二氧化钛光催化降解腐殖酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然水体中的腐殖质约占水中总有机物50%以上。腐殖酸在水体中可以产生令人不愉快的色和味,同时在氯消毒过程中产生多种消毒副产物,因此腐殖酸被确定为氯消毒过程中形成卤化物的主要前驱物质,成为饮用水微污染严格控制的对象。光催化技术是近20多年来研究较为广泛的水处理方法。自从1976年Carey提出了多氯联苯可以在UV/TiO2作用下分解以来,很多人对水中的有机污染物进行了大量光催化氧化分解研究,本文正是基于这样的研究背景探讨了二氧化钛光催化体系对水体腐殖酸的去除作用,主要研究内容包括:腐殖酸降解和矿化的影响因素分析、降解过程分析、降解机理分析、模拟消毒过程并评价体系去除消毒副产物生成势的效果。
     首先,进行经济、高效催化剂的筛选。通过各种晶形二氧化钛和银离子修饰的二氧化钛催化剂对腐殖酸降解性能的比较,得出市售P25具有良好的催化性能且简单易得,而用金属银修饰的二氧化钛虽然在降解性能上略优,但是制备过程相对复杂,不经济。探讨了各种反应条件,如催化剂质量浓度、光照强度、溶液pH值、溶液初始浓度、通气量等对光催化体系的影响。结果表明,对于质量浓度为20mg/L,初始TOC浓度为7mg/L的腐殖酸,提高催化剂的质量浓度、光照强度均能在一定程度上促进腐殖酸的降解和矿化;初始浓度低的条件比高浓度条件下的降解速度快;溶液的酸度越高,降解效果越好,在高碱度的条件下不利于腐殖酸的降解,这主要是由于酸性条件下更有利于腐殖酸在二氧化钛表面的吸附和传质;向溶液通入空气的实验中,体系并没有表现出比未通入空气条件下更好的效果,这可能是由于氮气对溶液中传质的阻碍抵消了氧气在抑制光生电子和空穴上的积极作用;向溶液中加入过氧化氢也不能明显提高降解和矿化效率,这可能是因为过氧化氢一方面能够增大溶液中羟基自由基的产生量,另一方面过氧化氢作为羟基自由基清除剂也能够清除溶液中的自由基;银离子修饰催化剂在反应初期有更强的降解效率,这也为工业上的利用提供了一个很好的思路。吸附实验表明,银离子的载入加强了催化剂对腐殖酸的吸附能力;光催化剂在重复利用十次之后还能保持80%以上的降解和矿化效率。各条件下的降解反应均能较好的满足L-H一级反应动力学方程。
     其次,本文利用尺寸排阻色谱(SEC)和液相色谱有机碳检测仪(LC-OCD)研究腐殖酸在降解过程中分子结构的变化,分析结果表明有疏水性物质(HOC)、可色谱分析的溶解性有机物(CDOC), CDOC则由腐殖质(Humics)、中性物质(Neutrals)、有机酸(Acids)以及其它组成成分(Building Blocks)构成。腐殖酸的降解遵循由大分子逐渐降解成为小分子的模式,具体表现为低浓度疏水性物质(HOC)被降解,其它组分物质经过降解浓度逐渐降低且最终被完全矿化为小分子酸性物质、CO2、H2O。当用负载银的催化剂时,降解过程类似但降解的中间产物有所不同且降解反应发生的更快。
     再次,利用荧光分析法验证了光催化反应的自由基机理并且阐述了固液界面催化化学应的进行机制,更好地验证了光催化是一个集吸附、富集、光催化、脱附、再生等五个步骤的过程,其中吸附是光催化进行的前提条件。
     最后,实验室模拟了饮用水的消毒过程,在光催化的作用下,水体的消毒副产物生成势几乎能完全去除,氯仿生成量从未降解前的326μg/L降到10μg/L左右,降解效率达到95%以上,可见二氧化钛光催化在饮用水消毒方面的良好前景。
The HA (Humic Acid) accounts for more than 50% of the total organics in the natural water body, which can produce undesirable color and smell. During the disinfection process in the drinking water treatment, it can produce disinfection byproducts as a precursor agent which is harmful to the water itself, now HA has become the object under strict control in the drinking water supply industry. Photo-catalytic oxidation process has grown to be a widely-used water treatment technology in the past 20 years and many researchers worldwide has performed deep studies on it since Carey succeeded in degrading the PCBs under UV/TiO2 system. On this basis, this paper studied the photocatalytic degradation of HA and the whole study can be divided into the four parts as follows:effect factors on the degradation and mineralization of HA, degradation process analysis, mechanism analysis, removal efficiency of THMFPs.
     The catalysts selection was operated firstly in order to select out the catalysts both economical and easy to get, by comparing the degradation efficiency of different catalysts with different crystals in the form of pure catalyst and Ag-doped counterparts, the result showed that the pure P25 has good efficiency though it is a bit lower than the Ag-doped P25, but it surely can be available more easily. Under the formal condition with the initial HA mass concentration being 20mg/L and TOC being 7mg/L, the factors effect was studied which told us that with the increase of catalyst dosage and UV strength, the efficiency was also increasing to some extent, while pumping air was not helpful, this could be explained as the Nitrogen might disturb the adsorption process of HA onto TiO2 surface though the added oxygen could prevent the recombination of electron and cavity. Similarly, the addition of H2O2 into the system did not make evident improvement on degradation and mineralization either, for one something, the H2O2 improves the production of·OH meanwhile it also assimilates the generated·OH as a clearance agent. In the acid ambient, the HA was degraded faster than in the alkaline environment which should be attributed to the enhanced adsorption ability. As for the Ag-P25, it got a significant increase in the beginning of the reaction due to the enhancement of the adsorption as the adsorption experiment proved, which gives a good idea to the industry field because the industry can't bear that long time for the total mineralization of the wastewater. All the reaction kinetics fitted the Langmuir and Freundich equation first-order well and the lower the concentration was the higher the rate parameter was. Besides, the same batch P25 was regenerated for 10 times and the result said the mineralization rate still got up to 80% which demonstrated that the P25 could be recycled quite well for a long time.
     Secondly, the degradation process of HA was explained by Size Exclusion Chromatography(SEC) and Liquid Chromatography Organic Caborn Dector(LC-OCD) analysis, the combining results told us that during the reaction, the large HA molecular which is consisted of hydrophobic organic carbon, humics, acids, neutrals and building blocks was decomposed into smaller moleculars, in details, the hydrophobic substrates was broke down and the other parts was degraded gradually into small molecular and finally converted into the environmental friendly CO2, H2O and other organic acids. Concerned with the Ag-doped P25, it shortened the degradation time for one thing and for another thing, the intermediates during the process were different.
     Third, fluorescence analysis was adopted to explain the mechanism of the·OH oxidation and the photo-catalytic reaction happening on the solid-liquid surface, the result showed that photo-catalytic reaction is a combination of adsorption, conglomeration, degradation, mineralization and desorption with the adsorption being the precondition.
     Finally, the disinfection process was simutated and the THMFPs analysis was executed before and after the HA solution was treated by UV/P25 system. The result indicated that the CHCl3 decreased from 326μg/L to 15μg/L, which supported that the UV/P25 system has great potential and good prospect in the disinfection field of drinking water.
引文
[1]Cho Y M, Choi W Y. Visible light-induced reactions of humic acids on TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148:129-135.
    [2]Ding J W, Wu J C. Transport of organochlorine pesticides in soil columns enhanced by dissolved organic carbon [J]. Water Science & Technology,1997, 35:139-145.
    [3]Robert L C, Cooper H L. Structural characterization of a fulvic acid and a humic acid using solid-state ramp-CP-MAS 13C nuclear magnetic resonance[J]. Environ. Sci. Technol.1998,32:719-725.
    [4]Fung K, Zhang Z O, Wong J W C, et al. Fluoride contents in tea and soil from tea plantation and the release of fluoride into tea liquor during infusion[J]. Environmental Pollution,1999,104(2):197-205.
    [5]Wainwright H, Burbage M B. Physiological disorders in mango fruit[J]. Journal of Hort Sci,1989,64(2):125-135.
    [6]申屠民良.大气氟污染研究的某些进展和存在问题[J].农业环境保护,1993,12(3):137-139.
    [7]贾丽.氟化物检测方法在食品分析中的应用进展[J].现代仪器,2006(6):6-8.
    [8]沈小星,方士,王薇.饮用水消毒副产物的危害及控制工艺[J].水资源保护,2005,21(4):30-33.
    [9]李丽,于志强,盛国英.分子结构在腐殖酸对菲吸附行为中的影响[J].环境化学,2004,23(4):381-386.
    [10]Hutaf B, Faww A Z K. Analysis of the removal of lead(II)from aqueous solutions by adsorption onto insolubilized humic acid:temperature and pH dependence[J].Anal Chem Acta.,2004,5(6):179-186.
    [11]Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts[J].J. Hazard. Mater.141(2007) 581-590
    [12]Bouzaza A, Laplanche A. Photocatalytic degradation of toluene in the gas phase: comparative study of some TiO2 supports[J]. Photochem. Photobiol. A:Chem.150 (2002):207-212.
    [13]Mahmoodi N M, Arami M, Limaee N Y. Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: bench scale study[J].J. Hazard. Mater.133 (2006):113-118.
    [14]Matos J, Laine, Hermann J M. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania[J].J. Catal.200 (2001) 10-20.
    [15]Wang W D, Silva C G, Faria J L, Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts[J].Appl. Catal.B: Environ.70 (2007) 470-478.
    [16]牛育华,李仲谨,郝明德,等.腐殖酸的研究进展[J].安徽农业科学,2008,36(11):4638-4639,4651.
    [17]Senesi N. Binding mechanisms of pesticides to soil humic substances [J]. Science Total Environment,1992,123:63-76.
    [18]Jigw D A, Laird J. Interactions of chlorpyrifos withcolloidal materials in aqueous systems [J] Journal of Environmental Quality,2004,33:1765-1770.
    [19]Timchalk C, Poet T S, Kousba A A. Age dependent pharmacokinetic and pharmacodynamic response in preweanling rats following oral exposure to the organophosphorus insecticide chlorpyrifos [J].Toxicology,2006,220(1):13-25.
    [20]魏沙平,李红陵,陈飞霞,等.酸性紫色土腐殖酸对毒死蜱的水解和吸附作用[J].生态环境,2007,16(1):36-40.
    [21]吴应琴,周敏,马明广,等.不溶性腐殖酸吸附对硝基苯胺的动力学研究[J].水处理技术,2007,32(2):14-17.
    [22]魏宏斌,徐迪民,徐建伟.水溶液中腐殖酸的二氧化钛光催化氧化研究[J].环境科学学报,1998,18(2):161-166.
    [23]Edzwald J K, Tobiason J E. Enhansed coagulation:US requirments and abroad review [J]. Wat.Sci. Tech,1999,40 (9):63-70.
    [24]Harold W W, Mustafa M B. Stability of particle flocs upon addition of natural organic matter under quiescent conditions [J]. Wat Res,2001,35(4):875-882.
    [25]傅平青.水环境中腐殖质-金属离子键合作用研究进展[J].生态学杂志.2004,23(6): 143-148.
    [26]唐秀华.饮用水源中有机物的危害及去除方法[J].净水技术,2003,22(2):7-10.
    [27]陈伟,甘南琴,宋立荣,等.微囊藻毒素在单波长紫外光照射下的光降解动 态研究[J].化学学报,2004,62(2):142-147.
    [28]沈小星,方士,王薇,等.饮用水消毒副产物的危害及控制工艺[J].水资源保护,2005,21(4):30-33.
    [29]Philip C S. Control of disinfection by-product in drinking water[J]. Water Environment Research,1998,70(4):727-734.
    [30]刘振中,宋刚福.水源水中腐殖酸的危害及去除方法[J].江西科学,2006,24(4):247-252.
    [31]傅剑锋,季民,金洛楠,等.Ti02光催化降解水中天然有机物富里酸的动力学模型[J].化工学报,2005,56(6):1009-1014.
    [32]贾金平,廖军,方海军.光电化学法处理水体中腐殖酸的初步研究[J].上海环境科学,1997,16(3):24-26
    [33]姜安玺,高洁,王化云,等.水中腐殖酸的光催化氧化研究[J].哈尔滨建筑太学学报,2001,34(2):44-47.
    [34]魏宏斌,徐迪民,徐建伟.水溶液中腐殖酸的二氧化钛光催化氧化研究[J].环境科学学报,1998,18(2):161-166.
    [35]王福平,苏彤.用纤维Ti02作光催化剂降解饮用水中腐殖质[J].高技术通讯,1998,8(12):21-24.
    [36]张红梅.水中天然有机物腐殖酸的光催化氧化研究[D].研究生学位论文,西安建筑科技大学,2003,3.
    [37]Childress A E, Vrijenhoek E M, Menachem E, et al. Particulate and THM precursors removal with ferric chloride[J]. Journal of Environmental Engineering, 1999, (11):1054-1061.
    [38]魏守强,刘瑛,史敬伟,等.混凝及其与粉末活性炭联用去除水中腐殖酸的研究[J].当代化工,2003,32(4):204-207.
    [39]刘文君,贺北平,等.生产性生物陶粒滤池对微污染原水中氨氮的去除效果研究[J].给水排水,1995,10(2):8-10.
    [40]张贵春.微污染水源饮用水处理工艺及其本质研究[D].清华大学博士学位论文,1995,6.
    [41]黄廷林,熊向陨.生物流化床去除水中腐殖酸的动力学模式[J].中国环境科学,1998,18(6):531-534.
    [42]崔玉民,范少化.污水处理中光催化技术的研究现状及其发展趋势[J].洛阳工学院学报,2002,23(2):852-891.
    [43]Fujishima A, Honda K. Electrochemical photolysis of water at a semicondutor electrode [J]. Nature,1972,238 (5358):372-381.
    [44]Zhang Y, Crittenden J C, Hand D W. The solar photocatalytic decontamination of water[J].Chem Indus,1994,32 (9):7142-7161.
    [45]Jianli Y, Phillip E S. Kinetics of catalytic supercritical water oxidation of phenol over TiO2 [J]Environ Sci Technol,2000,34(12):3191-3194.
    [46]邢丽贞,冯雷,陈华东.光催化氧化技术在水处理中的研究进展[J].水科学与工程技术,2008,(1),7-10.
    [47]赵红花.负载型TiO2光催化技术在水处理中的应用[J].甘肃联合大学学报(自然科学版),2006,20(3):61-63.
    [48]王九思,蒲艳玲,李玉金,等.负载型TiO2光催化氧化降解甲基橙的实验研究[J].甘肃科学学报,2006,18(3):120-122.
    [49]Guettal N H, Ait A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension.Part Ⅰ:Parametric study [J]. Desalination,2005, 185:427-437.
    [50]Guettal N H, Ait A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part Ⅱ:kinetics study[J]. Desalination,2005, 185:439-448.
    [51]董振海,胥维昌.纳米TiO2光催化降解含活性红K-2Bp染料废水技术研究[J].染料与染色,2006,43(4):48-50.
    [52]俞慧芳,王幸斌,蔡震雷,等.光催化氧化技术处理含酚废水的研究[J].景德镇高专学报,2006,21(2):8-9.
    [53]陈光春,田园,吴文娟.纳米Ti02光催化降解酸性嫩黄动力学[J].净水技术,2006,25(3):59-61.
    [54]刘淼,董德明,张白羽.光催化法处理电镀含铬(Ⅵ)废液[J].吉林大学自然科学学报,1998,(2):99-101.
    [55]鲁秀国,翟永青,丁士文,等.二氧化钛光催化还原Cr(Ⅵ)的研究[J].河北大学学报(自然科学版),2000,20(1):33-37.
    [56]Serpone.N, You Y K, Tran T P. AM1 Simulated sunlight photoreduction and Climination of Hg (Ⅱ) and CH3Hg (Ⅱ) chloride salts from adueous Suspensions of Titanium Dioxide [J]. Solar Energy,1987,39:491-498
    [57]曹广秀,李贯良,陈淑敏.纳米Ti02在水处理中的研究进展[J].工业水处理,2003,23(9):20-22.
    [58]王春梅.Ti02光催化性能及在水处理中的应用[J].南通大学学报(自然科学版),2005,4(1):28-31.
    [59]Zhu X D, Mark A N, Elizabeth C B. Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite [J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,185:289-294.
    [60]Zhang F S, Hideaki I. Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent [J].Chemosphere,2006,56:125-131.
    [61]Yang J K, Lee S M. Removal of Cr (VI) and humic acid by using TiO2 photocatalysis[J]. Chemosphere,2006,63:1677-1684.
    [62]任英莲.绿色环保的纳米二氧化钛水处理技术应用[J].机械管理开发,2006,(1):66-67.
    [63]杨亚丽,刘步升,杨继源,等.光化学杀菌搪瓷制品的研究[A].全军第三届预防医学学术会议论文集[C].2000,85.
    [64]汪恂,龚文琪.铁掺杂纳米YiO2膜的制备与光催化灭菌作用[J].武汉理工大学学报,2007,29(7):50-53.
    [65]王占生,刘文君.微污染水源饮用水处理[M].北京,中国建筑工业出版社,1999.
    [66]熊玮,汪恂.光催化氧化技术在水处理中的应用及研究进展[J].山西建筑,2009,35(31):182-183
    [67]梁好,盛选军,刘传胜.饮用水安全保障技术[M].北京,化学工业出版社,2006.
    [68]阎惠珍,樊荣涛.光催化在饮用水消毒中的应用[J].环境与健康,2002,19(2):153-154.
    [69]王福平,孙德智,王俊辉.用纤维Ti02作光催化剂降解饮用水中腐殖质[J].高技术通讯,1998,8(12):21-24.
    [70]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5(3):1-10.
    [71]Gerischer H, Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles[J]. J. Phys. Chem,1991,95 (13):5261-5267.
    [72]Gerisher H, Heller A. Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aeratedwater[J] J. Electrochem. Soc,1991,139:113.
    [73]Kesselman J M. Flux-matching conditions at TiO2 photoelectrodes:is interfacial electron transfer to O2 rate-limiting in the TiO2-catalyzed photochemical degradation of organics. J. Phys. Chem,1994,98 (50):13385-13395.
    [74]Nicole J R, Pierre P. Effect of deposited Pt paticles on the surface charge of TiO2 aqueous suspensions by potentiometry, electrophoresis, and labeled ion adsorption[J] J. Phys. Chem.1986,90 (12):2733-2738.
    [75]Escudero J C, Gimenez J, Simarro R, et al. Physical characteristics of photocatalytsis affecting the performance of a process on a continuous photoreactor[J]. Solar Energy M aterials,1988,17:151-163.
    [76]Masanari T, Keisuk M, Hiroshi T, et al. Pt-TiO2 thin films on glass substrates as efficient photocatalysts [J]. Journal of Materials Science,1989,24 (1):243-246.
    [77]Torres J, Cervera M S. Kinetics of the photoassisted catalytic oxidation of Pb(Ⅱ) in TiO2 suspensions [J]. Chemical Engineering Science,1992,47 (15-16):3857-3862.
    [78]Takeda K, Fujiwara K. Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation [J]. Water Research,1996,30 (2): 323-330.
    [79]Aguado M A, Anderson M A. Degradation of formic acid over semiconducting membranes supported on glass:effects of structure and electronic doping[J]. Solar Energy Materials and Solar Cells,1993,28(4):345-361.
    [80]Rufus B I, Ramakrishnan V, Viswanathan B. Photoelectrochemical and photocatalytic studies on Pd/CdS[J]. Indian Journal of Technology,1989,27(3): 171-173.
    [81]Wang C M, Heller A, Gerischer H. Palladium Catalysis of O2 Reduction by Electrons Accumulated on TiO2 particles during Photoassisted Oxidation of Organic Compounds[J]. J. Am. Chem. Soc.1992,114:5230-5234.
    [82]Hadjiivanov K, Vasileva E, Kantcheva M, et al. Spectroscopy Study of Silver Ions. Adsorbed on Titania (Anatase) [J]. Mater. Chem. Phys.,1991,28(4):367-377.
    [83]Kondo M M, Jardim W F. Photodegradation of Chloroform and Urea. Using Ag-Loaded Titanium Dioxide as Catalyst[J]. Wat. Res.,1991,25,823-827.
    [84]Alberici R M, Jardim W F. Photocatalytic degradation of phenol and chlorinated phenols using Ag-TiO2 in a slurry reactor[J]. Wat. Res.,1994,28(8):1845-1849.
    [85]Chen L C, Chou T C. Photodecolorization of Methyl Orange using silver ion modified TiO2 as photocatalyst[J]. Industrial & Engineering Chemistry Research, 1994,33 (6):1436-1443.
    [86]Gao Y M, Lee W, Trehan R, et al. Improvement of photocatalytic activity of titanium(IV) oxide by dispersion of Au on TiO2[J]. Materials Research Bulletin,1991, 26(12),1247-1254.
    [87]Shen H S, Gao Y M, Dwight K. Prearation and Photocatalytic Properties of TiO2 Film[J]. Materials Research Bulletin,1992,27(9),1023-1030.
    [88]Rufus I B, Ramakrishnan V, Viswanathan B, et al. Rhodium and rhodium sulfide coated cadmium sulfide as a photocatalyst for photochemical decomposition of aqueous sulfide[J].Langmuir,1990,6 (3):565-567.
    [89]Ileperuma O A, Tennakone, Dissanayakeal W D D P. Photocatalytic behaviour of metal doped titanium dioxide:Studies on the Photochemical Synthesis of Ammonia on Mg/TiO2 Catalyst Systems[J].Applied Catalysis,1990,62 (1):L1-L5.
    [90]Ghosh A K, Maruska H P. Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes [J]. J. Electrochem. Soc.,1977,124:1516-1521.
    [91]Matsumoto Y, Kurimoto J, Amagasaki Y, et al. Visible light response of polycrystalline TiO2 electrodes[J].J. Electrochem. Soc.,1980,127:2148-2152.
    [92]Salvador P. The Influence of Niobium Doping On the Efficiency of n-TiO2 Electrode in water photoelectrolyis[J].Solar Energy Material,1980,2:413-421.
    [93]Lam R, Wiersma A W, Blasse G, et al. The sensitization of Sr-TiO3 photoanodes by doping with various transition metal ions[J]. Materials Research Bulletin,1981,16: 1593-1600.
    [94]Wong W K, Malati M A. Doped TiO2 for solar energy applications [J]. Solar Energy,1986,36:163-168.
    [95]Kutty T R N, Avudaityai K. Photocatalytic activity of tin-substituted TiO2 in visible light[J]. Chem. Phys. Lett.,1989,163:93-97.
    [96]Choi C, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quanyum-sized TiO2[J]..J.Phys.Chem.,1994,98(51):13669-13679.
    [97]Butler E C, Allen P D. Photocatalytic oxidation in aqueous titanium dioxide suspensions:the influence of dissolved transition metals[J]. Journal of Photochemistry and Photobiology A:Chemistry,1993,70(3):273-283.
    [98]Ashokkumar M, Maruthamuthu P. Preparation and characterization of doped WO3 photocatalyst powders[J]. Journal of Materials Science,1989,24(6):2135-2139.
    [99]Gratzel, Russell. Electron paramagnetic resonance studies of doped TiO2 colloids[J]. J. Phys. Chem.1990,94:2566-2572.
    [100]Gerisher H, Willing F. Reaction of excited dye molecules at electrodes[J]. Top. Curr. Chem.1976,61:31-84.
    [101]Meier H. Photosensization of inorganic solid[J]. Photochemistry and Photobiology.1972,16:219-241.
    [102]Patrick B, Kamat P V. Mutual diffusion coefficients in the water-rich region of water/phenol mixtures and their relation to aggregate formation[J]. J. Phys. Chem. 1992,96 (3):1475-1478.
    [103]Rophae M W, Khalil L B, Moawad M M, et al. The reduction of aqueous carbonate to methanol, photocatalysed by TiO2 phthalocyanine[J]. Vacuum,1990, 41(1-3):143-146.
    [104]Ross H, Bendig J, Hecht S. Sensitized photocatalytical oxidation of terbutylazine[J]. Solar Energy Materials and Solar Cells,1994,33:475-481.
    [105]Wohrle D, Schneider G J S, Schulz E G, et al. Photooxidation of 2-mercaptoethanol in the presence of water soluble phthalocyanine and perylene-3,4,9,10-tetracarboxylic acid derivatives Journal of Molecular Catalysis, 1992,75 (2):139-L44.
    [106]Mansour E M K, Maillard P, Krausz P, et al. Photochemically induced oxidation by titanyl and vanadyl porphyrins[J] Journal of Molecular Catalysis,1987, 41(3):361-366.
    [107]Kamat P V, Fox M A. Photosensitization of TiO2 colloids by Erythrosin B in acetonitrile[J].Chem. Phys. Lett.,1983,103:379-384.
    [108]Andrew P H, Detlef W B, Michael R H, et al. Cobalt(Ⅱ) tetrasulfophthalocyanine on titanium dioxide-Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur dioxide[J]. J. Phys. Chem.,1987,91 (24): 6245-6251.
    [109]Uchihara T, Matsumura M, Ono J, et al. Effect of ethylene diaminetetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide [J]. Phys Chem,1990,94:415-418.
    [110]Vrachnou E, Gratzel M, Mcevoy A J, Efficient visible light photoresponse following surface complexation of titanium dioxide with transition metal cyanides[J]. J. Electroanal. Chem,1989,258:193-205.
    [111]Nozik A J. Photochemical Diodes[J].. Appl. Phys. Lett.,1977,30:567-569.
    [112]Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached TiO2 and ZnO particles [J].. J. Am. Chem. Soc.,1987,109(22):6632-6635.
    [113]Vogel R, Hoger P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors [J]. J. Phys. Chem,1994,98:3183-3188.
    [114]Vogel R, Hoye P, Weller H. Sensitization of highly porous, poly-crystalline TiO2 electrodes by quantum sized CdS[J]. Chem Phys Lett,1990,174(3-4):241-246.
    [115]Kohtani S, Kudo A., T Sakata. Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties[J].Chem. Phys. Lett.,1993,206:166-170.
    [116]Serpone N, Borgarello E, Pelizzetti E. Utilization of the semiconductor particle as a microphotoelectrochemical cell-electrochemical evidence for interparticle electron-transfer and application to photocatalysis[J]. J.Electrochem. Soc.1988,135: 2760-2766.
    [117]Gopidas K R, Bohorquez M, Kamat P V. Photophysical and photochemical aspects of coupled semiconductors, charge-transfer processes In colloidal CdS-TiO2 and CdS-AgI Systems[J]. J. Phys. Chem.,1990,94:6435-6440.
    [118]Liu D, Kamat P V. Electrochemical rectification in CdSe+TiO2 coupled semiconductor films[J]. J. Electroanal. Chem. Interfacial Eletronchem.,1993,347: 451-456.
    [119]Anderson C, Bard A J. An Improved Photocatalyst of TiO2 SiO2 prepared by a sol-gel synthesis[J]. J. Phys. Chem.,1995,99:9882-9885.
    [120]Do Y R, Lee W, Dwight K, et al. The effect of WO3 on the photocatalytic activity of TiO2 [J]. Journal of Solid State Chemistry.1994,108(1):198-201.
    [121]Hasselbarth A, Eychmuller A, Eichberger R, et al. Chemistry and photophysics of mixed Cds/Hgs colloids[J].J Phys Chem,1993,97:5333-5337.
    [122]Rabani J. Sandwich colloids of ZnO and ZnS in aqueous solutions[J]. J. Phys. Chem.,1989,93:7707-7715.
    [123]Vinodgopal K, Prashant V K. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films[J].Environmental Science and Technology,1995,29:841-845.
    [124]Masakazu A, Takafumi K, Sukeya K, et al. Photocatalysis on titanium-aluminum binary metal oxides:enhancement of the photocatalytic activity of titania species[J]. J.Phys.Chem.1988,92(2):438-440.
    [125]Munoz P A, Malet P. X-ray absorption spectroscopy (XAS) study of the semicondutor-insulator interface in TiO2-based photocatalysts[J]. Applied Surface Science,1985,56-58 (B):873-880.
    [126]Went W E, Chem P J. Photocatalytic reaction of 2-propanol over WO3/SiO2 using high flux radiation[J]. Solar Energy,1994,52 (3):253-263.
    [127]Fu X Z, Louis A C, Qing Y, et al. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides:TiO2/SiO2 and TiO2/ZrO2[J]. Environmental Science and Technology,1996,30 (2):647-653.
    [128]Tanabe K. A New hypothesis regarding the surface acidity of binary metal oxides[J]. Bulletin of the Chemical Society of Japan,1974,47:1064-1066.
    [129]清山哲郎.金属氧化物及其催化作用[M].中国科学技术大学出版社:合肥,1991,248
    [130]一濑升.超微颗粒导论[M].武汉工业大学出版社:武汉,1991,50.
    [131]R. M. Baner and D. M. M acleod. T rans. Faraday. Soc.,51,1-90(1995)
    [132]梁娟.催化剂新材料[M].化学工业出版社:北京,1990,52.
    [141]Pinnavaia T J. Intercalated clay Catalysts [J]. Science,220,1983:365-371.
    [133]Ena O, Bard A J. Photoredox reactions at semiconductor particles incorporated into clays:cadmium sulfide and zinc sulfide-cadmium sulfide mixtures in colloidal montmorillonite suspensions [J]. J. Phys. Chem.,1986,90:301-306.
    [134]Stramel R D, Nakamura T, Thomas J K. Cadmium sulfide on synthetic clay[J].Chemical Physics Letters,1986,130:423-425.
    [135]Sterte J. Synthesis and properties of titanium oxide cross-linked montmorillonite[J]. Clays and Minerals,1986,34(6):658-664.
    [136]Shoji Y, Tatsuo N, Makoto H, et al. Preparation and properties of titania pillared clay[J]. Materials Chemistry and Physics,1987,17:87-101.
    [137]Yoneyama H, Haga S, Yamanaka S. Photocatalytic activities of microcrystalline TiO2 incroporated in sheet silicates of clay[J]. J Phys Chem,1989,93:4833-4837.
    [138]Hirokazu M, Hirotaro M, Hiroshi Y. Light-induced decomposition of saturated carboxylic acids on iron oxide incorporated clay suspended in aqueous solutions[J].Langmuir,1991,7(3):503-507.
    [139]Kazunari D, Akihiko K, Akira T, et al. Overall photodecomposition of water on a layered niobiate catalyst[J].Catalysis Today,1990,8 (1):77-84.
    [140]Lee S J, Fink J, Balantekin A B, et al. Relativistic hartree calculations for axially deformed nuclei[J]. Physical Review Letters,1986,57:2916-2919.
    [141]Lalazissis G A, Konig J, Ring P. New parametrization for the Lagrangian density of relativistic mean field theory[J].Physical Review C,1997, C55:540-543.
    [142]陈颖敏,左俊利.饮用水中氯消毒副产物的污染与控制[J].工业安全与环保,2007,33(3):17-18.
    [143]张艳琴.饮用水消毒技术及消毒副产物的危害[J].太原科技,2003(3):1213.
    [144]郭士权.饮用水中氯消毒副产物的形成与去除[J].重庆建筑大学学报,1994(3):92.
    [145]Scott D B, James F H. Reaction pathways of trihalomethanes formation from halogenation of dihydroxyaromatic model compounds for humic acid[J]. Environ Sci Technol,1983, (4):202211.
    [146]黄君礼.氯化黄腐酸形成氯仿的反应历程[J].环境化学,1991(6):111.
    [147]柳瑞翠,姜付义.氯消毒副产物的处理方法探讨[J].陕西环境,2003,5(10):35-37.
    [148]赵建莉,王龙饮.用水消毒副产物的危害及去除途径[J].水科学与工程技术,2008(1):51-54.
    [149]张鹏会,孔爱平,韩迪[J].TiO2光催化降解有机污染物研究进展[J].甘肃石油和化工,2009, (2):5-9.
    [150]Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations:A review [J].Applied Catalysis B:Environmental,2004,49(1):1-8.
    [151]张一兵,张文彦.TiOz可见光光催化的研究进展.稀有金属材料与工 程.2007,36(7):1299-1303.
    [152]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [153]盖旭东,汪展文,金涌,等.乙酸甲酯非均相水解动力学的研究.化学反应工程与工艺,1998,14(2):138-144.
    [154]李太友,刘琼玉,赵俐敏,等.氯仿在Ti02悬浮液中的光催化降解.江汉大学学报,2001,18(3):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700