多尺度碳氮化物强化马氏体耐热钢
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以目前超(超)临界火电机组中实际使用的蠕变性能优异的耐热钢P91、P92钢以及未来核聚变反应堆用候选结构材料中国低活化马氏体耐热钢CLAM钢为研究对象,研究了几种常用高铬马氏体耐热钢的失效方式。并在P92钢基础上进行成分优化,以提高组织的高温稳定性,增强材料的热强性。同时结合弥散强化合金在不同条件下的不同蠕变机制,提出了多尺度碳氮化物强化马氏体耐热钢的概念,建立了热处理态及蠕变过程中的组织模型,并通过热变形及后续热处理的方法获得了多尺度碳氮化物强化马氏体耐热钢,蠕变性能优于P92钢。
     首先,通过调整钢的化学成分,主要包括降C,以降低M23C6的含量,从动力学上降低其粗化速率;去B,以防止形成脆性BN成为裂纹源;去Mo,以避免形成粗化速率较高的Laves相。
     然后通过调整钢的热变形参数,控制诱变铁素体的体积分数及分布进而控制诱变析出相的尺寸及分布。主要的实验结果是,通过精确定位各种软化机制的开始位置,如动态回复、动态再结晶、准动态再结晶、诱导相变、静态再结晶等,确定各软化机制的发生条件及各软化机制对组织演变的影响,进而调整变形参数以获得目标组织。研究结果显示,在低Zener-Hollomon(Z)条件下(高温低应变速率),动态再结晶及诱导相变的快速进行导致了近等轴晶组织的形成。随着Z值增加,动态再结晶及诱导相变的形核过程减慢,但诱导相变铁素体的长大速度较大,形成条状铁素体和马氏体组织。同时铁素体的长大消耗了大部分的储存能,使其成为维持良好加工性的主要因素。但当Z值继续增加时,动态再结晶和诱导铁素体晶粒的长大速率也大幅降低,但准动态再结晶发生,使动态再结晶晶粒快速长大,导致铁素体和马氏体混合晶组织的出现。
     由于铁素体中的Cr、Nb、V等合金元素固溶量小于奥氏体中的含量,且合金元素在铁素体中的扩散系数高于在奥氏体,因而高温下诱变铁素体会更利于析出相的诱导析出及长大,铁素体的分布及形态决定着诱导析出相的分布。因此可以通过控制诱变铁素体的含量及分布来调整诱导析出相的分布及体积分数。而变形条件为1000-1100℃C温度区间及0.01-1/s应变速率时,诱变铁素体的形态为条状,与马氏体相间分布,且诱导铁素体的体积分数约占50%,为最有利于析出相析出及均匀分布的变形条件。
     在随后的变形后的弛豫实验中,确定了析出相开始析出位置为弛豫曲线中的应力突增位置。实验结果发现,在不同变形条件及弛豫温度下,诱导析出相的析出行为不同,例如在连续变形后的弛豫过程中,Nb(C,N)析出相在940℃C变形并弛豫时大量析出;在变温连续变形后的弛豫过程中,M23C6在800℃C变形并弛豫时大量析出;在变温非连续变形后的弛豫过程中,除了上述两种析出相外,在750℃C变形并弛豫时,(Nb,V)(C,N)大量析出。而且变形量及初始变形温度也影响析出相的析出行为。前者通过影响位错密度,进而影响位错节数量,即析出相的形核位置,最终影响析出相的析出行为;后者通过影响该温度下的组织形态,尤其是诱变铁素体分布及含量,最终影响析出相的分布及数量。而析出相的尺寸是弛豫温度和弛豫时间的函数,在高温时,合金元素扩散速率较大,有利于析出相的析出;时间延长,析出相的扩散距离增大,有利于析出相的长大。对于在940℃C鼻尖温度析出的Nb(C,N)粒子,其弛豫1000s时,析出相的尺寸最大在120nm左右;在800℃C鼻尖温度析出的M23C6粒子,弛豫1000s时,尺寸最大在230nm左右;在750℃C鼻尖温度析出的(Nb,V)(C,N),弛豫1000s时,尺寸最大在30nm左右。
     最后通过控制后续热处理工艺参数,实现多尺度但碳化物强化马氏体耐热钢的制备。其中,后续热处理主要涉及奥氏体化及回火过程,热变形后的试样经奥氏体化后,初始的诱变铁素体+马氏体双相组织均转变为奥氏体,并在空冷后切变为单一马氏体组织。随保温时间的延长,晶粒的均匀性提高。变形过程中诱变析出的碳氮化钒、M23C6在奥氏体化过程中全部重新溶入基体,而Nb(C,N)则由于在奥氏体中的固溶度积小而溶解的较少。回火过程中,合金元素在未溶的析出相与奥氏体界面上偏聚,导致非均质形核,形成较大尺寸(200nm)的析出相,稳定了晶界及亚晶界。同时,位错节上形成弥散细小(<20nm)的析出相,钉扎位错。最终获得稳定性较高,符合设计的组织模型:多尺度碳氮化物强化的单一马氏体组织。
     研发成功的多尺度碳氮强化马氏体耐热钢在600℃C时效时表现出优良的组织稳定性,在650℃C时效时,组织发生再结晶,稳定性急剧降低,但再结晶发生开始时间由单尺度析出相强化时的500h延长至3000h。通过组织观察发现,650℃C时效时发生再结晶的原因与晶界上200nm左右析出相的重溶有关。新钢种在600℃C蠕变时,随应力的增加,位错密度增加,组织得到细化。其在600℃C的持久性能优于P92钢,且随应力的增加,其持久性能的优越性更加突出,到210MPa时是P92的2倍以上。
     尽管调控后的组织初步达到设计的目标,但200nm左右的析出相分布不均匀,且蠕变/时效过程中析出的Laves相易于连成条状,失去了阻碍晶界运动作用的同时,成为裂纹的萌生的优选位置。后续研究应该重点放在200nmm析出相的分布及Laves相的长大方式等方向上。
The thesis proposed a method to improve the microstructure stability at high temperature in order to increase the heat resistant steels. The new method was brought up based on the study of the failure mechanisms of the most currant used steels. Meanwhile, the concept of the new multi-size carbonitrides strengthened heat resistant (NS) steel was also, for the first time, brought up, which also provided the schematic of the multi-size carbontrides strengthened microstructure. The microstructure was experimentally gained through proper heat deformation and the following-up heat treatment. The NS steel with the desired microstructure showed better creep properties than the P92steel.
     Firstly, the chemical composition was modified by reducing the carbon content to decrease the volume fraction of M23C6particles and their coarsening rate through decreasing the driving force. Meanwhile, the boron was eliminated to avoid the formation of BN, which is brittle and would cause the cracking. Additionally, the Mo content was reduced to nearly zero in order to decrease the coarsening rate of Laves phase of Fe2Mo.
     During the hot deformation, the softening mechanisms, including dynamic recovery, dynamic recrystallization, metadynamic recrystallization, dynamic phase transformation and static recrystallization, were precisely located. The thesis also mentioned the conditions for the occurrence of all the above softening mechanisms and how these processes affected the microstructure evolution. Therefore, the desired microstructure could be formed by controlling the deformation conditions. For instance, at the low Zener-Hollomon (Z) value, i.e., high deformation temperature and low strain rate, both the dynamic recrystallization and the dynamic phase transformation took place, which resulted in the approximate equal-axial grains. With increase of the Z value, the process of dynamic recrystallization slowed down and the growth of strain-induced ferrite grains consumed most of the stored energy. Therefore, the growth of the ferrite made the most of the effort in maintaining the ductility. However, the growth rate of both dynamic recrystallization grains and the ferrite grains decreased, leading to the blend microstructure of ferrite and martensite with no obvious phase boundaries.
     Actually, the strain-induced ferrite played the most important role in the formation of precipitates, due to its low solute contents of alloying elements and high diffusion rates of alloying elements in it. Therefore, the volume fraction and distribution of ferrite determined the amount and the distribution of the precipitates. The optimum deformation for the formation of ferrite lied in the range of1000-1100℃with strain rate of0.01-1/s. Meanwhile, the ferrite preferred to form and grew along the prior austenite boundaries and inflated faster with increase of the temperature.
     In the stress relaxation curves, the stress abruption was determined to be the starting of the precipitation. However, different kinds of particles preferred to be precipitated under different conditions. For instance, the Nb(C,N) tended to formed at940℃under the condition of continuous deformation, while the M23C6particles preferred to precipitate during the relaxation after the second deformation at800℃followed by the primary deformation at900℃without interval relaxation. However, when200-second interval relaxation took place between the two passes, the (Nb,V)(C,N) particles bloomed at the temperature of750℃. Besides the factors mentioned above, the amount of reduction and the primary deformation temperature affected the precipitation behavior as well. The former one would prompt the precipitation by increasing the dislocation density with larger reduction. The number of nods of dislocations, which was the initial sites of precipitates, was exaggerated when the dislocation density was increased. The latter one would change the distribution and volume fraction of the precipitates through altering the distribution and volume fraction of the ferrite. As mentioned earlier, the nucleation and the growth of the strain-induced ferrite were closely depended on the deformation conditions. With extension of the relaxation time, the particles grew larger. As for the Nb(C,N) particles, which tended to precipitated at940℃, it would take them about1000s to achieve120nm maximum in size. While the M23C6particles at800℃grew up to230nm after1000s relaxation. However, the largest (Nb,V)(C,N) particles were only30nm after relaxation for1000s at750℃.
     The followed-up heat treatment, mainly austenizing and tempering, was to modify the microstructure. The dual phase of martensite and ferrite evolved into single martensite due to austenizing, while most of the precipitates resolved into the matrix except for the Nb(C,N) particles, which had small solution content in the austenite and would partially dissolved into the matrix. Therefore, the remained particles became the nuclei and the alloying element tended to integrate on them during tempering. The heterogeneous precipitation during the tempering led to uneven size of particles. The200nm-size precipitates among them were associated with the nucleus of remained particles and would contribute to the stabilization of the boundaries. Another one was that the under-20nm particles, which were attributed to the homogeneous formation of the precipitates without nucleus, would stump the dislocation movement effectively.
     The microstructure of muli-size carbonitrides strengthened heat resistant steel exhibited excellent stability at the aging temperature of600℃. Recrystallization took place in the microstructure after aging at650℃for3000h, latter than the single-size carbonitrides strengthened heat resistant steel at650℃for500h. The recrystallization was found to be associated to the resolution of the200nm-size particles at boundaries. The microstructure of the newly developed muli-size carbonitride strengthened steel got refined with the increase of stress at the creep tests. This refinement was mainly attributed to the augment of dislocations density. But when crept at650℃, with the increase of stress, besides the increase of the dislocations density, the speed of the dislocations movement was also advocated, resulting to the more refined microstructure. The new steel showed better creep resistance than the P92steel at600℃, as almost twice the creep rupture time as P92steel at210MPa.
     However, the200nm-size carbonitrides distributed unevenly and the Laves phase formed during aging/creeping tended to grow into chains, although the modified microstructure mainly met the required items. The coarse Laves phase could not abrupt the movement of boundaries efficiently and would highly stimulate the cracking. Therefore, the emphasis would be laid on the distribution of200nm-size particles and the growth behavior of Laves phase in the future work.
引文
Hagen I.v., Bendick W., Duisburg, Germany,2010.
    Viswanathan R., Coleman K., Rao U. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping,2006,83 (11-12):778-783.
    朱丽慧.新型锅炉用耐热钢的研究进展[J].热处理,1999,46-13.
    Klueh R.L., Nelson A.T. Ferritic/martensitic steels for next-generation reactors[J]. Journal of Nuclear Materials,2007,371 (1-3):37-52.
    Viswanathan R., Bakker W. materials for ultrasupercritical coal power plants[J]. Journal of Materials Engineering and Performance,2001,10 81-95.
    Nagode A., Kosec L., Ulet B., Kosec G. Review of creep resistant[J]. Metabk,2011,50 (1):45-48.
    Viswanathan R., Sarver J., Tanzosh J.M. Boiler Materials for Ultra-Supercritical Coal Power Plants-Steamside Oxidation[J]. Journal of Materials Engineering and Performance,2006,15 (3):255-274.
    Coleman K., Viswanathan R., shingledecker J., Sarver J., Stanko G., Mohn W., Borden M., Goodstine S., Perrin I., by S., Coleman K., Viswanathan R., in:Coleman K., Viswanathan R. (Eds.) USC Materials, U.S. Department of Energy Disclaimer, U.S.,2004.
    Beladi H., Kelly G.L., Shokouhi A., Hodgson P.D. The evolution of ultrafine ferrite formation through dynamic strain-induced transformation[J]. Materials Science and Engineering:A,2004, 371 (1-2):343-352.
    Murata Y., Kawamura K., Kamiya M., Morinaga M., Hashizume R., Miki K., Azuma T., Ishiguro T. Compositional Change of Refractory Elements in Solution during Aging in High Cr Heat Resistant Ferritic Steels[J]. ISIJ International,2002,421591-1593.
    Gustafson A.s., Ha'ttestrand M. Coarsening of precipitates in an advanced creep resistant 9% chromium steel-quantitative microscopy and simulations[J]. Materials Science and Engineering A,2002,333 279-286.
    Zhang W.F., P. Hu, Q. G. Zhou, W. Yan, Y. Y. Shan, K. Yang. Effect of Heat Treatment on the Mechanical Properties and the Carbide Characteristics of A High Strength Low Alloy Steel[J]. J Iron Steel Res. Int. supplement 1-1,2011,18 143-147.
    Poirier J.P., plasticite a haute temperature des solides cristallins[M], Paris:editions eyrolles,1976.
    Chilukuru H., Durst K., Wadekar S., Schwienheer M., Scholz A., Berger C., Mayer K.H., Blum W. Coarsening of precipitates and degradation of creep resistance in tempered martensite steels[J].
    Materials Science and Engineering:A,2009,510-51181-87.
    Park J.-S., Ha Y.-S., Lee S.-J., Lee Y.-K. Dissolution and Precipitation Kinetics of Nb(C,N) in Austenite of a Low-Carbon Nb-Microalloyed Steel[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2009,40 (3):560-568.
    Taneike M., Sawada K., Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2004,35A (4):1255-1262.
    Rodriguez P., Rao K.B.S. Nucleation and growth of cracks and cavities under creep-fatigue interaction[J]. Progress in Materials Science,1993,37403-480.
    Bendick W., Schendler W., in:VBG-ESKOM (Ed.) International Materials Conference, Pretoria, 2000.
    王从曾,材料性能学[M],北京:北京工业大学出版社,2007.
    Zhang W.-F., Li X.-L., Sha W., Yan W., Wang W., Shan Y.-Y, Yang K. Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel[J]. Materials Science and Engineering:A,2014,590 199-208.
    McQueen H.J., Ryan N.D. Constitutive analysis in hot working[J]. Materials Science and Engineering A,2002,322 43-63.
    Marchattiwar A., Sarkar A., Chakravartty J.K., Kashyap. B.P. Dynamic Recrystallization during Hot Deformation of 304 Austenitic Stainless Steel[J]. Journal of Materials Engineering and Performance,2013.
    A. I. Fernandez, P. Uranga, B. Lopez, Rodriguezibabe. J. Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb-Ti microalloyed steels[J]. Materials Science and Engineering A,2003,361 (1-2):367-376.
    Dutta B., Palmiere E.J. Effect of Prestrain and Deformation Temperature on the Recrystallization Behavior of Steels Microalloyed with Niobium[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2003,34A 1237-1247.
    Uranga P., Ferna'ndez A.I., Lo'pez B., Rodriguez-Ibabe J.M. Transition between static and metadynamic recrystallization kinetics[J]. Materials Science and Engineering A,2003,345 319-327.
    Dong H., Sun X.J. Deformation induced ferrite transformation in low carbon steels[J]. Current Opinion in Solid State and Materials Science,2005,9 (6):269-276.
    Momeni A., Dehghani K. Hot working behavior of 2205 austenite-ferrite duplex stainless steel characterized by constitutive equations and processing maps[J]. Materials Science and Engineering:A,2011,528 (3):1448-1454.
    崔忠析,金属学与热处理[M],北京:机械工业出版社,2003.
    Kostka A., Tak K., Hellmig R., Estrin Y., Eggeler G. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels[J]. Acta Materialia,2007,55 (2):539-550.
    Hong S.G., Kang K.B., Park C.G Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scripta Materialia,2002,46 (2):163-168.
    McQueen H.J., Yue S., Ryan N.D., Fry E. Hot Working Characteristics Of Steels In Austenitic State[J]. Journal of Materials Processing Technology,1995,53 8.
    Bhattacharyya A., Rittel D., Ravichandran. G Strain Rate Effect on the Evolution of Deformation Texture for deta Fe[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2006, 37A 1137-1145.
    Hong S.G, Kang K.B., Park C.G. strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scripta Materialia,2002,46 163-168.
    Hong S.C., Lee K.S. Influence of deformation induced ferrite transformation on grain[J]. Materials Science and Engineering A,2002,323 148-159.
    Dutta B.,1 E.V., Sellars C.M. Mechanism and kinetics of strain induced precipitation of Nb(C, N) in austenite[J]. Acta metall, mater.,1992,40 653-662.
    Liu W.J. A New Theory and Kinetic Modeling of Precipitation of Nb(CN)in Microalloyed Strain-Induced Austenite[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A, 1995,26A 1641-1657.
    Fahr D. Stress-and Strain-Induced Formation of Martensite and Its Effects on Strength and Ductility of Metastable Austenitic Stainless Steels[J]. METALLURGICAL TRANSACTIONS, 1971,2 1883-1892.
    Liu W.J., Jonas J.J. BTi(CN) Precipitation in Microalloyed Austenite during Stress Relaxation[J]. METALLURGICAL TRANSACTIONS A,1988,19A 1415-1424.
    Hin C., Brechet Y., Maugis P., Soisson F. Kinetics of heterogeneous dislocation precipitation of NbC in alpha-iron[J]. Acta Materialia,2008,56 (19):5535-5543.
    Zhou X.-g., Liu Z.-y., Yuan X.-q., Wu D., Guo-dong Wang, Liu X.-h. Modeling of Strain-Induced Precipitation Kinetics and Evolution of Austenite Grains in Nb Microalloyed Steels[J]. Journal of Iron and Steel Research, International,2008,15 (3):65-69.
    Liu W.J., Jonas J.J. A Stress Relaxation Method for Following Carbonitride Precipitation in Austenite at Hot Working Temperatures[J]. METALLURGICAL TRANSACTIONS A,1988, 19A 1403-1413.
    Mola J., Cooman B.C. Quenching and Partitioning (Q&P) Processing of Martensitic Stainless Steels[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2012,44 (2): 946-967.
    Militzer M., Sun W.P., Jonas J.J. Modeling the Effect of Deformation-Induced Vacancies on Segregation and Precipitation[J]. Acta Metallurgica Et Materialia,1994,42 (1):133-141.
    Langdon T.G. Identifiying creep mechanisms at low stresses[J]. Materials Science and Engineering A,2000,283 266-273.
    Kassner M.E. Taylor hardening in five-power-law creep of metals and Class M alloys[J]. Acta Materialia,2004,52(1):1-9.
    Langdon T.G Creep at low stresses An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A, 2002,33A 249-260.
    Kassner M.E., Kumar P., Blum W. Harper-Dorn creep[J]. International Journal of Plasticity,2007, 23 (6):980-1000.
    Zhang W.F., Yan W., Sha W., Wang W., Zhou Q.G., Shan Y.Y., Yang K. The impact toughness of a nitride-strengthened martensitic heat resistant steel[J]. Science China Technological Sciences, 2012,55 (7):1858-1862.
    Taylor A.S., Hodgson P.D. Dynamic behaviour of 304 stainless steel during high Z deformation[J]. Materials Science and Engineering:A,2011,528 (9):3310-3320.
    Azevedo G, Barbosa R., Pereloma E.V., Santos. D.B. Development of an ultrafine grained ferrite in a low C-Mn and Nb-Ti microalloyed steels after warm torsion and intercritical annealing[J]. Materials Science and Engineering:A,2005,402 (1-2):98-108.
    Wu H., Du L., Liu X. Dynamic Recrystallization and Precipitation Behavior of Mn-Cu-V Weathering Steel[J]. Journal of Materials Science & Technology,2011,27 (12):1131-1138.
    Kassner M.E. Recent developments in understanding the mechanism of five-power-law creep[J]. Materials Science and Engineering:A,2005,410-411 20-23.
    潘金生,仝健民,田民波,材料科学基础(修订版)[M],北京:清华大学出版社2011.
    Ha'ttestrand M., Schwind M., Andre'n H.-O. Microanalysis of two creep resistant 9-12% chromium steels[J]. Materials Science and Engineering A,1998,250 27-36.
    Yan W., Wang W., Shan Y.-Y, Yang K. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels[J]. Frontiers of Materials Science,2013,7 (1):1-27.
    Djebaili H., Zedira H., Djelloul A., Boumaza A. Characterization of precipitates in a 7.9Cr-1.65Mo-1.25Si-1.2V steel during tempering[J]. Materials Characterization,2009,60 (9): 946-952.
    Tanaka H., Murata M., Abe F., Yagi K. The effect of carbide distributions on long-term creep rupture strength of SUS321H and SUS347H stainless steels[J]. Materials Science and Engineering A,1997,234-236 1049-1052.
    HaEttestrand M., AndreAn H.-O. Evaluation of particle size distributions of precipitates in a 9% chromium[J]. Micron,2001,32 789-797.
    Fujio Abe, M. Tabuchi, Tsukamoto S., Liu Y., in:KIST (Ed.) the 5th Symposium on Heat Resistant Steels and Alloys for High Efficiency USC/A-USC Power Plants, Seoul, Korea,2013.
    Nabarro F.R.N. Creep at very low rates[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2002,33A 213-220.
    Charit I., Murty K.L. Creep behavior of niobium-modified zirconium alloys[J]. Journal of Nuclear Materials,2008,374 (3):354-363.
    Kassner M.E. Role of small-angle (subgrain boundary) and large-angle (grain boundary) interfaces on 5-and 3-power-law creep[J]. Materials Science and Engineering, A,1993,166 81-88.
    Daniel D., Savoie J., Jonas J.J. Textures induced by tension and deep drawing in low carbon and extra low carbon steel sheets[J]. Acta metall, mater.,1993,41 1907-1920.
    Kassner M.E., PeArez-Prado M.-T. Five-power-law creep in single phase metals and alloys[J]. Progress in Materials Science,2000,45 1-102.
    Hong S.C., Lim S.H., Hong H.S., Lee K.J., Shin D.H., Lee K.S. Effects of Nb on strain induced ferrite transformation in C-Mn steel[J]. Materials Science and Engineering:A,2003,355 (1-2): 241-248.
    张俊善,材料的高温变形与断裂[M],北京:科学出版社,2007.
    Roth M.,2013.
    赵钦新,朱丽慧,超临界锅炉耐热钢研究[M],机械工业出版社,2010.
    Miyata K., Sawaragi Y. Effect of Mo and W on the Phase Stability of Precipitates in Low Cr Heat Resistant Steels[J]. ISIJ International,2001,41 (3):281-289.
    Hara K.-i., Aok H., Masuyama F., Endo T. Effect of Nitrogen on the High Temperature Creep Behavior of 9Cr-2Co Steel[J]. ISIJ International,1997,37 (2):181-187.
    Helis L., Toda Y., Hara T., Miyazaki H., Abe F. Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants[J]. Materials Science and Engineering: A,2009,510-511 88-94.
    Liu X.Y., Fujita T. Effect of Chromium Content on Creep Rupture Properties of a High Chromium Ferritic Heat Resisting Steel[J]. ISIJ International,1989,29 (8):680-686.
    Toda Y, Seki K., Kimura K., Abe F. Effects of W and Co on Long-term Creep Strength of Precipitation Strengthened 15Cr Ferritic Heat Resistant Steels[J]. ISIJ International,2003,43 (1):112-118.
    Sawada K., Taneike M., Kimura K., Abe F. Effect of Nitrogen Content on Microstructural Aspects
    and Creep Behavior in Extremely Low Carbon 9Cr Heat-resistant Steel[J]. ISIJ International, 2004,44(7):1243-1249.
    Abe F., Semba H., Sakuraya T. Effect of Boron on Microstructure and Creep Deformation
    Behavior of Tempered Martensitic 9Cr Steel[J]. Materials Science Forum,2007,539-543
    2982-2987.
    Abe F., Araki H., Noda T. The effect of tungsten on dislocation recovery and precipitation behavior of low-activation martensitic 9Cr steels[J]. Metallurgical and Materials Transaction A, 1991,22A 2225-2236.
    Tokuno K., Hamada K., Uemorl R., Itoh K. Role of a complex carbonitride of niobium and vanadium in creep strength of 9% Cr ferritic steels[J]. Scripta Materialia,1991,25 1763-1768.
    Kimura K., Toda Y., Kushima H., Sawada K. Creep strength of high chromium steel with ferrite matrix[J]. International Journal of Pressure Vessels and Piping,2010,87 (6):282-288.
    胡平,新型高铬铁素体耐热钢的组织演变与力学性能研究[M],北京:中国科学院研究生学院,2011.
    Milovic L., Vuherer T., Blacic I., Vrhovac M., Stankovic M. Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures[J]. Materials & Design,2013,46 660-667.
    Prat O., Garcia J., Rojas D., Sauthoff G., Inden G The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels[J]. Intermetallics,2013,32 362-372.
    K S., Maruyama K, Y H. Creep life assessment of high chromium ferritic steels by recovery of martensitic lath structure.[J]. Key Engineering Materials,2000,171-174 109-114.
    R A., W B., C G. Evolution of microstructure and deformation resistance in creep of tempered martensitic 9-12%Cr-2%W-5%Co steels[J]. Acta Materialia,2006,54 (11):3003-3014.
    Poliakt E.I., Jonass J.J. a one parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta mater.,1996,44 10.
    A. A. Khamei, Dehghani. K. Modeling the hot-deformation behavior of Ni60wt%-Ti40wt% intermetallic alloy[J]. Journal of Alloys and Compounds,2010,490 (1-2):377-381.
    Zhang W.-F., Sha W., Yan W., Wang W., Shan Y.-Y, Yang K. Constitutive modeling, microstructure evolution and processing map for a nitride strengthened heat resistant steel[J]. Journal of Materials Engineering and Performance,2014.
    Yong Q.I., the secondary phase in steel[M], Bei jing:metallurgy industry publication,2006.
    Zhang W.F., Sha W., Yan W., Shan Y.Y., Yang K. Analysis of deformation behavior and workability of advanced 9Cr-Nb-V ferritic heat resistant steels[J]. Materials Science and Engineering A,2014.
    Wray PJ. Metall. Trans. A,1975,6 1197-1199.
    Tan S., Wang Z., Cheng S., Liu Z., Han J., Fu W. Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel[J]. Materials Science and Engineering:A, 2009,517 (1-2):312-315.
    Ziegler H., Progress in Solid Mechanics, Wiley, New York,1965, pp.191-193.
    Dehghan-Manshadi A., Barnett M.R., Hodgson P.D. Hot Deformation and Recrystallization of Austenitic Stainless Steel:Part I. Dynamic Recrystallization[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A,2008,39 (6):1359-1370.
    Sun W.P., Militzer M., Bai D.Q., Jonas J.J. Measurement and modelling of the effects of precipitation on recrystallization under multipass deformation conditions[J]. Acta metall, mater., 1993,41 3595-3604.
    G(u|")ndiiz S. Static strain ageing behaviour of dual phase steels[J]. Materials Science and Engineering:A,2008,486 (1-2):63-71.
    Chengwu Z., Dianzhong L., Shanping L., Yiyi L. On the ferrite refinement during the dynamic strain-induced transformation:A cellular automaton modeling[J]. Scripta Materialia,2008,58 (10):838-841.
    Soenen B., De A.K., Vandeputte S., De Cooman B.C. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels[J]. Acta Materialia,2004,52 (12):3483-3492.
    张文凤,李晓理,伟严.,单以银,柯杨.一种获得多尺度氮化物强化马氏体耐热钢的工艺:中国,201310036788.7[P].2013-01-22.
    Advani A.H., Murr L.E. Deformation Site-Specific Nature of Strain-Induced Transgranular Carbide Precipitation in Type-316 Stainless-Steels[J]. Scripta Metallurgica Et Materialia,1991, 25 (2):349-353.
    Djahazi M., X.L. He, Jonas J.J., Sun W.P. Nb(C, N) Precipitation and Austenite Recrystallization[J]. METALLURGICAL TRANSACTIONS A,1992,23A 2111-2120.
    Dutta B., Palmiere E.J., Sellars C.M. Modelling the kinetics of strain induced precipitation in Nb microalloyed steels[J]. Acta mater,2001,49785-794.
    王望根,杨振国,严伟,王威,单以银,杨柯.温度对T91铁素体/马氏体钢拉伸性能的影响[J].金属热处理,2013,4.
    Allain S., Bouaziz O., Lebedkina T., Lebyodkin M. Relationship between relaxation mechanisms and strain aging in an austenitic FeMnC steel[J]. Scripta Materialia,2011,64 (8):741-744.
    Almeida L.H.d., May I.L., Emygdio P.R.O. Mechanistic Modeling of Dynamic Strain Aging[J]. Materials Characterization,1998,41 137-150.
    Chai G, Andersson M. Secondary Hardening Behavior in Super Duplex Stainless Steels during LCF in Dynamic Strain Ageing Regime[J]. Procedia Engineering,2013,55 123-127.
    Zhao W., Chen M., Chen S., Qu J. Static strain aging behavior of an X100 pipeline steel[J]. Materials Science and Engineering:A,2012,550 418-422.
    Jung J.-G, Park J.-S., Kim J., Lee Y.-K. Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel[J]. Materials Science and Engineering:A,2011,528 (16-17):5529-5535.
    Palaparti D.P.R., Samuel E.I., Choudhary B.K., Mathew M.D. Creep Properties of Grade 91 Steel Steam Generator Tube at 923K[J]. Procedia Engineering,2013,55 70-77.
    Gustafson A., Agren J. Possible Effect of Co on Coarsening of M23C6 Carbide and Orowan Stress in a 9% Cr Steel[J]. ISIJ International,2001,41 356-360.
    Fang Y.L., Liu Z.Y., Song H.M., Jiang L.Z. Hot deformation behavior of a new austenite-ferrite duplex stainless steel containing high content of nitrogen[J]. Materials Science and Engineering: A,2009,526 (1-2):128-133.
    Kimura K., Kushima H., Abe F., b K.Y. Inherent creep strength and long term creep strength properties of ferritic steels[J]. Materials Science and Engineering A,1997,234-236 1079-1082.
    Momeni A., Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps[J]. Materials Science and Engineering:A,2010,527 (21-22):5467-5473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700