9-12%Cr铁素体/马氏体耐热钢的显微组织和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用扫描电子显微镜(SEM)、能谱分析(EDS)、透射电子显微镜(TEM)、X-射线衍射分析(XRD)、拉伸蠕变试验等方法试验研究了五种成分的9-12%Cr系铁素体/马氏体耐热钢的微观结构和力学性能以及不同热处理和650℃高温长期时效对微观结构和力学性能的影响。所得结论如下:
     所研究的9-12%Cr铁素体/马氏体耐热钢经过1100℃×1h正火处理+750℃×1h或700℃×1h高温回火处理后,其微观组织特征是板条状回火马氏体,在原奥氏体晶界和马氏体板条界上析出M_(23)C_6型碳化物,在板条内部的基体上析出纳米尺寸的MX型碳氮化物。M_(23)C_6型碳化物的数量随着碳含量的降低而减少,超低碳钢中几乎没有M_(23)C_6碳化物析出。两种纳米尺寸的MX相均匀密集的分布在超低碳钢的基体内,直径约为30~50nm的较大尺寸MX相富含Nb和Ti,而直径约10mm的较小尺寸MX相富含V。在含1.5wt.%Mo的钢中发现有少量M_3B_2型硼化物。高Ti含量(0.14wt.%Ti)的钢中有尺寸约为2μm的粗大TiC颗粒,在马氏体板条界附近区域内分布有高密度纳米TiC析出相。
     含高密度MX型纳米析出相的高铬耐热钢在高应力下具有较长的蠕变断裂寿命,但随着蠕变应力的降低,蠕变断裂寿命增加缓慢,表现出较快的高温强度退化速度。蠕变裂纹易于在粗大的TiC颗粒与基体的界面处形成,导致高Ti含量(0.14wt.%Ti)的钢的蠕变性能大大降低。
     钢样经1100℃×1h正火+700℃×1h或750℃×1h回火热处理后在650℃长期时效处理过程中,MX析出相向四方结构的Z-相转化,且高N含量的钢中Z-相的形成较早;由于Z-相和MX相有相似的组成元素,故Z-相的形成消耗了MX相,降低MX相的强化作用。
     650℃长期时效期和蠕变过程中,在板条和晶界析出大颗粒Fe_2Mo(含Mo,不含W钢)或Fe_2W型(含W钢)Laves相;在含W钢中,时效500h前,Laves相逐渐析出,弥散强化效应提高,钢样硬度增加;时效超过500h后,随着Laves相粗化和粗大的Z-相析出,基体中的固溶强化元素W的浓度降低,强化效果降弱,钢的硬度降低。
Microstructure and properties of five 9-12%Cr ferritic/martensitic heat resistant steels have been studied by using the scanning electron microscope (SEM) equipped with energy dispersive spectrum analysis (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD) and tensile creep test in this paper. The conclusions are made as follows:
     After normalizing at 1100℃for 1h and then tempering at 750℃/700℃for 1h, the microstructure of all steels studied is lath martensitic. M_(23)C_6-type carbide precipitates along grain boundaries and lath boundaries while nano-sized MX carbonitride precipitates within lath. The amount of M_(23)C_6 carbide reduces with the decrease of carbon content. And there are few M_(23)C_6-type carbide particles in ultra-low carbon steels. Two kinds of nano-sized MX phase distribute densely and homogenously in the matrix of the ultra low carbon steels. The larger nano-sized MX precipitate with the size of 30~50nm is rich in Nb and Ti, while the smaller one with the size of about 10nm is rich in V. Small amount of M_3B_2-type boride are found in the steel with 1.5wt.%Mo. Large TiC particles with a size of about 2μm distribute in grain boundaries and dense nano-sized TiC particles in martensitic lath boundaries are found in the steel with 0.14wt.% Ti .
     Under condition of high stress at 650℃, high chromium steels with high density nano-sized MX precipitates have longer creep rupture life. However, creep rupture life increases lowly with the decrease of creep stress indicating that the strength degradation at high temperature is fast. Creep crack tends to initiate at the interfaces between coarse TiC particles and the matrix and causes a decrease in the creep property of the steel with 0.14wt.% Ti.
     During long time aging at 650℃after normalizing at 1100℃for 1h and tempering at 700℃/750℃for 1h, MX phase has transformed into Z-phase, which has a tetragonal structure and is prone to coarsen. Z-phase formation occurs earlier in high nitrogen steels. The formation of Z-phase consumes the nano-sized MX carbonitrides because the composition of both MX carbonitrides and Z-phase are all consisted of the same elements of V and Nb, resulting in decrease of the strengthening effect of MX precipitates.
     During long time aging and creep deformation at 650℃, large Fe2Mo-type (in steels without W) and Fe_2W-type (in steel with W) Laves phase precipites along lath and grain boundaries. In steels with high tungsten, Laves phase precipitates gradually leading to the increase of dispersion strengthening effect and hardness of the steels before 500h aging. After 500h aging, the hardness of the steels decreases because of the coarsening of Laves phase and the formation of large Z-phase.
引文
[1]陆延昌.大力发展超临界压力机组优化火电结构[J].中国电力,2000,33(1):1-5.
    [2]孟繁茂,付俊岩.现代含铌不锈钢[M].北京:冶金工业出版社,2004.
    [3]H.K.Danielsen,J.Hald.Energy Mater[M].2006,(1):49-57.
    [4]胡正飞,杨振国.高铬耐热钢的发展及其应用[J].钢铁研究学报,2003,15(3):60-65.
    [5]黄其励.火力发电可持续发展新技术[J].中国电力,2002,35(1):8-12.
    [6]Kouichi Maruyama,Kota Sawada,Junichi Koike.Strengthening mechanisms of creep resistant tempered martensitic steel[J].ISIJ International,2001,41(6):641-653.
    [7]Masaki Taneike,Fujio Abe,Kota Sawada.Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions[J].Nature,2003,424:294-296.
    [8]Lundin L,Andren H O.Atom-probe investigation of a creep resistant 12%chromium steel[J].Surface Science,1992,266:397-401.
    [9]Vodarek V,Strang A.Effect of Nickel on the Precipitation Processes in 12CrMoV Steels During Creep at 550℃[J].Scripta Materialia,1998,38(1):101-106.
    [10]Kimura K,Kushima H,Abe F.Proceedings of the eighth international conference on creep and fracture of engineering materials and structures.In:Sakuma T,Yagi K.,eds.Transac-tions of the technical publications,Switzerland,2000,171-174:483.
    [11]J.Hald.Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications[C].In:A.Strang,J.Cawley,G.W.Greenwood,eds.ASME,2005,197-203.
    [12]K.Rodak,A.Hernas,A.Kiebus.Substructure stability of highly alloyed marten sitic steels for power industry[J].Materials Chemistry and physics,2003(81):483-485.
    [13]A.Fleming,R.V.Maskell,L.W.Buchanan,et al.Materials for High Temperature Power Generation and Process Plant Applications[C].IOM Communications,London,2000:33-77.
    [14]F.B.Pickering.Microstructural Development and Stability in High Chromium Ferritic Power Plant Steels[C].In:A.Strang,D.J.Gooch,eds.Institute of Materials,London,1997:1-29.
    [15]V.K.Sikka,M.G.Cowgill,B.W.Roberts.Ferritic Alloys for Use in Nuclear Energy Techno-logies[C].In:J.W.Davis,D.J.Michel,eds.TMS,Warrendale,1983:413-423.
    [16]R.D.Townsend.Materials for High Temperature Power Generation and Process Plant Applications[C].In:A.Strang,eds.IOM Communications,London,U.K,2000:199-223.
    [17]Hiromoto Kitahara,Rintaro Ueji,Masato Ueda,et al.Crystallographic analysis of plate martensite in Fe-28.5 at.%Ni by FE-SEM/EBSD[J].Materials Characterization,2005,54:378-386.
    [18]Fujimitsu Masuyama.History of Power Plants and Progress in Heat Resistant Steels[J].ISIJ International,2001,41(6):612-625.
    [19]W.Bendick,K.Haarmann,M.Zschau.E911-A New Steel for Power Plant Steam Pipework[J].VGB PowerTech,2000,5:87-91.
    [20]K.Zabelt.Properties and Application Limits for Thin-Walled and Thick-Walled Components of Heat Resistant Steels NF616 and P92[J].VGB PowerTech,2000,5:92-96.
    [21]Kouichi Maruyama,Kota Sawada,Jun-ichi Koike.Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel[J].ISIJ International,2001,41(6):641-653.
    [22]P.J.ENNIS.Recent advances in creep resistant steels for power plant applications[J].Sadhana,2003,28(4):709-730.
    [23]K.Sawada,K.Kubo,F.Abe.Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel[J].Materials Science and Engineering,2001,157(7):784-787.
    [24]A.Hernas,M.Imosa,B.Formanek,et al.High-temperature chlorine sulfur corrosion of heat-resisting steels[J].Journal of Materials Processing Technology,2004,157-158:348-353.
    [25]R.Viswanathan/EPRI,W.T.Bakker/EPRI.Materials for boilers in ultra supercritical power plants[C].Proceedings of 2000 International Joint Power Generation Conference Miami Beach,Florida,July 23-26,2000 IJPGC2000-15049.
    [26]刘正东,程世长,包汉生,等.钒对T122铁素体耐热钢显微组织和性能的影响[J].特殊钢,2006,27(1):7-10.
    [27]K-H.Mayerb,A.Scholza,Y.Wanga.Investigations of ferritic/martensitic super heat resis- tant 11-12%Cr steels for 650℃ power plants[J].Mat.wiss.U.Werkstofftech.2006,37(10).
    [28]F.Abe,M.Taneike,K.Sawada.Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides[J].International Journal of Pressure Vessels and Piping,2007,84(12):3-12.
    [29]M.Taneike,N.Fujitsuna,F.Abe.Improvement of creep strength by fine distribution of TiC in 9Cr ferritic heat resistantsteel[J].Mater.Sci.& Technol.,2004,20(11):1455-1461.
    [30]R.L.Klueh,N.Hashimoto,P.J.Maziasz.Development of new nano-particle-Strengthened martensitic steels[J].Scripta Materialia,2005,53(3):275-280.
    [31]Yin Fengshi,Jung Woosang,Chung Soonhyo.Investigation on the Microstrue of an 11%Cr Martensitic Steel with Titanium[J].Journal Solid State Phenomena,2007,124-126:141-144.
    [32]太田定雄.铁素体系耐热钢[M].张善元,张绍林译.北京:冶金工业出版社,2003.153.
    [33]Martienssen W,Yagi K,Mercking G,et al.Advanced Materials and Technologies Volume[M].Springer- Verlag Berlin Heidelberg,Germany,2004.898.
    [34]Fujimitu Masuyama.History of Power Plants and Progress in Heat Resistant Steel[J].ISIJ International,2001,41(6):612.
    [35]铃木伸一,一宫克行,秋田俊和.造船用高张力钢板溶接热影响区部韧性[J].JFE技报,2004(5):19-24.
    [36]G.Buzzichelli,E.Anelli.Present Status and Perspectives of European Research in the Field of Advanced Structural Steels[J].ISIJ International,2002,42(12):1354-1363.
    [37]Aurelie Lucas,Pierre Simon,Guilaume Bourdon,et al.Metallurgical Aspects of Ultra Fast Cooling in Front of the Down-Coiler[J].Steel Research lnt,2004,75(2):139-146.
    [38]J.C.Herman.Impact of New Rolling and Cooling Technologies on Thermo-mechanically Processed Steels[J].Ironmaking and Steelmaking,2001,28(2):159-163.
    [39]Walfgang Bleck,Andreas Frehn,Joachim Ohlert.铌在双相钢和TRIP钢中的应用[M].铌科学和技术,北京:冶金工业出版社,2003.456-472.
    [40]P.Simon,J.P.Fischbach,Ph.Riche.Ultra-Fast Cooling on the Runout Table of the Hot Strip Mill[J].La Revuede Metailurgie-CIT,1996,(3):409-415.
    [41]Kohei Ueda,Hiroshi Kanai,Hiroyasu Furukawa,et al.Development of Chromate-free Pre- painted Steel Sheet Having High Corrosion Resistance[J].Nippon Steel Technical Report,2003,(87):27-29.
    [42]Yujiro Miyauchi,Hiroshi Kanai,Taketoshi,et al.Lubricative Coated Steel Sheets with Oil-free Formability[J].Nippon Steel Technical Report,2000,(81):34-37.
    [43]Zhongzhu Liu,Yoshinao Kobayashi,Kotobu Nagai.Effect of Nano Scale Coper Sulfide Particles on the Yield Strength and Work Hardening Ability in Strip Casting Low Carbon Steel[J].Materials Transactions,2004,45(2):479-487.
    [44]傅杰,康永林,柳得橹,等.CSP工艺生产低碳钢中的纳米碳化物及其对钢的强化作用[J].北京科技大学学报,2003,25(4):328.
    [45]傅杰,康永林,柳得橹,等.电炉CSP工艺生产HSLC钢的研究与开发[J].北京科技大学学报,2003,25(5):449.
    [46]M.Svoboda,J.Bursik,I.Podstranska,et al.Materials for Advanced power Engineering [C].In:J.Lecomte Beckers,M.Carton,eds.Forschungszentrum Julich Gmb,Julich,2002.1521-1530.
    [47]V.Vodarek,A.Strang.Materials for Advanced Power Engineering[C].In:J.Lecomte Beck- ers,M.Carton,F.Schubert,eds.Forschungszentrum Julich Gmb,Julich,2002.1223-1232.
    [48]J.Bursik,N.Merk.Mechanical Behaviour of Materials at High Temperature[C].In:C.M.Branco,R.Ritchie,V.Sklenicka,eds.Kluwer Academic Publisher,Dordrecht,1996.299-307.
    [49]G.Zies,K.Maile,K.H.Mayer,et al.Modern 9%-12%Cr Steels for Power Plant Applictaions[C].In:E.Roos,eds.Staatliche Materialpr ufungsanstalt(MPA) Universit at Stuttgart,Stuttgart,2002.1-22.
    [50]F.Masuyama.History of Power Plants and Progress in Heat Resistant Steels[J].ISIJ International,2001,41(6):612-625.
    [51]周荣灿,范长信.超超临界火电机组材料研究及选材分析[J].中国电力,2005,38(8):41-47.
    [52]Taneike K,Fujitsuna N,Abe F.Improvement of creepstrength by fine distribution of TiC in 9Cr ferritic heat resistant steel[J].Mater.Sci.& Technol.,2004,20(11):1455-1461.
    [53]Komai N,Masuyama F.Microstructural degradation of the HAZ in 11Cr-0.4Mo-2W-V-Nb-Cu steel(P122) during creep[J].ISIJ Int,2002,42:1364-1370.
    [54]Hasegawa Y,Muraki T,Ohgami M.Creep deformation process determining microstructure of type Ⅳ creep damage of the advanced ferritic heat resistant steel with high Cr content[J].Tetsu-to-Hagane,2006,92:618-626.
    [55]Sawada K,Kushima H,Kimura K.Z-phase formation during creep and aging in 9-12%Cr heat resistant steels[J].ISIJ Int,2006,46:769-775.
    [56]Danielsen HK,Hald J.Behaviour of Z phase in 9-12%Cr steels[J].Energy Mater,2006,1:49-57.
    [57]Feng-shi Yin,Woo-sang Jung,Soon-hyo Chung.Microstructure and creep rupture characteristics of an ultra-low carbon ferritic/martensitic heat-resistant steel[J].Scripta Materialia,2007,57:469-472.
    [58]M.Taneike,F.Abe,K.Sawada.Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions[J].Nature,2003,424:294.
    [59]K Sawada,M Taneike,K Kimura,et al.Effect of Nitrogen Content on Microstructural Aspects and Creep Behavior in Extremely Low Carbon 9Cr Heat-resistant Steel[J].ISIJ International,2004,44(7):1243-1249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700