长江口滨海沉积物中无机硫的形态特征及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东部沿海大中型城市大多位于河口或临近地区,随着城市经济的快速发展,大量重金属污染物通过地表径流进入水域,大量的含硫污染物通过酸雨等形式流入水域,使人类赖以生存的城市河口或河流污染严重。河口地区的沉积物作为无机硫、有机硫和重金属“源”和“汇”,不仅是其重要的蓄积库和污染源,而且是水体中重金属重要的反应场所。长江口地区污染物的迁移输送对海洋的贡献较大,并且该区域水环境对周边城市的发展意义重大。本文对长江口滨岸地区沉积物中的无机硫形态和重金属进行了研究,以了解该地区无机硫形态,进而进一步揭示重金属生物毒性和污染现状,并为长江口滨岸地区水环境的治理提供理论依据。研究结果如下:
     崇明东滩高、中、低潮滩表层沉积物酸可挥发性硫(AVS)含量为0.844μmol/g-3.531μmol/g,铬还原硫(CRS)含量为2.531μmol/g-5.156μmol/g,元素硫(ES)含量为0.719μmol/g-1.125μmol/g,CRS即黄铁矿硫,是沉积物中主要的还原无机硫化物形态。总体上,沉积物中的还原无机硫(RIS)含量排序为:CRS>AVS>ES,高潮滩>中潮滩>低潮滩。
     上海滨岸带表层沉积物中总还原无机硫含量排序为:鹿河>南汇嘴>芦潮港农场>吴淞>朝阳农场>顾路>奉贤>浏河。所有采样点的CRS含量均处于优势地位,表现出黄铁矿硫在沉积物中的稳定性。
     崇明东滩高、中、低潮滩柱状沉积物中三态无机硫的垂向分布特征存在较大差异。高潮滩深部沉积物(10-25cm)中ES含量逐步增加,而AVS相对含量降低。中潮滩在深度5-10cm部位沉积物中腐殖质含量较高,硫酸盐还原和黄铁矿化程度程度较高,AVS和CRS含量呈现峰值。低潮滩由于水动力条件强烈,在表层(0-10cm)沉积物中三态无机硫含量较低。
     崇明东滩表层沉积物中活性铁的含量由高到低为高潮滩>中潮滩>低潮滩,柱状沉积物的情况与之相似。上海滨岸潮滩表层沉积物活性铁含量由高到低为鹿河>朝阳农场>吴淞>芦潮港农场>顾路>浏河>奉贤>南汇嘴。
     崇明东滩高、中、低潮滩表层沉积物中Zn对SEM的贡献均超过48%;三个采样点的SEM/AVS均小于1,重金属对生物毒性较小。崇明东滩典型围垦土地类型中,只有玉米地的SEM/AVS略大于1,表现出中等水平的生物毒性。崇明东滩高、中、低潮滩沉积物中Zn对SEM的贡献均超过48%,因此SEM的垂向分布模式主要由Zn的分布模式所控制。崇明东滩柱状沉积物中,低潮滩沉积物的重金属生物毒性最大,由于低潮滩位于海岸带的最外围,离海洋最近,受到潮汐、风力、水文条件的影响较大,因此低潮滩的重金属生物毒性大反映出潮汐水中重金属的含量特征。
     上海滨岸潮滩表层沉积物中SEM的含量差异不大,Zn对SEM的贡献均超过48%,而Pb在所有采样点中的含量均最低。八个采样点中除顾路外其余点的SEM/AVS均大于1,说明上海滨岸带的潮滩表层沉积物中重金属存在中等水平的生物毒性。
Most big coastal cities of east China are located in or near estuary area. With the rapid development of urban economy, a large number of heavy metal pollutants enter waters through surface runoff, and a large number of pollutants containing sulfur enter waters through acid rain, which aggravates the urban estuary and river pollution. As the origin and sink of inorganic sulfur、organic sulfur and heavy metals, the sediments of estuary area not only is the important accumulation base and pollution source, but also is the important reaction place of aquatic heavy metals.The pollutants transportation in the Yangtze River Estuary makes great contribution to the sea, and the aquatic environment of this area have great significance to the development of the surrounding cities.
     The study shows the research of reduced inorganic sulfur species and heavy metals in the Yangtze River Estuary area. The aim is to know the contents of inorganic sulfur species, and further find out the biology toxicity of heavy metals and pollution status to provide theoretical basis for the aquatic treatment of the Yangtze River Estuary area.
     The result shows that,contents of acid-volatile sulfide(AVS)in surface sediments of Chongming Dongtan range from 0.844 to 3.531μmol/g, chromium(Ⅱ)-reducible sulfide(CRS) from 2.531 to 5.156μmol/g, elemental sulfur(ES) from 0.719 to 1.125μmol/g. CRS(FeS2-S)is the main reduced inorganic sulfur species in surface sediments, which occupies from 48.2% to 67.9%.The content sequence of reduced inorganic sulfur(RIS) is high tidal flat>middle tidal flat>low tidal flat.
     The content sequence of RIS in surface sediments of Shanghai costal area is Lu River>Nanhui Zui>Luchaogang Farm>Wusong>Chaoyang Farm>Gulu>Fengxian>Liu River. The contents of CRS in all sampling points have the ascendant position, which shows the stability of pyrite in the sediments.
     The content distribution of the RIS species in columnar sediments of Chongming Dongtan present irregular characteristic. The content of ES in high tidal flat gradually increases from 10-25cm,while the content of AVS decreases.The content of humus in 5-10cm middle tidal flat is high, which shows the high extent of sulfate reduction and pyritization.So the contents of AVS and CRS are high. The palaeohydrodynamic condition in low tidal flat is strong, so the contents of three reduced inorganic sulfur in surface sediments(0-10cm) is low.
     The content sequence of active iron in surface sediments of Chongming Dongtan is high tidal flat>middle tidal flat>low tidal flat, and the situation is same in columnar sediments.The content sequence of active iron in surface sediments of Shanghai costal area is Lu River>Chaoyang Farm>Wusong>Luchaogang Farm>Gulu>Liu River> Fengxian>Nanhui Zui.
     The contribution of Zn to simultaneously extracted metals(SEM) in surface sediments of Chongming Dongtan is over 48%. SEM/AVS are all below 1 in high、middle and low tidal flat, which shows a low level of biology toxicity. Among the typical soil type of Chongming Dongtan, only the SEM/AVS of maize soil is above 1, which shows a middle level of biology toxicity. The contribution of Zn to simultaneously extracted metals(SEM) in columnar sediments of Chongming Dongtan is over 48%, so the columnar distribution pattern of SEM is mainly controlled by the distribution pattern of Zn. Among the columnar sediments of Chongming Dongtan, the heavy metal toxicity to biology in low tidal flat is the highest. Because the low tidal flat is located on the outer part of the coastal area, the sediments is greatly influenced by the tide、wind and hydrological conditions.So the heavy metal toxicity to biology reflects the heavy metal content characteristic in the tidal water.
     The contents of SEM in the surface sediments on different sampling points of Shanghai coastal area don't vary too much. The contribution of Zn to SEM is over 48%,and the content of Pb in all sampling points is the lowest.The SEM/AVS are all over 1 expect Gulu, which shows the middle heavy metals toxicity to biology in the surface sediments of Shanghai coastal area.
引文
[1]Alakendra N,Roychoudhury,Joel E,Kostka,Philippe Van Cappellen. Pyritization:a palaeoenvironmental and redox proxy reevaluated[J].Estuarine,Coastal and Shelf Science,2003,57:1183-1193.
    [2]Allen H E,Fu G M,Deng B L. Analysis of acid-volatile sulfide(AVS)and simultaneously extracted metals (SEM)for the estimation of potential toxicity in aquatic sediments[J].Environ Toxicol Chem,1993,12(8): 1441-1453.
    [3]Aller R C. Mobile deltaic and continental shelf muds as suboxic fluidized bed reactors[J].Mar Chem, 1998,61:143-155.
    [4]Aller R C,Rude P D,Complete oxidation of solid-phase sulfides by manganese and bacteria in anoxic marine sediments[J].Geochim.Cosmochim. Acta.1988,52:751-765.
    [5]Andrew L N,et. Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria[J].Geochimica et Cosmochimica Acta.,2001,65(2):223-235.
    [6]Ankley G T,Di Toro D M,Hansen D J,et al. Technical basis and proposal for deriving sediment quality criteria for metals[J].Environ Toxicol Chem,1996,15(12):2056-2066.
    [7]Ankley G T, Phipps G L,Leonard E N. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments[J].Environ. Toxicol.,1991,23:1015-1020.
    [8]Berner R A. Sedimentary pyrite formation[J].Am. J. Sci.,1970,268:1-23.
    [6]Birch G,Taylor S. Source of heavy metals in sediments of the port Jackson estuary[J].Australia. The Science of the Total Environment,1999,227:123-138.
    [9]Bloomfield C,Coulter J K. Genesis and management of acid sulphate soil[J].Advances in Agronomy, 1973,25:65-326.
    [10]Bottcher M E,Thamdrup B,Vennemann T W. Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur[J].Geochim. Cosmochim. Acta.,2001,65:1601-1609.
    [11]Bubatutty Y,Chacko J,Chemical partitioning and bioavailability of lead and nickel in an estuarine system [J].Environmental Toxicology and Chemistry,1995,14(3):427-434.
    [12]Burton E D,Bush R T,Sullivan LA. Fractionation and extractability of sulfur, iron and trace elements in sulfidic sediments[J].Chemosphere,2006,64:1421-1428.
    [13]Gagnon C,Mucci A,Pelletier E. Anomalous accumulation of acid-volatile sulphides(AVS)in a coastal marine sediment,Saguenay Fjord,Canada[J].Geochim Cosmochim Acta,1995,59:2663-2675.
    [14]Canfield D E,Berner R A. Dissolution and pyritization of magnetite in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta,1987,51(3):645-660.
    [15]Canfield D E,Raiswell R,Westrich J T,Reaves C M,Berner R A. The use of chromium reduction in the analysis of reduced inorganic sulphur in sediments and shale[J].Chem. Geol.,1986,54:149-155.
    [16]Canfield D E,Thamdrup B. Fate of elemental sulfur in an intertidal sediment[J].FEMS Microbiol.Ecol, 1996,19:95-103.
    [17]Casas A M,Crecelius E A. Relationship between acid volatile sulfide and the toxicity of zinc lead and copper in marine sediments[J].Environ Toxical.Chem.,1994(13):529-536.
    [18]Chanton J P,Martens C S.The effects of heat and stannous chloride addition on the active distillation of acid-volatile sulfide from pyrite-rich marine samples[J].Biogeochemistry,1985,1:375-383. [19]Cornwell J C,Morse J W. The characterization of iron sulfide minerals in anoxic sediments[J].Mar. Chem.,1987,22:193-206.
    [20]Di Toro D M,Mahony J D,Hanson D J. Toxicity of cadmium in sediments:the role of acid volatile sulfide[J].Environ. Toxicol. Chem.,1990,9:1487-1502.
    [21]Di Toro DM,Zarba C S,Hansen D J,Berry W J,Swartz R C,Cowan C E,Pavlou S P,Allen H E, Thomas N A,Paguin P R. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning[J].Envirn. Tocicol.Chem,1991,1,540-1583.
    [22]Edward D B,Richard T B,Leigh A S.Elemental sulfur in drain sediments associated with acid sulfate soils [J].Applied Geochemistry,2006,21:1240-1247.
    [23]Fang T, Li X D,Zhang G. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary South China[J].Ecotoxicol Environ Saf,2005,61(3):420-431.
    [24]Feng H,Cochran J K,Lwiza H,el al. Distribution of heavy metal and PCB contaminants in the sediments of urban estuary:the Hudson river. Marine[J]Environmental research,1998,45(1),69-88.
    [25]Feng H,Cochran J K,Hirschberg D J. Transport and sources of metal contaminants over the course of tidal cycle in the turbidity maximum zone of the Hudson river estuary[J].Water Research,2002,36:733-743.
    [26]Forstner U. Contaminated sediments lecture notes in earth science[M].Sprinter Verlag:Berlin Heidelberg, 1989.
    [27]Fossing H,Jorgensen B B.Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment.1990.
    [28]Francois R. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis[J].Geochim. Cosmochim.Acta.,1987,51:17-27.
    [29]Gagnon C,Mucci A,Pelletier E. Anomalous accumulation of acid-volatile sulphides(AVS)in a coastal marine sediment,Saguenay Fjord,Canada[J].Geochim. Cosmochim.Acta,1995,59:2663-2675.
    [30]Gambrell R P. Trace and toxic metals in wetlands:a review[J].J Environ Qual,1994,23:883-891.
    [31]Gambrell R P,Wiesepape J B,Patrick Jr,WH,Duff M C. The effect of pH,redox,and salinity on metal release from a contaminated sediment[J]. Water Air and Soil Pollution,1991,57 (58):359-367.
    [32]Gao Xiaojiang,Chen Zhenlou et al.,Heavy metals and phosphorus in tidal flat sediments of the Yangtze estuary[J].Journal of Geographical Sciences.2002,12(4):472-478.
    [33]Grabowski L,Houpis JLJ,Woods WI,Johnson K. Seasonal bioavailability of sediment-associated heavy metals along the Missisippi river floodplain[J].Chemosphere,2001,45:643-651.
    [34]Helen P. Jarvie, Colin Neal,J.Dennis Burton et al. Patterns in trace element chemistry in the freshwater tidal reaches of the River Trent[J].The Science of the Total Environment,2000,5:317-333.
    [35]Herlihy A. T, Mills A. L. Sulfate reduction in freshwater sediments receiving acid mine drainge[J].Appl. Environ Microbiol.1985,49:179-186.
    [36]Horng C.S.,Chen J.C.,Lee T.Q.. Variations in magnetic minerals from two Plio-Pleistocene marine-deposited sections,southwestern Taiwan[J].Geol.Soc. China,1992,35:323-335.
    [37]Howard D. E,Evans R. D. AVS Acid-volatile sulfide(AVS) in a seasonally anoxic mesotrophic lake [J].Seasonal and Environmental Toxicology and Chemistry.1993,12:1051-1057.
    [38]Howarth,R. W. Pyrite:Its rapid formation in a salt marshes at Sapelo Island[J].Georgia. Limnol. Oceanogr.,1979,28:70-72.
    [39]Howarth,R. W.,A. Giblin. Sulfate reduction in the salt marshes at Sapelo Island[J].Georgia. Limnol. Oceanogr.,1983,28:70-72.
    [40]Howarth,R. W.,B. B.Jorgensen.Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments(Limfjorden and Kysing Fjord,Denmark)during short-term 35SO4 reduction measurements[J] Geochim. Cosmochim. Acta,1984,48:1807-1818.
    [41]Howarth,R. W.,S. Merkel.Pyrite formation and the measurement of sulfate reduction in salt marsh sediments[J].Limnol Oceanogr.,1984,29:598-608.
    [42]Jeffrey R Bacon,Irene J Hewitt,Patricia Cooper. Reproducibility of the BCR sequential extraction procedure in a long-term study of association of heavy metals with soil components in an upland catchment in Scotland[J].Science of the Total Environment,2005,337:191-205.
    [43]Jeroen et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J].Marine Chemistry.2001,74(4):261-278.
    [44]Johnson,C.M.,H.Nishita. Microestimation of sulfur in plant materials,soils and irrigation waters [J].Anal. Chem.,1952,24:736-742.
    [45]Jorgensen,B. B. Mineralization of organic matter in the sea bed-the role of sulfate reduction[J].Nature, 1982,296:643-645.
    [46]Jorgensen,B. B. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments.1.Measurements with radiotracer techniques[J].Geomicrobio,1978,1:11-27.
    [47]Kiba T.,Takagi T.,Yoshimura Y.,Kishi I.. Tin (Ⅱ)-strong phosphoric acid-a new reagent to determine sulfate by reduction to hydrogen sulfide[J].Bull.Chem. Soc. Jpn.,1955,28:641-644.
    [48]King,GM.Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh[J].Limnol. Oceanog.1988,33:376-390.
    [49]Lamers L P M,Tomassen H B M,Roelofs J G M.Sulfate-induced eutrophication and phytotoxicity in fresh water wetlands[J].Environ. Sci.Technol.,1998,32:199-205.
    [50]Luoma S N. Heavy metals in the marine environment[J].The Science of the Total Environment,1983, 28:1-22.
    [51]Luther G.W. Ⅲ.Pyrite synthesis via polysulfide compounds[J].Geochim.Cosmochim Acta.1991,55: 2839-2849.
    [52]Malcolm W. C,Mcconchie D,Lewis D.W,et al. Redox stratification and heavy metal patitioning in Avicennia-dominated mangrove sediments:a geochemical model[J].Chemical Geology.1998,149:147-171.
    [53]Martino M,Turner A,Nimmo M Milloiward G E. Resuspension,reactivity and recycling of trace metals in the Mersey Estuary,UK[J].Marine Chemistry 2002,77:171-186.
    [54]Michael E. Bbttcher, Aivo Lepland. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea:Evidence from stable isotopesand pyrite textures[J].Journal of Marine Systems.2000,25:299-321.
    [55]Middelburg J J. Organic carbon,sulphur, and iron in recent semi-euxinic sediments of Kau Bay,Indonesia [J].Geochemica et Cosmochemica Acta.1991,55(3):815-828.
    [56]Miguel A H,Richard C. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments[J].Appl. Geochem.1998,13:213-233.
    [57]Morse J.W.,Cornwell J.C. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments[J].Mar. Chem.1987,22:55-69.
    [58]Ngiam L,Lim P. Speciation pattern of heavy metals in tropical estuarine anoxic and oxidized sediments by different sequential extraction schemes[J].The Science of the Total Environment,2001,275:53-61.
    [59]Niencheski L F,Baumgarten M G Z. Distribution of particulate trace metal in the southern part of the Patos Lagoon estuary[J].Aquatic Ecosystem Health and Management,2000,3:515-520.
    [60]Oehm N.J,Luben T. J,Ostrofsky M.L. Spatial distribution of acid volatile sulfur in the sediments of Canadohta Lake PA[J].Hydrobiologia,1997,345:79-85.
    [61]Orson RA,Simpson RL,Good RE. A mechanism for the accumulation and retention of heavy metal in tidal fresh water marshes of the upper Delaware River Estuary[J].Estuarine,Coastal and Shelf Science,1992, 34:171-186.
    [62]Owens R E,Balls P W. Dissolved trace elements in the Tay Estuary. Estuarine[J],Coastal Shelf Science. 1997,44:421-434.
    [63]Passier H. F,Bottcher M.E,and De Lange G. J. Sulphur enrichment in organic matter of eastern Mediterranean sapropels:A study of sulphur isotope partitioning[J].Apuat Ueochem.1999,5(1):99-118.
    [64]Paucot H,Wollast R. Transport and transformation of trace metals in the Scheldt estuary[J].Marine Chemistry,1997,58:229-244.
    [65]Pesch C. E,Hansen D. J,Boothman W. S,et al. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine Polychaete Neanthes arenaceodentata[J].Environmental Toxicology and Chemistry.1995,14:129-141.
    [66]Pirela H.J.,Tabatabai M.A.. Reduction of organic sulfur in soils with tin and phosphoric acid[J].Soil Sci. Soc.Am.,1988,52:959-964.
    [67]Postgate J.R. The Sulphate-reducing Bacteria[J].Cambridge University Press,Cambridge.1979.
    [68]Pruden G,Bloomfield C. The determination of ferrous sulfide in soil in the presence of ferric oxide[J]. Analyst(London),1968,93:532-534.
    [69]Raiswell R and Berner R A. Pyrite and organic matter in Phanerozoic normal marine shales[J].Geochim. Cosmochim Acta.1986,50(9):1967-1976.
    [70]Raiswell,R.,Buckley,F.,Berner, R. A.,Anderson,T.F.. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation[J].Journal of Sedimentary Petrology,1988,58 (5):812-819.
    [71]Rauret G,Rubio R,Lopez-Sanchez J F. Optimization of Tessier procedure for metal solid speciation in river sediments[J].Trends Anal. Chem.,1989,36:9-83.
    [72]Rauret G,Lopez-Sanchez J F,Sahuquillo A,et al. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].J.Environ. Monit, 1999,1:57-61.
    [73]Reacke-Madsen E.. Determination of sulphate by reduction with stannous chloride[J].Acta Chem. Scand, 1949,3:773-777.
    [74]Rice C.A.,Tuttle M.L.,Reynolds R.L.. The analysis of forms of sulfur in ancient sediments and sedimentary rocks:comments and cautions[J].Chem. Geol.,1993,107:83-95.
    [75]Rickard D.T. Kinetics of FeS precipitation:Part 1.Competing reaction mechanisms[J].Geochimica et Cosmochimica Acta.1995,59(21):4367-4379.
    [76]Ruiz F. Trace metals in estuarine sediments from the southernweatern Spain coast[J].Marine Pollution Bulletin,2001,42:482-490.
    [77]Sahuquillo A,Rigol A,Rauret G Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments[J].Trends in Analytical Chemistry,2003,22(3):152-159.
    [78]Saulnier I,Mucci A. Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord,Canada[J].Applied Geochemistry,2000,15:191-210.
    [79]Schwertmann U.,Taylor R.M. Iron oxides. In:Dixon J.B.,Weed S.B(Eds.),Minerals in Soil Environments,2nd.edn.Soil Sci.Soc. Agron.Book Series[M].Soil Science Society of America,Inc. Madison, Wisconsin,USA,1989,1:379-438.
    [80]Shaw T J,Gieskes J M,Jahnke R A. Early diagenesis in differing depositional environments:the response of transition metals in pore water[J].Geochim. Cosmochim. Acta,1990,54:1233-1246.
    [81]Sokolowski A,Wolowicz M and Hummel H. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume(Southern Baltic Sea)[J].Marine Pollution Bulletin, 2001,42(10):967-980.
    [82]Sullivan LA,Bush RT,McConchie D,Lancaster G,Haskins PG,Clark MW. Comparison of peroxide oxidisable sulfur and chromium reducible sulfur methods for determination of reduced inorganic sulfur in soil[J].Australian Journal of Soil Research.1999,37:255-265.
    [83]Sullivan L.A.,Bush R.T.,McConchie D.M.A modified chromium-reducible sulfur method for reduced inorganic sulfur:optimum reaction time for acid sulfate soil[J].Aust. J. Soil Res.2000,38:729-734.
    [84]Tessier A,Campbell P R C, Bisson M,et al. Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51:844-851.
    [85]Thode-Andersen S.,Jogensen B.B. Sulfate reduction and the formation of 35S-labelled FeS,FeS2 and S0 in coastal marine sediments[J].Limnol.Oceanog,1989,34:793-806.
    [86]Turner A.,Diagnosis of chemical reactivity and pollution sources from particulate trace metal distributions in estuaries[J].Estuarine, Costal and Shelf Science,1999,48:177-191.
    [87]Turner A.,Millward GE.,Tyler AO.,The distribution and chemical composition of particles in a macro tidal estuary[J].Estuarine,Coastal and Shelf Science,1994,38:1-17.
    [88]Ulrich GA,Krumholz L.R.,Suflita J.M.A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides[J].Appl.Environ. Microbiol.1997,63:1627-1630.
    [89]Uncles R J,Frickers P E,Easton A E,et al. Concentration of suspended particulate organic carbon in tidal Yorkshire Ouse River and Humber Estuary[J].The Science of The Total Environment,2000,251: 233-242.
    [90]United States Environmental Protection Agency. The incidence and severity of sediment contamination in surface wasters of the United States.vol 3 National Sediment Contaminant Point Source Inventory(EPA 823-R-97-006)[M].Washington D C:United States Environmental Protection Agency,1997:156p.
    [91]van den Berg G A,Loch J P G,van der Heijdt L M,et al. Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the River Meuse in the Netherlands[J]. Environ Toxicol Chem,1998,17(4):758-763.
    [92]Wieder, R.K.,G.E.Lang. An evaluation of wet chemical methods for quantifying sulfur fractions in freshwater wetland peat[J].Limnol. Oceanogr.,1985,30:1109-1115.
    [93]Wijsman Jeroen W M,Middelburg Jack J,Herman Peter M J,et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J].Marine Chemistry,2001,74(4):261-278.
    [94]Wilson D J,Chang E. Bioturbation and the oxidation of sulfide in sediments[J].J Tenn Acad Sci,2000, 75(3/4):76-85.
    [95]Xu Shiyuan,Tao Jing. The geomorphology of Shanghai.In:Foster H D, Lai D C and Zhou N.(Eds), The Dragon's head:Shanghai,China's Emerging Megacity[M].Canadian Western Geographical Series,1998: 3-13.
    [96]Yang SL,the role of scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in Yangtze Estuary[J].Estuarine, Coastal and Shelf Science,1998,47:227-233.
    [97]Y.P. Hsieh,C. H. Yang. Diffusion methods for the determination of reduced inorganic sulfur species in sediments[J].Limnology and Oceanography,1989,34(6):1126-1130.
    [98]Y. P. Hsieh,Y N. Shieh. Analysis of reduced inorganic sulfur by diffusion methods:improved apparatus and evaluation for sulfur isotopic studies[J].Chemical Geology,1997,137:255-261.
    [99]Y P. Hsieh,S.W.Chung,Y.J.Tsau,C. T. Sue. Analysis of sulfides in the presence of ferric minerals by diffusion methods[J].Chemical Geology,2002,182:195-201.
    [100]YuKC,Tsal L. J,Chen S. H,et al. Chemical binding of heavy metals in anoxic river sediments[J]. Wat. Res.2001,35(17):4086-4094.
    [101]Zhabina,N. N.,I.I. Volkov. A method for determination of various sulfur compounds in sea sediments and rocks[J].Environmental Biogeochemistry and Geomicrobiology,1978:735-745.
    [102]Zhang J. Heavy metal composition of suspended sediments in the Changjiang(Yangtze River)estuary: significance of riverine transport to the ocean[J].Continental Shelf Research,1999,19:1521-1543.
    [103]Zopfi Jakob,Bottcher Michael E.l,Jorgensen Bo Barker. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central chile[J].Geochimica et Cosmochimica Acta.2008,72:827-843.
    [104]毕春娟.潮滩植物根际重金属的时空分布规律及其生物有效性研究[D].上海:华东师范大学,2001:2-45.
    [105]毕春娟,陈振楼,郑祥民.根际环境重金属研究进展[J].福建地理,2000,15(3): 29-32.
    [106]陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社,1992: 305-328.
    [107]陈振楼,许世远,柳林等.上海滨岸潮滩沉积物重金属元素的空间分布与累积[J].地理学报.2000,55(6):641-651.
    [108]陈宗团等.河口沉积物—水界面重金属生物地球化学研究进展[J].地球科学进展,1997,12(5):434-439.
    [109]戴树桂主编.环境化学[M].北京:高等教育出版社,2000.
    [110]方涛,陈晓国,张维吴等.水体沉积物中酸挥发性硫化物垂直分布模型的建立及应用[J].环境化学,2002,21(1):7-13.
    [111]郭明新,林玉环.几种化学浸提剂对底泥重金属生物有效部分浸提效果的比较[J].环境科学,1998,19(1):9-12.
    [112]贾振邦,梁涛,林健枝等.酸可挥发硫对香港河流沉积物中重金属的毒性作用[J].北京大学学报(自然科学版),1998,34(2-3):379-386.
    [113]李新华,刘景双,孙志高等.三江平原小叶章湿地生态系统硫的生物地球化学循环[J].生态学报.2007,27(6):2199-2207.
    [114]林玉环,郭明新,庄岩.底泥中酸性挥发硫及同步浸提重金属的测定[J].环境科学学报,1997,17(3):353-358.
    [115]刘竟春,严重玲,胡俊.水体沉积物中酸可挥发性硫化物(AVS)研究进展[J].生态学报.2004,24(4):812-818.
    [116]柳林,许世远,陈振楼等.上海潮滩表层沉积物重金属的含量[A].地貌·环境·发展[C].北京:中国环境科学出版社,1999:45-49.
    [117]罗莎莎.云贵高原湖泊近代沉积作用的Fe、Mn、S指示[D].中国科学院研究生院博士论文.2001.
    [118]马德毅,王菊英,闫启伦等.酸溶硫化物(AVS)对沉积物-孔隙水系统中二价有毒金属化学活动性的影响[J].海洋学报,1997,19(5):83-90.
    [119]倪建宇.贵州晚二鲁煤中硫及微量元索的组成特征[D].中科院地球化学研究所博上研究生学位论文.1997.
    [120]祁铭华.菲律宾蛤仔的养殖活动对沉积物中酸挥发性硫化物(AVS)的影[D].中国海洋大学硕士论文.2004.
    [121]全为民,韩金娣,平先隐等,长江口湿地沉积物中的氮、磷与重金属[J].海洋科学,200832(6):89-93.
    [122]单孝全,陈斌,铁军等.土壤和河流沉积物中硫的形态分析[J].环境科学学报,1991,11(2):172-177.
    [123]汤鸿霄.试论重金属的恶水环境容量[J].中国环境科学,1985,5(5):38-43.
    [124]宋金明.中国近海沉积物—海水界面化学[M].北京.海洋出版社,1997:138-141.
    [125]汪福顺,刘丛强,梁小兵等.阿哈湖沉积物—水界面硫酸盐还原作用的微生物及其同位素研究[J].第四纪研究.2003,23(5):20.
    [126]王明义,梁小兵,郑娅萍,赵由之,张伟.阿哈湖和洱海沉积物硫酸盐还原菌初步研究[J].微生物学杂志.2005,25(6):81-84.
    [127]尹洪斌,范成新,丁士明,张路,李宝.太湖沉积物中无机硫的化学特性[J].中国环境科学,2008,28(2):183-187.
    [128]张向上,张龙军,吴玉科.潮间带沉积物中重金属的AVS归一化研究[J].中国海洋大学学报,2003,33(3):420-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700