火电机组过热器管T91材料的腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国各火力发电厂锅炉设备容量与蒸汽参数的增加,越来越多的锅炉爆管事故随之发生。统计电站锅炉事故中发现,受热面管(水冷壁管、过热器管、再热器管、省煤器管,又称“四管”)的爆漏损坏事故最为严重和常见,而对于承受高温和高压蒸汽作用的过热器管来说,氧化和腐蚀更是造成爆管的主要因素,其抗氧化和抗腐蚀性能是重要的指标。T91钢作为过热器管的主要材料,非常有必要对其腐蚀行为及腐蚀机理进行研究。
     本文以T91钢为研究对象,主要研究了T91在钝化、侵蚀以及酸性介质缓蚀方面的行为和特性。采用Tafel极化曲线、交流阻抗、电化学噪声以及高压釜挂片等实验方法,并使用SEM、XRD、EDS对挂片后的试片进行表征,分析并讨论T91钢在腐蚀及钝化过程中的腐蚀速度、缓蚀效率及其腐蚀机理。
     本课题研究发现:(1)在不同温度、pH值条件下对T91钢进行腐蚀实验,pH=9时,T91钢的耐蚀性最佳;设定溶液pH值为9,对T91钢在不同温度,不同浓度的Cl~-、SO_4~(2-)溶液中进行电化学和挂片实验,将Icorr、Vcorr、Rct值进行对比,同等条件下SO_4~(2-)对T91钢的腐蚀影响大于Cl~-。(2)选择不同浓度的亚硝酸钠为钝化液,在不同温度及pH值的条件下对T91钢进行钝化,通过电化学和硫酸铜滴定实验,结果表明T91钢的最佳钝化条件为:30℃,pH为9.5,NaNO_2浓度为0.5%。最佳钝化条件下对T91钢进行钝化后,用1.0mol/L的NaCl溶液对其进行腐蚀研究,对比钝化前后的实验数据,Icorr值降低了两个数量级,Ecorr值正移,Rct值也增大了一个数量级,说明钝化膜有效的降低了Cl~-对T91钢的侵蚀。(3)对T91钢锈片在16%盐酸溶液进行电化学实验,作电位-时间图,发现当电位导数值为零时,除锈效果最好,判定此时为酸洗终点。盐酸的质量分数越大,整个酸洗时间越短;温度越高,酸洗时间也越短。由于盐酸有强挥发性,根据实验结果以及拟合曲线方程可知:最佳盐酸酸洗质量分数为16%,最佳酸洗温度为50℃。实验发现在16%盐酸溶液中添加一定量的聚环氧琥珀酸时,对T91钢有一定的缓蚀作用,其缓蚀率随着PESA浓度的增加而增大,随着温度升高而降低,当PESA浓度大于20 g/L时,钢材的缓蚀效率基本保持不变。PESA在T91钢表面的吸附基本符合Langmuir吸附等温式,至此说明PESA不再只作为碱性缓蚀剂使用,在酸性条件下也可以使用。
Along with the increase of our country the power plant boiler equipment capacity and steamparameters, then more and more of the boiler pipe explosion accident happened. Statisticalpower station boiler accidents founded that the damage blasting leaks of in heating tube(water-wall tubes, overheating pipes, reheater pipes, economizer tube, say again "four tubes")was the most serious and widespread.For the overheating pipes under high temperature andhigh pressure steam, the main factors of pipe explosion was oxidation and corrosion, theoxidation resistance and corrosion resistance were important indexs. T91 steel as the mainmaterial of overheating pipes, the study of the corrosion behavior and corrosion mechanismwas very necessary.
     The passivation, erosion and acid corrosion corrosion behaviors and characteristics of T91wasstudied in this article. Electrochemistry test methods and suspended coupon experiment wereused to obtain corrosion rate,the corrosion inhibitor rate and related datas, included Tafelpolarization curve, Electrochemical impedance spectroscopy, Electrochemical noise,specially,and using SEM、XRD、EDS to test the surface of the specimens.This paper studied found that:(1)The corrosion behavior of T91 steel was studied fromdifferent pH values and temperatures, The best corrosion resistance points of T91 steel waspH=9. Setting the pH value of solution was 9,the experiment of electrochemical and hangpiece were did in different temperature and different concentration of Cl~-、SO_4~(2-) solutions forT91 steel. Contrasted results of Icorr、Vcorr、Rct, SO_4~(2-) than Cl~- the corrosion affect larger of T91steel under the same conditions.(2) Different concentrations of sodium nitrite was choosed forpassivation solution.In different temperature and pH value conditions of T91 steel forpassivation, through the electrochemical and copper sulfate titration experiment, The best passivation T91 steel condition was: 30℃, pH 9.5, concentration of NaNO_2was 0.5%. T91was eroded in 1.0mol/LNaCl after the best passivation treatment. Contrasted of theexperimental data before and after the passivation, Icorrvalue reduced two orders of magnitude,Ecorrpositive moved, Rctvalue also increased one order of magnitude. Passive film effectivelyreduced the Cl~-to the erosion of T91 steel.(3) The electrochemical experiments of rustycoupon of T91 was tested in the 16% hydrochloric acid, Drawed potential-time figure.Foundthat when the derivative value of the potential was Zero, the derusting effect was the best ,Judged for pickling end at this time.When the mass fraction of hydrochloric acid was higherand the temperature of pickling was higher,the pickling time was shorter.Due to the strongvolatile of hydrochloric acid , it can be got that the optimum pickling temperature was50℃,and the optimum mass fraction of HCl which was used to pickling was 16% based onthe experimental results and fitting curve equation.The experiment found that there weresome corrosion inhibition of T91 steel when added a certain amount of poly epoxy succinicacid(PESA) into 16% hydrochloric acid solution,.The inhibition efficiency of PESA increasedwith the increasing concentration, decreased with the increasing temperature, The inhibitingrate remain unchanged when PESA concentration more than 20g/L. PESA conformed toLangmuir adsorption isotherm. So PESA used not only in alkaline conditions, but also used inacid conditions.
引文
[1] Sasaki.Terufumi, Kobayashi. Production and properties of Seamless modified 9Cr-1MoSteel boiler tubes[R]. Kawasaki Steel Technical Report, 1991, 25(1):78-87
    [2] Vallouree & Mannesmann Tubes, P91/T91(X10CrMoVNb91)在电站和锅炉行业的应用[J].热力发电,1999, 4-9
    [3]电力规划设计总院管道专业技术组,关于我国火电厂主蒸汽管道通用P91钢的建议[J].中国电力, 1996, 29(7):29-32
    [4]赵钦新. 10CrMoVNbN耐热钢的深化研究[D].西安:西安交通大学博士论文, 1998:1~20
    [5]孟繁茂,付俊岩.现代含铌不锈钢[M].北京:冶金工业出版社, 2004:189~199
    [6]太田定雄(著),张善元,张绍林(译).铁素体系耐热钢[M].北京:冶金工业出版社, 2003:1~12
    [7] K.Natesan, J.H.Park. Fireside and steamside corrosion of alloys for USC plants[J].International Journal of Hydrogen Energy, 2007, 32(16):3689-3697
    [8]赵钦新,顾海澄,陆燕荪.国外电站锅炉耐热钢的一些进展[J].动力工程, 1998,(18)1:74-83
    [9]杨华春,屠勇.超(超)临界机组锅炉钢管选材与国产化可行性[J].发电设备, 2005,1:37-42
    [10]张瑞.开展锅炉管性能评定促进产品质量提高[J].发电设备, 2001, 13(5):43-48
    [11]张清峰,陈英涛.锅炉四管泄漏的规律及防范措施[J].华北电力技术, 2004,33(11):47-51
    [12]陈宇.长期服役T-P91耐热钢的微观组织结构与失效机理的研究[D].东北大学硕士学位论文, 2008:1-30
    [13]杨富,李为民,任永宁.超临界、超超临界锅炉用钢[J].电力设备, 2004, 5(10):41-46
    [14] K.Natesan, J.H.Park. Fireside and steamside corrosion of alloys for USCplants[J].International Journal of Hydrogen Energy, 2007, 32(16):3689-3697
    [15] J.Steven Zinkle. Advanced materials for fusion technology[J].Fusion Engineering andDesign, 2005, 74(1-4):31-40
    [16] J.Chan-Seo, B.Si-Yeon, K.D al. Creep rupture life and variation of micro-structureaccording to aging time and creep test methods[J].Mater Sci Eng A, 2007,449-451(25):155-158
    [17] F.Abe. Bainitic and martensitic creep-resistant steels[J].Current Opinion in Solid Stateand Materials Science, 2004, 8(3-4):305-311
    [18] T.Hirose, K.Shiba, M.Ando, et al. Joining technologies of reduced activationferritic/martensitic steel for blanket fabrication[J].Fusion Engineering and Design, 2006,81(1-7):645-651
    [19] A.Zeman, L.Debarberis, J.Kocík, et al. Microstructural analysis of candidate steelspre-selected for new advanced reactor Mater[J]. International Journal of PressureVessels and Piping,2007, 362(2-3):259-267
    [20] K.M.Nikbin, M.Yatomi, K.Wasmer, et al. Probabilistic analysis of creep crack initiationand growth in pipe components[J].International Journal of Pressure Vessels and Piping,2003, 80(7-8):585-595
    [21] H.S.Cho, H.Ohkubo, N.Iwata, et al. Improvement of compatibility of advanced ferriticsteels with super critical pressurized water toward a higher thermally efficientwater-cooled blanket system[J].Fusion Engineering and Design, 2006,81(8-14):1071-1076
    [22] C.Coussement, A.Dhooge, M.de Witte, et al. High temperature properties of improved9% Cr steel weldments[J].International Journal of Pressure Vessels and Piping, 1991,45(2):163-178
    [23]胡正飞,杨振国.高铬耐热钢的发展及其应用[J],钢铁研究学报,2003,15(3):60-65
    [24]杨华春,屠勇.国外超临界锅炉用高温高压钢管材料特性及应用介绍[J],东方锅炉,2004,1:14-29
    [25] M.Hattestrand, M.Schwind, H.Andren. Microanalysis of two creep resistant 9-12%chromium steels[J].Mater Sci Eng A, 1998, 250(1):27-36
    [26] D.J.Allen, B.Harvey, S.J.Brett.“FOURCRACK”—An investigation of the creepperformance of advanced high alloy steel welds,International Journal of PressureVessels and Piping,2007,84(1-2):104-113
    [27] J.Onoro. Weld metal microstructure analysis of 9–12%Cr steels[J].International Journalof Pressure Vessels and Piping, 2006, 83(7):540-545
    [28] L.P.Antalffy, P.N.Chaku, D.A.Canonico. The potential for using high chromium ferriticalloys for hydroprocessing reactors[J].International Journal of Pressure Vessels andPiping,2002,79(8-10):561-569
    [29] T.Uwaba, S.Ukai, T.Nakai. Properties of friction welds between 9Cr-ODS martensiticand ferritic–martensitic steels[J].Nuclear Mater,2007,367-370(1):1213-1217
    [30] J.Onoro. Weld metal microstructure analysis of 9–12%Cr steels[J].International Journalof Pressure Vessels and Piping,2006,83(7):540-545
    [31] G.Gupta, Z.Jiao, A.N.Ham. Microstructural evolution of proton irradiated T91[J].NuclearMater,2006,351(1-3):162-173
    [32] K.Milicka, F.Dobes. Small punch testing of P91 steel[J].International Journal of PressureVessels and Piping,2006,83(9):625-634
    [33] T.Watanabe, M.Tabuchi, M.Yamazaki, et al.,Creep damage evaluation of9Cr–1Mo–V–Nb steel welded joints showing Type IV fracture[J].International Journalof Pressure Vessels and Piping,2006,83(1):63-71
    [34] S.Spigarelli, E.Quadrini, Analysis of the creep behaviour of modified P91(9Cr–1Mo–NbV) welds[J].Materials&Design, 2002, 23(6):547-552
    [35]李亚江,王娟,周冰,等. P91耐热钢焊接区的微观组织结构分析[J].焊接学报, 2003,24(2):39-44
    [36] D.Laverde, T.Gómez-Acebo, Francisco Castro. Continuous and cyclic oxidation of T91ferritic steel under steam[J].Corrosion Science, 2004, 46(3):613-631
    [37] Y.Chen, K.Sridharan, T.Allen. Corrosion behavior of ferritic–martensitic steel T91 insupercritical water[J].Corrosion Science, 2006, 48(9):2843-2854
    [38] B.Fournier, M.Sauzay, C.Caes, et al. Creep-fatigue-oxidation interactions in a 9Cr-1Momartensitic steel.Part I: effect of tensile holding period on fatiguelifetime[J].International Journal of Fatigue, 2007:68-75
    [39]宁保群,T91铁素体耐热钢相变过程及强化工艺[D].天津大学硕士学位论文,2007:5-37
    [40] I.A.Shibli, N.Le Mat Hamata. Creep crack growth in P22 and P91 welds-overview fromSOTA and HIDA projects[J].International Journal of Pressure Vessels and Piping, 2001,78(11-12):785-793
    [41] N.Le Mat Hamata, I.A.Shibli. Creep crack growth of seam-w elded P22 and P91 pipeswith artificial defects.Part I.Experimental study and post-testmetallography[J].International Journal of Pressure Vessels and Piping, 2001,78(11-12):819-826
    [42] B.Kim, C.Jeong, B.Lim. Creep behavior and microstructural damage of martensitic P92steel weldment[J].Materials Science and Engineering, 2007, In Press
    [43] E.El-Magd, J.Gebhard, J.Stuhrmann. Simulation of the creep behaviour of P92 sandwichstructures at 650°C with loading transverse to the intermediate layer[J].ComputationalMaterials Science, 2007, 39(2):446-452
    [44] P.J.Ennis, A.Zielinska-Lipiec, O.Wachter. Microstructural stability and creep rupturestrength of the martensitic steel P92 for advanced power plant[J].Acta mater, 1997,45(12):4901-4907
    [45] S.Kunimitsu, Y.You, N.Kasuya, Y.Sasaki, et al. Effect of thermo-mechanical treatment ontoughness of 9Cr-W ferritic-martensitic steels during aging[J].Nuclear Mater, 1991,179-181(1):689-692
    [46] P.Ampornrat, G.S.Was. Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9in supercritical water[J].Nuclear Mater, 2007, 371(1):1-17
    [47] Y.Yi, B.Lee, S.Kim. Corrosion and corrosion fatigue behaviors of 9cr steel in asupercritical water condition[J].Mater Sci Eng A, 2006, 429(1-2):161-168
    [48] T.R.Allen, L.Tan, J.Gan, et al. Microstructural development in advancedferritic–martensitic steel HCM12A[J].Nuclear Mater, 2006, 351(1-3):174-186
    [49] F.Abe, M.Tabuchi, M.Kondo, et al. Suppression of Type IV fracture and improvement ofcreep strength of 9Cr steel welded joints by boron addition[J].International Journal ofPressure Vessels and Piping, 2007, 84(1-2):44-52
    [50] P.Auerkari, S.Holmstrm, J.Veivo, et al. Creep damage and expected creep life for welded9–11%Cr steels[J].International Journal of Pressure Vessels and Piping, 2007,84(1-2):69-74
    [51]刘正东,程世长.钒对T122铁素体耐热钢组织和性能的影响[J].特殊钢, 2006,7(1):7-11
    [52]包汉生,傅万堂.程世长等,T122耐热钢中氮化硼(BN)化合物的探讨[J].钢铁,2005, 40(10):68-71
    [53]曹金荣,刘正东,程世长,等. T122耐热钢平衡相转变的热力学计算和分析[J].特殊钢, 2005, 26(6):16-21
    [54] R.L.Klueh. Reduced-activation bainitic and martensitic steels for nuclear fusionapplications[J].Current Opinion in Solid State and Materials Science, 2004,8(3-4):239-250
    [55] J.Brózda, M.Zeman. Wrong heat treatment of martensitic steel welded tubes causedmajor cracking during assembly of resuperheaters in a fossil fuel powerplant[J].Engineering Failure Analysis, 2003, 10(5):569-579
    [56] R.K.Shiue, K.C.Lan, C.Chen, et al. Toughness and austenite stability of modified9Cr–1Mo welds after tempering[J].Mater Sci Eng A, 2000, 287(1):10-16
    [57] K.Rodak, A.Hernas, A.Kiebus. Substructure stability of highly alloyed martensitic steelsfor power industry[J].Materials Chemistry and Physics, 2003, 81(2-3):483-485
    [58] R.L.Klueh, A.T.Nelson. Ferritic/martensitic steels fornext-generation reactors[J].NuclearMater, 2007, 371(1-3):37-52
    [59] P.D.Jablonski, D.E.Alman. Oxidation resistance and mechanical properties ofexperimental low coefficient of thermal expansion(CTE)Ni-base alloys[J].InternationalJournal of Hydrogen Energy, 2007, 32(16):3705-3712
    [60] J.Ehlers, D.J.Young, E.J.Smaardijk, et al. Enhanced oxidation of the 9%Cr steel P91 inwater vapour containing environments[J].Corrosion Science, 2006, 48(11):3428-3454
    [61] L.Korcakova, J.Hald,A.J.Somers. Quantification of Laves phase particle size in 9CrWsteel[J].Materials Characterization, 2001, 47(2):111-117
    [62] S.Holmstrom, P.Auerkari. Predicting weld creep strength reduction for 9%Crsteels[J].International Journal of Pressure Vessels and Piping, 2006, 83(11-12):803-808
    [63]贺红梅,崔朝英,李立明.火电厂水冷壁管腐蚀失效常见形式简介[J].物化检测,2005, 41:301-303
    [64]高劲松.锅炉受热面管的失效机理及预防措施研究[D].南昌:南昌大学硕士学位论文, 2007:12-32
    [65] Formhold AT. Theory of Metal oxidation[M].Vol.1, FundmentS, North-HollandPub.Alnsterdam, NewYork, Oxford, 1976
    [66]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社, 2003:53-54
    [67]张都清.电站9Cr-1Mo-V-Nb钢高温氧化机制及防护技术研究[D].山东大学博士学位论文, 2009:1-35
    [68]吴广君.实验室模拟水冷壁高温腐蚀的热分析动力学研究[D].浙江:浙江大学硕士学位论文, 2005:1-19
    [69]薛静.蒸汽发生器传热管开裂失效分析及腐蚀机理研究[D].哈尔滨工程大学硕士学位论文, 2007:63
    [70]陈红菊,陈文彤,孙艳华.火电厂锅炉水冷壁热腐蚀机理的研究现状[J].电力建设,2002, 2:17-20
    [71]袭小芝,肖娟,等.溶液pH值对不锈钢亚稳态孔蚀行为的影响[J].北京化工大学学报, 2002, 29(4):29-30
    [72]王志刚,李久青,吴荫顺.氯化物浓度及pH值对1Cr13不锈钢微动腐蚀的影响[J].材料保护, 2000, 33(3):46-48
    [73]蒋娅,庞飞飞,刘晓伟,等. T91铁素体不锈钢在亚硝酸钠溶液中的钝化研究[J].全面腐蚀控制, 2011, 25(9):45-47
    [74]杨昌柱.应用动电位扫描法研究锅炉酸洗钝化条件[J].热力发电, 1996(6):44
    [75]杨昌柱.锅炉酸洗钝化条件的交流阻抗技术研究[C].湖南省第二届腐蚀与防护学术讨论会论文集,湖南株州, 1997:15-21
    [76]曹楚南.阻抗腐蚀电化学[ M].北京:化学工业出版社, 1990:169-220
    [77] Anita.T, Pujar.M.G, Shaikh.H, et al. Assessment of stress corrosion crack initiation andpropagation in AISI type 316 stainless steel by electrochemical noise technique[J].ThePhysics of Metals and Metallography, 2006, 48: 2689-2710
    [78]张鉴清,张昭,王建明,等.电化学噪声的分析与应用Ⅱ电化学噪声的应用[J].中国腐蚀与防护学报, 2002, 22(4):241-245
    [79] E.E.oguzie, V.O.Njoku, C.K.Enenebeaku, et a1. Effect of hexamethylpararos-anilinechloride (crystal violet) on mild steel corrosion in acidic media[J].Corrosion Science,2008, 50(12):3480-3486.
    [80] R.A.Prabhu, T.V.Venkatesha, A.V.Shabhag. Carmine and fast green as corrosioninhibitors for mild steel in hydrochloric acid[J]. Journal of the Iranian Chemical Society,2009, 6(2):353-363
    [81]东姝洁,叶纯杰,潘红良.盐酸酸洗终点电化学判断方法的研究[J].电化学, 2008,14(3):288-291
    [82]林修洲,张远声,龚敏.缓蚀剂对金属材料酸洗除锈速度的影响[C].第十二届全国缓蚀剂学术讨论会论文集.武汉:华中科技大学出版社, 2001:259-263
    [83] G.Hubmer, A.Osterkom, K,Rendl, et a1.带钢酸洗终点的准确判定[J].钢铁学报, 2003,38(9):39-42
    [84]曾小利,朱国和,叶纯杰,等.采用电位导数首零法研究热轧带钢盐酸酸洗的影响因素[J].电镀与涂饰, 2010, 29(5):37-38
    [85]唐丽斌,木冠南,张瑾,等.盐酸中La3+与N03-离子对铝的缓蚀作用[J].中国稀土学报, 2003, 21(3):272-276
    [86]木冠南.溴化十六烷基吡啶自盐酸溶液中在铝表面上的吸附及其缓蚀作用[J].物理化学学报, 1989, 5(5):546-550
    [87]赵振国,沈吉静,马季铭.阳离子表面活性剂胶团催化的活化热力学参数[J].化学学报, 2003,61(2) 298-302
    [88]陈禹银,耿信笃.液-固吸附体系中计量置换吸附模型的热力学研究[J].高等学校化学学报, 1993,10(14) :1432-1436

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700