vogt R, Zellner R,2000. Mechanism and Kinetics of the Reactions of NO2 or HNO3 with Alumina as a Mineral Dust Model Compound. Journal of Physical Chemistry A,104:5036-5045.
    [88]Brandt C, Eldik R V. Transition Metal-Catalyzed Oxidation of Sulfur(Ⅳ) Oxides. Atmospheric-Relevant Processes and Mechanisms [J]. Chemical Review,1995,95(1):119-190.
    [89]邰菁菁.SO2与大气气溶胶典型组分的光化学反应研究.复旦大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700