纳米氧化铁的形貌控制合成及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以不同的铁盐为铁源,尿素为沉淀剂和十六烷基三甲基溴化铵(CTAB)为结构导向剂,在稀水溶液中反应,通过改变实验条件,合成了一系列具有不同形貌和结构的Fe2O3纳米晶。
     首先,以Fe(NO3)3·9H2O为铁源,添加Mg(NO3)2成功合成出纳米结构a-Fe2O3纺锥状。借助SEM、TEM、XRD、Raman、XPS和N2吸附-脱附等表征手段,研究α-Fe2O3晶体的形貌、结构、比表面和孔径分布。晶体的尺寸和形貌可通过改变实验参数进行控制。随着晶化时间延长,合成出纺锥状、花瓣状a-Fe2O3单晶:Mg(NO3)2浓度对α-Fe2O3纺锥状单晶起着重要作用,随着浓度的降低,晶体形貌从纺锥状向球形转变;当反应物浓度控制在5.6×10-3 mol·L-1时,有利于纺锥状形貌的形成;焙烧过程可以进一步修饰单晶表面。同时测定a-Fe2O3纺锥状对多巴胺的电化学性质。
     其次,以Fe(NO3)3·9H2O为铁源,合成了粒径约35 nm的球形a-Fe2O3纳米晶和面包圈状的a-Fe203/Si02复合纳米材料。借助一系列表征手段,考察不同实验参数对α-Fe2O3球形形貌和结构的影响。晶化时间、反应物浓度、尿素浓度对α-Fe2O3球形形貌没有直接影响,而焙烧可以促进羟基氧化物完全转化为α-Fe2O3,但焙烧温度过高,会导致晶体形貌坍塌。通过将球形α-Fe2O3和a-Fe203/Si02复合材料的比表面和孔径尺寸进行对比,两者比表面积分别为19.8m2·g-1和140.4 m2·g-1,而孔径分布的粒径反而变小。
     最后,以FeSO4·7H2O为铁源,成功合成Fe203六角型枝状纳米颗粒。通过改变实验参数对其形貌和结构进行研究。样品在焙烧过程中存在晶相转化,由β-FeOOH向y-Fe2O3转变,当焙烧温度为650℃时转化成最稳定的α-Fe2O3,磁性也经历了从有到无的过程。晶化时间、反应前静置时间和表面活性剂对晶体形貌影响极大。同时也研究了改变外界因素对晶体形貌的影响。
In this thesis, a series of Fe2O3 nano-materials with different morphologies and structures have been synthesized by the template-directed process and modified evaporation-induced self-assembly (EISA) method. Based on the self-assembly of cationic surfactants and inorganic precursors, our approach emploied cetyltrimethylammonium bromide (CTAB), different ferric salts, and urea as structure-directing agent, iron source, precipitation agent in the dilute aqueous solution, respectively. At the same time, their morphologies and structures were studied by changing the experimental conditions.
     Spindle-like morphology a-Fe2O3 crystal have been prepared in the addition of Mg(NO3)2 in the system. The influences of the experimental conditions, such as reaction time, concentration and calcination on the morphologies of the as-prepared a-Fe2O3 crystal, have been studied. The morphologies and structure of the crystals have been characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and Raman spectrum(RS). X-ray photoelectron spectroscopy (XPS) was used to gain further insight into the chemical composition of the a-Fe2O3 crystal. The formation mechanism has been presented. Significantly, electrochemical properties of a glassy carbon electrode modified with a-Fe2O3 spindle-like were investigated in neutral media. The cyclic voltammogram(CV) showed a cathodic peak at 170 mV and anodic peak at 110 mV. Conversely, both peaks got strong compared with the bare electrode.
     The spherical a-Fe2O3 with average size of 35 nm and donut-shaped a-Fe2O3/SiO2 composite nanoparticles have been synthesized in the same system. Different parameters on the morphology and structure of spherical a-Fe2O3 were investigated by a series of characterization methods. It is revealed that the influences, such as crystallization time, reactant concentration, and urea concentration have no direct impact on the morphology of spherical a-Fe2O3, while the calcination temperature can completely promote hydroxyl-oxide to a-Fe2O3. If the calcination temperature was too high, it would lead to the collapse of morphology. The surface areas of theα-Fe2O3 andα-Fe203/Si02 nanoparticles were calculated at 19.8 m2·g-1 and 140.4 m2·g-1.
     We used ferrous sulfate as iron source by calcining at elevating temperature, the as-synthesized iron oxide precursor was transformed into iron oxide. The phase of the final product could be easily controlled among the FeOOH, y-Fe2O3, and a-Fe2O3 by altering the calcinations conditions. Additionally, magnetic investigations showed that theα-Fe2O3 crystals exhibited weakly ferromagnetic property at room temperature. Reaction time, the standing time and structure-directing agent had a great impact on the crystal morphology. The external factors on the impact of crystal morphology were also studied.
引文
[1]牟季美.纳米材料学[M].辽宁:科学技术出版社,1994:8-25
    [2]许并社.纳米材料及应用技术[M].北京:化学工业出版社,2004:14-16
    [3]Chen C, Chen W, Lu J, et al. Transition-metal phosphate colloidal spheres. Angewandte Chemie International Edition,2009,48(1):1-5
    [4]Luo Z Z, Zhang Z Z, Hu L, et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Journal of Materials Science,2008,20(5):970-974
    [5]Peng H L, Zhang X F, Twesten R D, et al. Vacancy ordering and lithium insertion in Ⅲ2VI3 nanowires. Nano Research,2009,2(4):327-335
    [6]Liu B, Zeng H C. Direct growth of enclosed ZnO nanotubes. Nano Research, 2009,2(3):201-209
    [7]Wang L Y, Li P, Zhuang J, et al. Carboxylic acid enriched nanospheres of semiconductor Nanorods for cell imaging. Angewandte Chemie International Edition,2008,47(6):1054-1057
    [8]Yuan B, Xing L L, Zhang Y D, et al. Self-assembly of highly oriented lamellar nanoparticle-phospholipid nanocomposites on solid surfaces. Journal of the American Chemical Society,2007,129(37):11332-11333
    [9]Matsusaki M, Kadowaki K, Nakahara Y, et al. Fabrication of cellular multilayers with nanometer-sized extracellular matrix films. Angewandte Chemie International Edition,2007,46(25):4689-4692
    [10]Yang S M, Sokolov I, Coombs N, et al. Formation of hollow helicoids in mesoporous silica:supramolecular origami. Advanced Materials,1999,11(17): 1427-1431
    [11]Ohsuna T, Liu Z, Che S N, et al. Characterization of chiral mesoporous materials by transmission electron microscopy. Small,2005,1(2):233-237
    [12]Yi G R, Moon J H, Yang S M. Ordered macroporous particles by colloidal templating. Chemistry of Materials,2001,13(8):2613-2618
    [13]Tian B Z, Liu X Y, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Materials,2003,2(3):159-163
    [14]Eychmfiller A. Structure and photophysics of semiconductor nanocrystals. The Journal of Physical Chemistry B,2000,104(28):6514-6528
    [15]Lee H, Purdon A M., Chu V, et al. Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Letters,2004,4(5):995-998
    [16]Gao J H, Zhang W, Huang P B, et al. Intracellular spatial control of fluorescent magnetic nanoparticles. Journal of the American Chemical Society,2008, 130(12):3710-3711
    [17]Takenaka S, Nomura K, Hanaizumi N, et al. Storage and formation of pure hydrogen mediated by the redox of modified iron oxides. Applied Catalysis A: General,2005,282(1-2):333-341
    [18]Mpourmpakis G, Froudakis G E. SiC nanotubes:a novel material for hydrogen storage. Nano Letters,2006,6(8):1581-1583
    [19]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews,2009,38(1):253-278
    [20]Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature,2009,459(7245):410-413
    [21]Sun Y K, Myung S T, Park B C, et al. High-energy cathode material for long-life and safe lithium batteries. Nature Materials,2009,8(4):320-324
    [22]Nam K T, Kim D W, Yoo P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science,2006,312(5775):885-888
    [23]Du N, Zhang H, Chen B D, et al. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:a highly efficient material for Li-battery applications. Advanced Materials,2007,19(24):4505-4509
    [24]Davies T E., Garcia T, Solsona B, et al. Nanocrystalline cobalt oxide:a catalyst for selective alkane oxidation under ambient conditions. Chemical Communications,2006,28(32):3417-3419
    [25]Zhong L S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006,18(18):2426-2431
    [26]Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. The Journal of Physical Chemistry B,2005, 109(47):22432-22439
    [27]Hu H, Shao M W, Zhang W, et al. Synthesis of layer-deposited silicon nanowires, modification with Pd nanoparticles, and their excellent catalytic activity and stability in the reduction of methylene blue. The Journal of Physical Chemistry C,2007,111(8):3467-3470
    [28]Li Y G, Wu Y Y. Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Research,2009,2(1):54-60
    [29]Salgueirino-Maceira V, Correa-Duarte M A. Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Advanced Materials,2007,19(23):4131-4144
    [30]He C, Lin Z H, He Z, et al. Metal-tunable nanocages as artificial chemosensors. Angewandte Chemie International Edition,2008,47(5):877-881
    [31]段学臣,曾真诚,高桂兰.纳米材料制备方法和展望[J].稀有金属与硬质合金,2001,(147):49-52
    [32]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:1-3
    [33]Chen D H, Jiao X L, Chen D R. Solvothermal synthesis of a-Fe2O3 particles with different morphologies. Materials Research Bulletin,2001,36(5-6):1057-1064
    [34]Hou B, Wu Y S, Wu L L, et al. Hydrothermal synthesis of cubic ferric oxide particles. Materials Letters,2006,60(25-26):3188-3191
    [35]沈志刚,陈建峰,刘润静等.无机纳米粉体制造技术的现状及展望[J].无机盐工业,2002,34(3):18-22
    [36]Sugimoto T D, Sakata K, Muramatsu A. Formation mechanism of monodisperse a-Fe2O3 particles from condensed ferric hydroxide gel. Journal of Colloid and Interface Science,1993,159(2):372-382
    [37]Park G, Shindo D, Waseda Y, et al. Internal structure analysis of monodispersed pseudocubic hematite particles by electron microscopy. Journal of Colloid and Interface Science,1996,177(1):198-207
    [38]Sugimoto T D, Wang Y S, Itoh H, et al. Systematic control of size, shape and internal structure of monodisperse a-Fe2O3 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1998,134(3):265-279
    [39]刘静波,王智明,谷林夫等.络合物型溶胶-凝胶过程研制纳米晶γ-Fe2O3磁粉[J].功能材料,1998,29(2):144-147
    [40]魏雨,赵建录.高浓度三价铁催化相转化制备超细α-Fe2O3胶粒[J].催化学报,1998,19(1):7-8
    [41]Lijima M, Yonemochi Y, Tsukada M, et al. Microstructure control of iron hydroxide nanoparticles using surfactants with different molecular structures. Journal of Colloid and Interface Science,2006,298(1):202-208
    [42]曹维良,张敬畅,石锦华等.超微粒子氧化铁的制备研究[J].应用科学学报,2000,18(2):171-174
    [43]马振叶,李凤生,崔平等.纳米Fe2O3的制备及其对高氯酸铵热分解的催化性能[J],催化学报,2003,24(10):795-798
    [44]汪信,陆路德.纳米金属氧化物的制备与应用研究的若干进展[J].无机化学学报,2000,16(2):213-217
    [45]欧延,邱晓滨,许宗祥等.均匀沉淀法合成纳米氧化铁[J].厦门大学学报,2004,43(6):882-885
    [46]苏凌浩,张校刚.酶诱发均匀沉淀法制备纳米Fe2O3[J].精细化工,2004,21(5):331-334
    [47]Liao X H, Zhu J J, Zhong W, et al. Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation. Materials Letters,2001,50(5):341-346
    [48]Sesigur H, Acma E, Addemir O, et al. The preparation of magnetic iron oxide. Materials Research Bulletin,1996,31(2):1573-1579
    [49]Raming T P, Winnubst A J A, Kats C M, Philipse A P. The synthesis and magnetic properties of nanosized hematite (a-Fe2O3) particles. Journal of Colloid and Interface Science,2002,249(2):346-350
    [50]Bailey J K., C. Brinker J, Mecartney M. Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions. Journal of Colloid and Interface Science,1993,157(1):1-13
    [51]钟红梅,杨延钊,张卫民等.回流法制备纳米氧化铁的研究[J].山东大学学报,2002,37(2):160-162
    [52]贺会兰,郑学忠,魏雨.强迫水解法制备纺锤状α-Fe2O3的研究[J].河北大学学报,1997,21(3):301-304
    [53]Hyeon T, Lee S S, Park J, et al. Synthesis of hghly cystalline and Monodisperse mghemite nnocrystallites without a sze-slection process. Journal of the American Chemical Society,2001,123(51):12798-12801
    [54]Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides. Chemistry of Materials,2000,12(5):1195-1204
    [55]Pascal C, Pascal J L, Favier F, et al. Electrochemical synthesis for the control of y-Fe2O3 nanoparticle size:morphology, microstructure, and magnetic behavior. Chemistry of Materials,1999,11(1):141-147
    [56]Biwer B M, Pellin M J, Schauer M W, et al. A second harmonic generation study of the oxidation/reduction behavior of iron in alkaline solutionst. Langmuir,1988,4 (1):121-127
    [57]Dierstein A, Natter H, Meyer F, et al. Electrochemical deposition under oxidizing conditions (EDOC):a new synthesis for nanocrystalline metal oxides. Scripta Materialia,2001,44(8-9):2209-2212
    [58]Grimm S, Schultz M, Barth S. et al. Flame pyrolysis-apreparation route control of their particle size and properties. Journal of Materials Chemisty,1997,32(4): 1083-1092
    [59]Rockenberger J, Scher E C, Alivisatos A P, et al. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. Journal of the American Chemical Society,1999,121(49):11595-11596
    [60]Hyeon T, Lee S S, Park J, et al. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. Journal of the American Chemical Society,2001,123(51):12798-12801
    [61]Sun S, Zeng H. Size-controlled synthesis of magnetiten anoparticles. Journal of the American Chemical Society,2002,124(28):8204-8205
    [62]Sun S, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M:Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society,2002,126(1):273-279
    [63]申德君,张朝平,罗玉萍等.反相微乳液化学剪裁制备明胶γ-Fe2O3纳米复合[J].微粒应用化学,2002,19(2):121-125
    [64]叶钊,林荣英,林松等.反相胶束微反应器制备α-Fe2O3超细粒子的研究[J].福州大学学报,2002,30(6):918-920
    [65]陈龙武,甘礼华,岳天仪等.微乳液反应法制备α-Fe2O3超细粒子的研究[J].物理化学学报,1994,10(8):750-754
    [66]Caruso F, Spasova M, Susha A, et al. Magnetic nanocomposite particles and hollow spheres construted by a sequential layering approach. Chemistry of Materials,2001,13(1):109-116
    [67]Shchukin D G, Radtchenko I L, Sukhorukov G B. Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside. Materials Letters,2003,57(11):1743-1747
    [68]Shchukin D G, Radtchenko I L, Sukhorukov G B. Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. The Journal of Physical Chemistry B,2003,107(1):86-90
    [69]魏雨,刘小林,郑学忠.FeSO4空气氧化法制备针形γ-Fe2O3[J].应用化学,1997,14(2):110-112
    [70]杨隽,张启超.胶体化学法制备氧化铁超微粉体[J],无机盐工业,2000,32(1):16-17
    [71]郭保文.纳米材料及其技术在涂料工业中的应用研究[J].新材料产业,2003,111(2):62-67
    [72]陈家华,陈敏,许志刚.纳米材料在皮革涂饰剂中的应用[J].中国皮革,2002,31(1):11-13
    [73]李振华.纳米材料应用技术的新进展[J].材料科学与工程,2000,18(1):103-105
    [74]徐宏,刘剑洪,陈沛等.纳米氧化铁的制备及其吸收药热分解催化作用的研究[J].火炸药学报,2002,(3):51-52
    [75]马振叶,李风生,崔平等.纳米Fe203的制备及对高氯酸胺热分解的催化性能[J],2003,24(10):795-798
    [76]Li L L, Chu Y, Liu Y, et al. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. Journal of Physical Chemistry,2007, 111(5):2123-2127
    [77]李凤生,宋洪昌,刘宏英等.超细粉体技术[M].北京:国防工业出版社,2000:1-11
    [78]蔡哲斌,石振贵.Fe2O3/Al2O3催化氧化苯偶姻制备苯偶酞.有机化学,2002,22(6):446-449
    [79]Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis,1989,115(2):301-309
    [80]Haruta M, Tsubota S, Kobayashi T, et al. Low-temperature oxidation of CO over gold supported on TiO2, a-Fe2O3, and Co3O4. Journal of Catalysis,1993,144(1): 175-192
    [81]Hodge N A, Kiely C J, Whyman R, et al. Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catalysis Today,2002,72(1-2):133-144
    [82]Hutchings G J, Hall M S, Carley A F, et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis, 2006,242(1):71-81
    [83]M. Khoudiakov, M.C. Gupta, S. Deevi. Au/Fe2O3 nanocatalysts for CO oxidation by a deposition-precipitation technique. Nanotechnology,2004,15(8): 987-990
    [84]G.J. Hutchings. Catalysis by gold. Catalysis Today,2005,100(1-2):55-61
    [85]Al-Sayari S, Carley A F, Taylor S H, et al. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature:comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis,2007,44(1-2):123-128
    [86]Khoudiakov M, Gupta M C, Deevi S. Au/Fe2O3 nanocatalysts for CO oxidation: A comparative study of deposition-precipitation and coprecipitation techniques Applied Catalysis A,2005,291(1-2):151-161
    [87]Dormano J L, Fiorani D. Magnetic Properties of Fine Particles. North-Holland Delta Series. Amsterden:North-Holland,1991:309-423
    [88]Robert C. CRC Handbook of Chemistry and Physics.Cleveland:The Chemical Rubber CO,1980:301-302
    [89]廖工铁.靶向给药制剂[M].四川:四川科学技术出版社,1997:163-166
    [90]向娟娟,朱诗国,吕红斌等.用氧化铁磁性纳米颗粒作为基因载体的研究[J].癌症,2001,20(10):1009-1014
    [91]张诚,钦华,王治国等.纳米级氧化铁-蝎毒素肽靶向神经胶质瘤的实验研究[J].中华显微外科杂志,2003,26(4):276-278
    [92]朱文会,徐甲强,眭勤等.a-Fe2O3粉体材料的制备与气敏性能研究[J].郑州轻工业学院学报,1995,10(1):67-70
    [93]赵克辉,王承权,闫涛等.纳米Fe2O3的制备与气敏性质的研究.化工进展[J],2002,21(8):579-582
    [94]Zhang P Q, Zhan Y G, Cai B X, et al. Shape-controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue. Nano Research,2010,3(4):235-243
    [95]Zhan Y G, Cai B X, Wang B, et al. Silica cages with controllable frameworks: synthesis, structure-tailoring, and formation mechanism. Journal of Matericals Chemistry,2008,18(48):5967-5973
    [96]Faust B C, Hoffmann M R, Bahnemann D W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of a-Fe2O3. Journal of Physical Chemistry,1989, 93(17):6371-6381
    [97]Han J S, Bredow T, Davey D E, et al. The effect of Al addition on the gas sensing properties of Fe2O3-based sensors. Sensors and Actuators, B,2001,75 (1-2):18-23
    [98]Chen J, Xu L, Li W, et al. a-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials,2005,17(5):582-586
    [99]Wen X G, Wang S H, Ding Y, et al. Controlled growth of large-area, uniform, vertically aligned arrays of r-Fe2O3 nanobelts and nanowires. The Journal of Physical Chemistry B,2005,109 (1):215-220
    [100]Faust B C, Hoffmann M R, Bahnemann D W. Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of a-Fe2O3. Journal of Physical Chemistry,1989, 93(17):6371-6381
    [101]Hamada S, Matijivic E. Ferric hydrous oxide sols. IV. preparation of uniform cubic hematite particles by hydrolysis of ferric chloride in alcohol-water solutions. Journal of Colloid and Interface Science,1981,84(1):274-277
    [102]Vayssieres L, Sathe C, Butorin S M, et al. One-dimensional quantum-confinement effect in a-Fe2O3 ultrafine nanorod arrays. Advanced Materials,2005,17(19):2320-2323
    [103]Woo K, Lee H J, Ahn J P, et al. Sol-gel mediated synthesis of Fe2O3 nanorods. Advanced Materials,2003,15(20):1761-1764
    [104]Wen X G, Wang S H, Ding Y, et al. Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. The Journal of Physical Chemistry B,2005,109(1):215-220
    [105]Jia C J, Sun L D, Yan Z G, et al. Single-crystalline iron oxide nanotubes. Angewandte Chemie International Edition,2005,44(28):4328-4333
    [106]Matijevic E. Preparation and characterization of monodispersed metal hydrous oxide sols. Progress in Colloid and Polymer Science,1976,61:24-35
    [107]Jia C, Cheng Y, Bao F, et al.pH value-dependant growth of a-Fe2O3 hierarchical nanostructures. Journal of Crystal Growth,2006,294:353-357
    [108]Yuan J K, Li W N, Gomez S, et al. Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. Journal of the American Chemical Society,2005,127(41):14184-14185
    [109]Hu J T, Odom T W, Lieber C M. Chemistry and physcis in one dimension:synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research,1999, 32(5):435-445
    [110]Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons:Formation of "dandelions". Journal of the American Chemical Society,2004,126 (26):8124-8125
    [111]Ni Y H, Ge X W, Zhang Z C, et al. Fabrication and characterization of the plate-shaped y-Fe2O3 nanocrystals. Chemistry of Materials,2002,14(3):1048-1052
    [112]Brezesinski T, Groenewolt M, Antonietti M, et al. Crystal-to-crystal phase transition in self-assembled mesoporous iron oxide films. Angewandte Chemie International Edition,2006,45(5):781-784
    [113]Li S Z, Zhang H, Wu J B, et al. Shape-control fabrication and characterization of the airplane-like FeO(OH) and Fe2O3 nanostructures. Crystal Growth and Design,2006,6(2):351-353
    [114]Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small,2005,1(5):566-571
    [115]Jia C J, Sun L D, Yan Z G, et al. Single-crystalline iron oxide nanotubes. Angewandte Chemie International Edition,2005,44(28):4328-4333
    [116]Jia C J, Sun L D, Luo F, et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. Journal of the American Chemical Society,2008, 130(50):16968-16977
    [117]Bieniecki A, Wilk K A. Micellar aggregation behavior at low ionic strength of cyclic acetal-type cationic surfactants containing the 1,3-dioxolane moiety. The Journal of Physical Chemistry B,1997,101(6):871-875
    [118]Villar-Rodil S, Suarez-Garcia F, Paredes J I, et al. Activated carbon materials of uniform porosity from polyaramid fibers. Chemistry of Materials,2005,17(24): 5893-5908
    [119]Joo S H, Choi S J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature,2001,412(6843):169-172
    [120]Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie International Edition,2007,46(25):4630-4660
    [121]Tang B, Wang G L, Zhuo L H, et al. Facile route to r-FeOOH and r-Fe2O3 nanorods and magnetic property of r-Fe2O3 nanorods. Inorganic Chemistry, 2006,45(13):5196-5200
    [122]Zhong L S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006,18(18):2426-2431
    [123]Schott J F, Damen T C. Raman scattering from surface modes of small CdS crystallites. Optics Communication,1972,5(5):410-412
    [124]Xu J F, Ji W, Shen Z X, et al. Raman spectra of CuO nanocrystals. Journal of Raman Specroscopy,1999,30(5):413-415
    [125]李金声,谭俊茹,张金铃等.云母钛复合材料的制备与光学性能的研究[J].硅酸盐学报,1995,23(1):79-84
    [126]Pfaff G, Reynders P. Angle-dependent optical effects deriving from submicron structures of films and pigments. Chemical Reviews,1999,99(7):1963-1982
    [127]王元生,李坚.溶胶-凝胶法制备Sb掺杂的α-Fe2O3纳米晶过程的结构研究[J]. 无机材料学报,1998,13(5):745-750
    [128]杨玉东,梁勇,宋志霞等.葡聚糖中超顺磁氧化铁复合纳米粒子制备影响因素及表征[J].无机材料学报,2005,20(1):225-229
    [129]Corr-Yury P S A, Gun'ko R Y K. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett,2008,3(3):87-104
    [130]张霞,赵岩,张彩碚.纺锤形β-FeOOH的形成过程研究[J].化学物理学报,2004,17(5):613-617
    [131]Ishikawa T, Kumagai M, Yasukawa A et al. Influences of metal ions on the formation of y-FeOOH and magnetite rusts. Corrosion Science,2002,44 (5): 1073-1086
    [132]Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anionson the formation of β-FeOOH rusts. Corrosion Science,2005,47(10):2510-2520
    [133]Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of γ-FeOOH to a-FeOOH in acidic solutions containing metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,266 (1-3):155-159
    [134]钟云波,李志华,任忠鸣等.强磁场对锰锌铁氧体前驱体纳米颗粒形貌的影响[J].中国有色金属学报,2005,15(2):241-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700