含硝酸盐混合气溶胶与SO_2非均相反应的实验室模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气气溶胶对城市空气污染、大气环境乃至全球气候的影响很大,它为痕量气体如SO2,NOX,NH3,H2S,CHx等提供了巨大的反应床和储存库,同时增加了通过太阳辐射和一些复杂化学反应而产生二次气溶胶的可能性。
     近年来,中国大陆机动车保有量不断增加,从而造成NOx、颗粒物、VOCs等的排放量日益增加,尤其是诸如北京、上海、广州等特大型城市的大气污染日益严重。已有研究表明,大气中HNO3(g),NO2(g),N2O5(g),ClONO2(g)等能在大气颗粒物表面发生非均相化学反应而生成硝酸盐。现场监测表明,世界上不同地区的海盐及矿尘气溶胶中都含有硝酸盐,含硝酸盐的海盐又会与从干旱和半干旱地区传输过来的矿尘气溶胶混合形成含硝酸盐混合气溶胶。硝酸盐的存在会很大程度上改变原有气溶胶的表面性质,并影响其反应活性。因此,研究硝酸盐如何影响大气SO2的非均相反应以及含硝酸盐气溶胶的反应机制意义重大。目前,大部分文献是关于SO2在典型矿尘气溶胶表面,如中国黄土、合成海盐以及撒哈拉矿尘表面发生的非均相反应,而对于硝酸盐如何影响SO2在大气气溶胶表面上的非均相反应的关注很少,迄今为止还没有人研究过含硝酸矿尘气溶胶与SO2发生非均相化学反应的机制。因此,我们需要更好地理解矿尘及硝酸盐混合气溶胶与大气中痕量气体的非均相化学反应。
     本论文主要利用流动态的原位傅立叶红外漫反射光谱仪(DRIFTS)对硝酸盐和α-Fe2O3的混合颗粒物以及真实大气颗粒物表面与SO2的非均相反应进行研究,并同时比较了硝酸盐和其他金属氧化物的混合颗粒物与SO2反应的情况。论文主要结论如下:
     一研究了NH4NO3和α-Fe2O3混合颗粒物与SO2的非均相反应,并同时比较了NH4NO3和其他金属氧化物(CaO、MgO、α-Al2O3、SiO2)与SO2反应的情况。实验结果表明,NH4NO3和α-Fe2O3混合颗粒物较NH4NO3和其他金属氧化物混合颗粒与SO2的反应吸附系数高,表明α-Fe2O3催化能力比其他金属氧化物强。利用BET面积作为反应活性表面积,发现含有6%NH4NO3的NH4NO3和α-Fe2O3(W/W)混合颗粒物与SO2反应具有最高的γBET(2.42×10-9),相比纯α-Fe2O3的反应高了近1.8倍。而纯NH4NO3颗粒与SO2不发生反应,少量NH4NO3的存在在一定程度上提高了SO2在气溶胶颗粒物表面转化成硫酸盐的能力。
     二研究了不同质量百分含量的NaNO3和α-Fe2O3混合颗粒物与SO2反应。实验结果表明,SO2能在NaNO3和α-Fe2O3混合颗粒物表面生成吸附的硫酸盐并在气相生成了N2O及HNO3气体。纯NaNO3与SO2无反应,而NaNO3和α-Fe2O3混合颗粒物与SO2反应的BET吸附系数范围处于3.68×10-10到3.22×10-9之间,混合颗粒物的反应活性都比α-Fe2O3要高。60%NaNO3和α-Fe2O3混合颗粒物具有最高的反应活性,反应吸附系数是α-Fe2O3的8.7倍,NaNO3存在在很大程度上促进了SO2在氧化铁表面的氧化作用。
     三研究了含其他硝酸盐(如KNO3、Ca(NO3)2等)的混合颗粒物对SO2气-粒转化的影响作用,KNO3使SO2在颗粒物表面转化为硫酸盐的量大大增加而硝酸钙对其完全抑制,这部分内容完善了不同含硝酸盐气溶胶与SO2反应情况的研究体系。其次考虑了其他因素对含硝酸盐气溶胶与SO2反应的影响作用,其中包括有机物HCHO对NaN03-a-Fe203混合颗粒物与SO2反应的影响,结果表明CH3CHO、HCHO对该非均相反应有强烈的抑制作用。
     四研究了真实颗粒物(China Loess中国黄土和大气中降尘)与SO2反应的情况,反应生成微量的硫酸盐,表明真实颗粒物中也存在类似实验室模拟化学反应的情况,因此本论文具有一定的现实意义。
Atmospheric aerosols contribute a lot to the urban pollution and affect the atmospheric environment and global climate as well.Aerosols provide large reservior for trace gases(SO2,NOx, NH3,H2S,CHx) and also act as highly reactive platform for them,thus enhancing the probability of forming secondary aerosols through solar radiation or complicated chemical reaction.
     With the development of economy and transportation, the amount of NOx, particles and VOCs emitted by automobile is increasing rapidly in mainland of China in recent years, especially in metropolis, such as Beijing, Shanghai and Guangzhou, the atmospheric pollution of which are much more serious.Research results show that atmospheric HN03(g), NO2(g), N2O5(g), ClONO2(g) can form nitrate on the sea-salt and mineral dust through a series of heterogeneous reaction.Field measurements showed that both sea-salt and mineral dust particles collected in different regions of the world are often found to be associated with nitrate.Since nitrate is always associated with mineral dust and sea-salt in the real atmospheric particles, and sea salt is believed to mix with mineral dust transported from arid and semiarid regions, the existence of nitrate salt particles may make the surface properties of nitrate-containing mineral particles much differently than those of previous particles and may impact its reactivity, it is reasonable to anticipate that the nitrate should influence the heterogeneous oxidation of atmospheric SO2, and it is very significant to investigate the reactivity of particles containing nitrate.However, most studies of heterogeneous reaction of SO2 focus on the surface of typical mineral oxides, China Loess, synthetic sea salt and Saharan mineral.In fact, little attention was paid to the influence of nitrate on the heterogeneous reaction of SO2 with atmospheric aerosols, and no one investigated the heterogeneous reactivity of SO2 on mineral particles containing nitrate up to now. A better understanding of the heterogeneous reaction of trace gases in the mixture of mineral dust aerosols and nitrate is therefore highly desirable.
     Heterogeneous oxidation of the gaseous SO2 on nitrate and Hematite mixtures compared to other metal oxides-nitrate mixtures along with the real particles (China Loess and atmospheric dust)were first studied using an in suit diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).Main results are as followed.
     Firstly, heterogeneous oxidation of gaseous SO2 on ammonium nitrate containing Hematite particles compared to other ammonium nitrate-containing oxides (MgO, Al2O3,CaO, SiO2)were studied.Obvious sulfate(SO42-)formation can be seen from the infrared spectrum of nitrate-containing oxides, and the catalytic activity of Hematite is much higher compared to other oxides.Using BET area as the reactive surface area, the Hematite sample containing 6% of NH4NO3(W/W) presents the highestγBET value (2.42×10-9),which increases by a factor of 1.8 compared to that of Hematite.No formation of sulfate is observed on the pure NH4NO3.
     Secondly, Heterogeneous uptake of SO2 on Hematite in the presence of sodium nitrate at ambient temperature was studied.It is found that SO2 can undergo heterogeneous reaction to form adsorbed sulfate on the surface of Hematite-nitrate mixtures and evolve some other species in the gas phase, such as a small amount of N2O and HNO3.No uptake of SO2 and formation of sulfate were observed on the pure NaN03.The initial uptake coefficient calculated using the BET surface areas of the mixture samples ranged from 3.68×10-10 to 3.22×10-9.The reactivity of Hematite-nitrate mixtures was higher than that of Hematite solely. The 40% w/w Hematite+60% w/w NaNO3 sample presented the highest reactivity, its correspondingγBET was about 8.7 times larger than that of Hematite.These results clearly indicate that the presence of nitrate promoted the reactivity of samples and leaded to an increase in the uptake and oxidation of SO2 to sulfate in Hematite particles.
     Thirdly, heterogeneous oxidation of gaseous SO2 on other nitrate-containing (KNO3,Ca(NO3)2) Hematite particles compared to NH4NO3 and NaNO3 were studied. KNO3 enjoys the highest reactivity while Ca(NO3)2 completely impedes it. Furthermore, we also discussed some other factors that would affect the above reaction, including that organic compounds (HCHO and CH3CHO) impede the above reaction.
     Finally, Real particles (China Loess and dust) reacting with gaseous SO2 were discussed.Small amount of sulfate formed on the particles, which manifested the real meaning of this research.
引文
[1]Warneck P. Chemistry of the Natural Atmosphere Second Edidtion[M].San Diego: Academic Press,1999.
    [2]Whitby K T. The physical characteristics of sulfur aerosols[J].Atmospheric Environment,1978,12:135-159.
    [3]Bufalini M.Oxidation of Sulfur Dioxide in Polluted Atmospheres-A Review[J]. Environmental Science and Technology,1971,5:685-700.
    [4]Halstead J A, Armstrong R, Pohlman B,et al.Nonaqueous Heterogeneous Oxidation of Sulfur Dioxide[J].Journal of Physical Chemistry,1990,94:3261-3265.
    [5]Katoshevski D, Nenes A, Seinfeld J.A study of processes that govern the maintenace of aerosols in the marine boundary layer[J].Journal of Aerosol Science, 1999,30:503-532.
    [6]Ayer G P, Cainey, J M Granek H, et al.Dimethylsulfide oxidation and the ration of methanesulfonate to non sea-salt sulfate in the marine aerosol[J].Journal of Atmospheric Chemistry,1996,25:307-325.
    [7]Andreae M O, Andreae T W, Meyerdierks D, et al.Marine sulfur cycling and the atmospheric aerosol over the springtime North Atlantic[J].Chemosphere,2003, 52:1321-1343.
    [8]Hofmann D J.Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years[J].Science,1990,248:996-1000.
    [9]Turco R P, Whitten R C, Toon O B,et al.OCS,stratospheric aerosol and climate[J].Nature,1980,283:283-286.
    [10]Crutzen P J. The possible importance of CSO for the sulfur layer of the stratosphere[J].Geophysical Research Letters,1976,3:73-76.
    [11]Mian C,Davis D D.Areanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol[J].Journal of Geophysical Research,1995,100: 8993-9005.
    [12]Xuan J, Sokolik I N. Characterization of sources and emission rates of mineral dust in Northern China[J].Atmospheric Environment,2002,36:4863-4876.
    [13]Kubilay N, Nickovic S, Moulin C, et al.An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean[J].Atmospheric Environment,2000,34:1293-1303.
    [14]Xuan J, Sokolik I N, Hao J F, et al.Identification and characterization of sources of atmospheric mineral dust in East Asia[J].Atmosphere Environment,2004,38: 6239-6252.
    [15]Ratmeyer V, Balzer W,Bergametti G,et al.Seasonal impact of mineral dust on deep-ocean particle flux in the eastern subtropical Atlantic Ocean[J].Marine Geology, 1999,159:241-252.
    [16]Zhang D Z, Iwasaka Y.Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in the Spring of 1995 and 1996[J].Atmospheric Environment,1999,33:3213-3223.
    [17]Maria S F, Russell L M, Turpin B J, et al.FTIR measurements of functional groups and organic mass in the aerosol samples over the Caribbean[J].Atmospheric Environment,2002,35:5185-5196.
    [18]Underwood G M, Li P, Al-Abadleh H, et al.A Knudsen cell study of the heterogeneous reactivity of nitric acid on oxide and mineral dust particles[J].Journal of Physical Chemistry,2001,105:6609-6620.
    [19]Underwood G M, Song C H, Phadnis M, et al.Heterogeneous reactions of NO2 and HNO3 on mineral oxides and mineral dust:A combined laboratory and modeling study[J].Journal of Geophysical Research,2001,106:18055-18066.
    [20]Goodman A L,Bernard E T,Grassian V H. Spectroscopic study of nitric acid and water adsorption on oxide particles:Enhanced nitric acid uptake kinetics in the presence of adsorbed water[J].Journal of Physical Chemistry,2001,105:6443-6457.
    [21]Mochida M, Finlayson-Pitts B J.FTIR studies of the reaction of gaseous NO with HNO3 on porous glass:Implications for conversion of HNO3 to photochemically active NOx in the Atmosphere[J].Journal of Physical Chemistry,2001,104: 9705-9711.
    [22]Paul U, Helmut L, Claudis M N, et al.Static studies of sulfur dioxide reactions in air[J].Environmental Science and Technology,1968,2:611-618.
    [23]Chung K C,Quon J E.Capacity of ferric oxide particles to oxidize sulfur dioxide in air[J].Environmental Science and Technology,1973,7:532-538.
    [24]Judeikis H S,Stewart T B,Wren A G. Laboratory studies of heterogeneous reactions of SO2[J].Atmospheric Environment,1978,12:1633-1641.
    [25]Waqif M, Mohammed-Saad A B, Bensitel M, et al.Comparative study of SO2 adsorption on metal oxides [J].Journal of Chemical Society, Faraday Transaction, 1992,88:2931-2936.
    [26]Goodman A L,Li P, Usher C R, et al.Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles[J].Journal of Physical Chemistry,2001, 105:6109-6120.
    [27]Maahs H G. Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in nonurban tropospheric clouds[J].Journal of Geophysical Research,1983,88:10721-10732.
    [28]Ullerstam M,Vogt R, Langer S,et al.The kinetics and mechanism of SO2 oxidation by O3 on mineral dust[J].Physical Chemistry Chemical Physics,2002,4: 4694-4699.
    [29]Faust B C,Bahnemann D W, Hoffmann M R. Kinetics and mechanism of the photoassisted Oxidation of Sulfur Dioxide on Hematite (a-Fe2O3)[J].Journal of Physical Chemistry,1989,93:6371-6381.
    [30]Alebic-Juretic A, Cvitas T, Klasinc L.Kinetics of heterogeneous ozone reactions[J].Chemosphere,2000,41:667-670.
    [31]Michel A E, Usher C R, Grassian V H. Heterogeneous and catalytic uptake of ozone on mineral oxides and dust:A Knudsen cell investigation[J].Geophysical Research Letters,2002,29:10-1-10-4.
    [32]Michel A E, Usher C R, Grassian V H. Reactive uptake of ozone on mineral oxides and mineral dusts[J].Atmospheric Environment,2003,37:3201-3211.
    [33]Buseck P R, Posfai M.Airborne minerals and related aerosol particles:Effects on climate and the environment[C].Proceedings of the National Academy of Sciences, USA 96,1999:3372-3379.
    [34]Lee S-H, Murphy D M, Thompson D S,et al.Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project:Focus on organic/sulfate, lead, soot and mineral particles[J].Journal of Geophysical Research,2002,107:4003.
    [35]Murphy D M, Thomson D S,Middlebrook A M, et al.In situ single-particle characterization at Cape Grim[J].Journal of Geophysical Research,1998,103: 16485-16491.
    [36]Posfai M, Xu H, Anderson J R, et al.Wet and dry sizes of atmospheric aerosol particles:An AFM-TEM study[J].Geophysical Research Letters,1998,25: 1907-1910.
    [37]Bertram A K, Ivanov A V, Hunter M, et al.The reaction probability of OH on organic surfaces of tropospheric interest[J].Journal of Physical Chemistry,2001,105: 9415-9421.
    [38]Jang M,Kamens R M.A predictive model for adsorptive gas partitioning of SOCs on fine atmospheric inorganic dust particles[J].Environmental Science and Technology,1999,33:1825-1831.
    [39]Li P, Perreau K A, Covington E, Song C H, et al.Heterogeneous reactions of volatile organic compounds on oxide particles of the most abundant crustal elements: Surface reactions of acetaldehyde, acetone, and propionaldehyde on SiO2, Al2O3, Fe2O3, TiO2, and CaO[J].Journal of Geophysical Research.2001,106(D6): 5517-5529.
    [40]Carlos-Cuellsr S,Li P, Christensen A P, et al.Heterogeneous uptake kinetics of volatile organic compounds on oxide surfaces using a knudsen cell reactor: Adsorption of acetic acid, formaldehyde, and methanol on α-Fe2O3, α-Al2O3, and SiO2[J].Journal of Physical Chemistry A,2003,107:4250-4261.
    [41]Eliason T L, Gilman J B,Vaida V. Oxidation of organic films relevant to atmospheric aerosols[J].Atmospheric Environment,2004,38:1367-1378.
    [42]Rudich Y.Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles[J].Chemical Review,2003,103:5097-5124.
    [43]Eliason T L, Aloisio S,Donaldson D J, et al.Processing of unsaturated organic acid films and aerosols by ozone[J].Atmospheric Environment,2003,37:2207-2219.
    [44]O'Dowd C D,Smith M H,Consterdine I E,et al.Marine aerosol,sea-salt,and the marine sulphur cycle:a shor review[J].Atmospheric Environment,1997,31: 73-80.
    [45]Finlayson-Pitts B J.The tropospheric chemistry of sea salt:A molecular-level view of the chemistry of NaCl and NaBr[J].Chemical Review,2003,103:4801-4822.
    [46]Abbatt J P D, Waschewsky G C G.Heterogeneous interaction of HOBr, HNO3, O3 and NO2 with deliquescent NaCl aerosols at room temperature[J].Journal of Physical Chemistry,1998,102:3719-3725.
    [47]Gong S L, Barrie L A. Simulating the impact of sea salt on global nss sulphate aerosols[J].Journal of Geophysical Research-Atmospheres,2003,108(D16): AAC4-1.
    [48]Vogt R, Finlayson-Pitts B J. A diffuse reflectance Infrared Fourie Transform Spectroscopic Study of the surface reaction of NaCl with gaseous NO2 and HNO3[J]. Journal of Physical Chemistry,1994,98:3747-3755.
    [49]Beichert P, Finlayson-Pitts B J. Knudsen cell studies of the uptake of gaseous HNO3 and other oxides of nitrogen on solid NaCl:The role of surface-adsorbed water[J].Journal of Physical Chemistry,1996,100:15218-15228.
    [50]Oum K W, Lakin M J, Dehaan D O, et al.Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles[J].Science,1998,279:74-77.
    [51]Knipping E M, Lakin M J,Foster K L, et al.Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols[J].Science,2000,288: 301-306.
    [52]Michael E, Gebel,Barbara J Finlayson-Pitts.The uptake of SO2 on synthetic sea salt and some of its components[J].Geophysical Research Letters,2000,27(6): 887-890.
    [53]Luria M H, Sievering H J.Heterogeneous and homogeneous oxidation of SO2 in the remote marine atmosphere[J].Atmospheric Environment,1991,25A:1489-1496.
    [54]Sievering H J, Boatman J,Galloway J, et al.Heterogeneous sulfur conversion in sea-salt aerosol particles:the role of aerosol water content and size distribution[J]. Atmospheric Environment,1991,25A:1479-1487.
    [55]Sievering H J, Boatman J,Goman E, et al.Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols[J].Nature,1992,360: 571-573.
    [56]Chun Y J, Kim J C, Choi K O, et al.Characteristic number size distribution of aerosol during Asian dust period in Korea[J].Atmospheric Environment,2001,35: 2715-2721.
    [57]Niimura N K, Okada X, Fan K, et al.Formation of Asian dust-storm particles mixed internally with sea salt in atmosphere[J].Journal of Meteorology Society Japan, 1998,76:275-288.
    [58]Vogt R, Grutzen R, Sander A.Mechanism for halogen release from sea salt aerosol in the remote marine boundary layer[J].Nature,1996,383:327-330.
    [59]Michael M.Mechanisms for the release of halogens from sea-salt particles by free radical reactions[J].Journal of Geophysical research,1995,100:14199-14207.
    [60]Laskin A, Gaspar D J, Wang W H, et al.Reactions at interfaces as a source of sulfate formation in sea-salt particles[J].Science,2003,301:340-344.
    [61]Cooke W F, Wilson J N. A global black carbon aerosol model[J].Journal of Geophysical Research,1996,101:19395-19409.
    [62]Ku J C, Shim K H. Optical Diagnostics and Radiative Properties of Simulated Soot Agglomerates[J].ASME Journal of Heat Transfer,1991,113:953-958.
    [63]Ackeman A S,Toon O B,Stevens D E,et al.Reduction of Tropospheric cloudiness by soot[J].Science,2000,288:1043-1048.
    [64]Lal S,Naja M, Jayaraman A.Ozone in the Marine Boundary Layer over the Tropical Indian Ocean[J].Journal of Geophysical Research,1998,103(D15): 907-918.
    [65]Satheesh S K. Aerosol radiative forcing over tropical Indian Ocean:Modulation by sea-surface winds[J].Current Science,2002,82:310-316.
    [66]Pankow J F, Seinfeld J H, Asher W E, et al.Modeling the Formation of Secondary Organic Aerosol.1.Application of Theoretical Principles to Measurements Obtained in the α-Pinene/,β-Pinene/,Sabinene/,Δ3-Carene/,and Cyclohexene/Ozone Systems[J].Environmental Science and Technology,2001,35: 1164-1172.
    [67]Seinfeld J H, Erdakos G B,Asher W E, et al.Modeling the Formation of Secondary Organic Aerosol(SOA).2.The Predicted Effects of Relative Humidity on Aerosol Formation in the α-Pinene-,β-Pinene-,Sabinene-,Δ3J-Carene-,and Cyclohexene-Ozone Systems[J].Environmental Science and Technology,2001,35: 1806-1817.
    [68]Winfried S.Model for a surface film of fatty acids on rain water and aerosol particles[J].Atmospheric Environment,2000,34:4917-4932.
    [69]Sievering H J, Gorman A, Pszenny M, et al.Ozone oxidation of sulfur in sea-salt aerosol particles during the azores marine aerosol and gas exchange experiment[J]. Journal of Geophysical Research,1995,100:23075-23081.
    [70]Keene W C, Sander R, Pszenny A A P, et al.Aerosol pH in the marine boundary layer:A review and model evaluation[J].Journal of Aerosol Science,1998,29: 339-356.
    [71]Boming Y, XueLi J, Haizhen Y, et al.Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period[J].Atmospheric Environment,2003,37: 499-510.
    [72]安福仁.中国工业化过程中的污染治理.哈尔滨工业大学学报(社会科学版).2004,6(1):12-17.
    [73]Zhang X Y, Zhuang G S,Chen J M, et al.Heterogeneous reactions of sulfur dioxide on typical mineral particles[J].Journal of Physical Chemistry B,2006, 110(25):12588-12596.
    [74]Usher C R, Al-Hosney H, Carlos-Cuellar S,et al.A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles[J]. Journal of Geophysical Research,2002,107:ACH 16-1-9.
    [75]Mitchell M B,Sheinkar V N,White M G. Adsorption and reaction of sulfur dioxide on alumina and sodium-impregnated alumina[J].Journal of Physical Chemistry,1996,100:7550-7557.
    [76]Mamane Y, Gottlieb J. Heterogeneous reaction of minerals with sulfur and nitrogen oxides[J].Journal of Aerosol Science,1989,20:303-311.
    [77]Saur O, Bensitel M, Mohammed Saad A B,et al.The structure and stability of sulfated alumina and titania[J].Journal of Catalysis,1986,99(1):104-110.
    [78]Datta A, Cavell R G,Tower R W, et al.Claus catalysis.1.adsorption of sulfur dioxide on the alumina catalyst studied by FTIR and EPR spectroscopy[J].Journal of Physical Chemistry,1985,89:443-449.
    [79]Karge H G, Dalla Lana I G.IR studies of sulfur dioxide adsorption on a claus catalyst by selective poisoning of sites[J].Journal of Physical Chemistry,1984,88(8): 1538-1543.
    [80]Judeikis H S,Stewart T B,Wren A G. Laboratory studies of heterogeneous reaction of SO2[J].Atmospheric Environment,1978,12:1633-1641.
    [81]Davis S M, Lunsford J H. Surface reactions of SO2 with NO2 on hydrated silica and silica-alumina[J].Journal of Colloid and Interface Science,1978,65(2):352-364.
    [82]Chang C C.Infrared studies of SO2 on γ-alumina[J].Journal of Catalysis,1978, 53(3):374-385.
    [83]Chung K C, Quon J E. Capacity of ferric oxide particles to oxidize sulfur dioxide in air[J].Environmental Science and Technology,1973,7(6):532-538.
    [84]Schoonheydt R A, Lunsford J H.Infrared spectroscopic investigation of the adsorption and reaction of SO2 on MgO[J].Journal of Catalysis,1972,26(2): 261-271.
    [85]Goodsel A J, Low M J D,Takezawa N. Reactions of gaseous pollutants with solids. Ⅱ.Infrared study of the sorption of sulfur dioxide on magnesium oxide[J]. Environmental Science and Technology,1972,6(3):268-273.
    [86]Low M J D, Goodsel A J, Takezawa N. Reactions of gaseous pollutants with solids.Ⅰ.Infrared study of the sorption of sulfur dioxide on calcium oxide[J]. Environmental Science and Technology,1971,5(12):1191-1195.
    [87]Deo A V, Dalla Lana I G, Habgood H W. Infrared studies of the adsorption and surface reactions of hydrogen sulfide and sulfur dioxide on some aluminas and zeolites[J].Journal of Catalysis,1971,21(3):270-281.
    [88]Urone P, Lutsep H, Noyes C M, et al.Static studies of sulfur dioxide reactions in air[J].Environmental Science and Technology,1968,2(8):611-618.
    [89]Hongbo Fu, Xiao Wang, Hongbo Wu, et al.Heterogeneous Uptake and Oxidation of SO2 on Iron Oxide[J].J.Phys.Chem.C,2007,111:6077-6085.
    [90]Haihan Chen, Lingdong Kong, Jianmin Chen, et al.Heterogeneous uptake of carbonyl sulfide on Hematite and Hematite-NaCl mixtures, Environmental Science and Technology 2007,4:6484-6490.
    [91]尹勇,陈海涵,孔令东等.高等学校化学学报[J],2007,28:1337-1341.
    [92]邰菁菁,付洪波,孔令东等.SO2与矿物气溶胶组分α-Fe2O3的光化学反应机制[J].中国环境科学,2008,28(5):401-406.
    [93]John T Houghton, L G Meira Filho, James P Bruce, et al.Climate Change
    1994[M],New York:Cambridge Univ. Press,1995.
    [94]Dentener F J, Carmichael G R, Zhang Y, et al.Role of mineral aerosol as a reactive surface in the global troposphere[J].J.Geophys. Res,1996,101(D17): 22869-22889.
    [95]Duce R A Eds, Charlson R J,Heintzenberg J.In Aerosol Forcing of Climate[M]. Chichester:Wiley,1995.
    [96]Jacob D J. Heterogeneous chemistry and tropospheric ozone [J].Atmos. Environ. [J],2000,34:2131-2159.
    [97]Ravishankara A R. Heterogeneous and multiphase chemistry in the troposphere[J].Science,1997,276:1058-1065.
    [98]Usher C R, Michel A E, Grassian V H,et al.Laboratory studies of ozone uptake on processed mineral dust[J].Atmos.Environ,2003,37:5337-5347.
    [99]丁杰,朱彤.大气中细颗粒物表面多相化学反应的研究[J].科学通报.2003,48(19):2005-2013.
    [100]Wu H B,Wang.,Chen J M, et al.Mechanism of the heterogeneous reaction of carbonyl sulfide with typical components of atmospheric aerosol [J].Chinese Science Bulletin,2004,49(12):1231-1235.
    [101]王琳,宋国新,张峰等.大气颗粒物对CS2催化氧化反应动力学研究[J].高等学校化学学报.2002,23:1738-1742.
    [102]Wang L, Zhang F, Chen J M.Carbonyl Sulfide Derived from Catalytic Oxidation of Carbon Disulfide over Atmospheric Particles[J].Environmental Science Technology,2001,35:2543-2547.
    [103]胡敏,张静,吴志军.北京降水化学组成特征及其对大气颗粒物的去除作用[J].中国科学B辑,2005,35(2):169-176.
    [104]冯艳丽,何秋生,文晟等.广州市羰基化合物污染初探[J].广州环境科学,2004,19(2):15-17.
    [105]迟玉广,李中阳,冯艳丽等.广东鼎湖山空气中羰基化合物含量的调查[J].环境科学学报,2008,28(11):2347-2353.
    [106]Facchini M C,Mircea M,Fuzzi S,et al.Cloud albedo enhancement by surface-active organic solutes in growing droplets[J].Nature,1999,401:257-259.
    [107]Kerminen V M. Relative roles of secondary sulfate and organics in atmospheric cloud condensation nuclei production[J].Journal of Geophysical Research,2001,106: 17321-17333.
    [108]Kawamura K, Ikushima K. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere[J].Environ Sci Technol,1993,27:2227-2235.
    [109]Kawamura K, Sempere R, Imai Y.Water soluble dicarboxylic acids and related compounds in Antarctic aerosols[J].Journal of Geophysical Research,1996,101: 18721-18728.
    [110]Kawamura K, Steinberg S,Kaplan I R.Concentrations of monocarboxylic and dicarboxylic acids and aldehydes in southern California wet precipitations: comparison of urban and non-urban samples and compositional changes during scavenging[J].Atmos Environ,1996,30:1035-1052.
    [111]Kawamura K, Sakaguchi F. Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics[J].Journal of Geophysical Research,1999,104:3501-3509.
    [112]Kerminen V M, Ojanen C, Pakkanen T, et al.Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere[J].Journal of Aerosol Science, 2000,31:349-362.
    [113]牛红云,陈洁,王格慧等.南京市大气气溶胶中二元羧酸昼夜变化研究[J].环境科学研究.2005,18(6):23-26.
    [114]Brown S S,Ryerson T B,Wollny A G, et al.Variability in nocturnal nitrogen oxide processing and its role in regional air quality[J].Science,2006,311:67-70.
    [115]Kane S M, Caloz F, Leu M T. Heterogeneous uptake of gaseous N2O5 by (NH4)2SO4, NH4HSO4, and H2SO4 aerosols[J].Journal of Physical Chemistry A,2001, 105(26):6465-6470.
    [116]Gao S,Keywood M, Ng N L, et al.Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and alpha-pinene[J].J.Phys.Chem.A,2004,108(46):10147-10164.
    [117]Kleindienst T E, Edney E O, Lewandowski M,et al.Secondary organic carbon and aerosol yields from the irradiations of isoprene and alpha-pinene in the presence of NOx and SO2[J].Environ.Sci.Technol.2006,40(12):3807-3812.
    [118]Surratt J D, Kroll J H, Kleindienst T E, et al.Evidence for organosulfates in secondary organic aerosol [J].Environ. Sci.Technol.,2007,41(2):517-527.
    [119]Liggio J, Li S,McLaren R. Heterogeneous reactions of glyoxal on particulate matter:Identification of acetals and sulfate esters[J].Environ.Sci.Technol.,2005, 39(6):1532-1541.
    [120]Ansari A S,Pandis S N.Water absorption by secondary organic aerosol and its effect an inorganic aerosol behavior[J].Environ.Sci.Technol.,2000,34(1):71-77.
    [121]Schurath U, Naumann K H.Heterogeneous processes involving atmospheric particulate matter[J].Pure & Appl.Chem,1998,70(7):1353-1361.
    [122]Wang L, Zhang F, Chen J M.Studies on Catalytic Oxidation of CS2 over Atmospheric Particles and Oxide Catalysts[J].Science in China(Series B),2001, 44(6):587-595.
    [123]王琳,张峰,陈建民.大气颗粒物及氧化物对CS2的催化氧化作用研究[J].中国科学(B辑),2001,31(4):370-376.
    [124]Iwasaka Y, Minoura H, Nagaya K.The Transport and Spatial Scale of Asian Dust Storm Cloud:A Case Study of the Dust Storm Event of April 1979[J].Tellus. 1982,35B(3):189-196.
    [125]许建华,陈清林,纪红兵.原位漫反射红外光谱技术用于气固催化反应机理的研究[J].化学进展,2008,20(6):811-819.
    [126]Ullerstam M, Johnson M S,Vogt R, et al.DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust[J].Atmospheric Chemistry and Physics Discussions,2003,3:2043-2051.
    [127]Gregory J Boer, Irina N Sokolik, Scot T Martin.Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements-Part Ⅰ:Results and analysis of spectral absorbing features[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 2007,108(1):17-38.
    [128]Ying I Tsai, Su-Ching Kuo.Development of diffuse reflectance infrared Fourier transform spectroscopy for the rapid characterization of aerosols[J].Atmospheric Environment,2006,40(10):1781-1793.
    [129]Stephan J H.In situ fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions[J].Journal of Colloid and Interface Science,1997,188:415-422.
    [130]吴洪波,王晓,陈建民等.羰基硫与气溶胶典型组分的复相反应机制[J].科学通报,2004,49(8):739-743.
    [131]张秋菊,王晓,陈建民等.SO2与Fe2O3生成Fe(II)(aq)和硫酸盐的复相反应机理[J].高等学校化学学报,2006,27(7):1347-1350.
    [132]Brandt C,Rudi van Eldik.Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides. Atmospheric-Relevant Processes and Mechanisms[J].Chem.Rev.,1995,95: 119-190.
    [133]Li X, Maring H, Savoie D, et al.Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds[J].Nature,1996,380(6573): 416-419.
    [134]Tegen I,Fung I J.Modeling of Mineral Dust in the Atmosphere-Sources, Transport, and Optical-Thickness[J].Geophys.Res.Atmos.,1994,99(D11): 22897-22914.
    [135]Zhang Y, Carmichael G R. The role of mineral aerosol in tropospheric chemistry in East Asia-A model study[J].J.App. Meteo,1999,38(3):353-366.
    [136]Song C.H.,Carmichael G. R. The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport[J].Atmos.Environ.1999, 33(14):2203-2218.
    [137]Andreae M O, Charlson R J, Bruynseels F, et al.Internal mixture of sea salt, silicates,and excess sulfate in marine aerosols[J].Science,1986,232:1620-1623.
    [138]Ritzhaupt G, Devlin J P. Infrared spectra of nitric and hydrochloric acid hydrate thin films[J].J.Phys.Chem,1991,95:90-95.
    [139]Molina M J, Zhang,Wooldridge P J,et al.Physical chemistry of the H2SO4/HNO3/H2O system:implications for polar stratospheric clouds[J].Science, 1993,261:1418-1423.
    [140]Wang Y, Zhuang G,Sun Y, et al.The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing[J].Atmos. Environ., 2006,40:6579-6591.
    [141]Huang K, Zhuang G,Xu C, et al.The chemistry of the severe acidic precipitation in Shanghai, China[J].Atmos. Res.,2008,89:149-160.
    [142]Pavlovic R T, Nopmongcol U,Kimura Y, et al.Ammonia emissions, concentrations and implications for particulate matter formation in Houston, TX[J]. Atmos. Environ.,2006,40:S538-S551.
    [143]Bari A, Dutkiewicz V A, Judd,C D, et al.Regional sources of particulate sulfate,SO2, PM25,HCl, and HNO3,in New York, NY[J].Atmos.Environ.,2003, 37:2837-2844.
    [144]Hussain G,Rahman M M.An infrared study of co-adsorption of N2O and CO on ZnO[J].Spectrochim. Acta,2006,64A:880-885.
    [145]Backstrom, H.J.Z. Phys.Chem.1934,25B,122.
    [146]Pires M, Van Den Bergh H, Rossi M J.The heterogeneous formation of N2O over bulk condensed phases in the presence of SO2 at high humidities[J].J.Atmos. Chem.,1996,25:229-250.
    [147]Pires M, Rossi M J. The heterogeneous formation of N2O in the presence of acidic solutions:experiments and modeling, Int[J].J.Chem.Kinet.,1997,29: 869-891.
    [148]Raschig F. Zur Theorie des Bleikammerprozess Z[J].Angew. Chem.,1904,17: 1398-1420.
    [149]Oblath S B, Markowltz S S,Novakov T, et al.Kinetics of the initial reaction of nitrite ion in bisulfite solutions[J].J.Phys. Chem.,1982,86:4853-4857.
    [150]Mendiara S N, Ghibaudi E, Perissinotti L J,et al.Free radical and diradicals in the reaction between nitrous acid and bisulfite in acid aqueous media[J].J.Phys. Chem.,1992,96:8089-8091.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700