电化学生物流化床法处理模拟焦化废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水成分复杂,处理难度大,因其中含有氨氮和难降解有机物,对环境可造成严重的危害。氨氮浓度过高可直接导致鱼类等水生生物的死亡,氨氮氧化后产生的硝酸盐和亚硝酸盐也具有致癌作用。焦化废水中的难降解有机物主要有酚类化合物、多环芳香族化合物及含氮、氧、硫的杂环有机化合物等,其中烷基酚、邻苯二酸(酯)、吡啶等污染物属于环境内分泌干扰物,而多环芳烃等物质也被美国EPA认定为优先控制污染物。这类废水中氨氮和有毒、难降解有机物的产生和累积,导致针对此类废水的常规处理方法处理后难降解有机物仍有痕量存在,且处理所需的总水力停留时间长。
     电化学生物法处理有机废水和氨氮废水有很高的电流效率和很好的水处理效果,但技术尚且不成熟,有许多问题有待解决,如电极上生物挂膜问题,电子传递问题等。因此,开展电化学生物法处理焦化废水的实际研究具有重要意义和价值。
     本研究针对含有高浓度氨氮和难降解有机物的模拟焦化废水,首先构建AO生物流化床反应器并保持稳定运行,再采用优势菌富集培养和电化学诱导的强化方法,提高了废水中氮和有机污染物的去除效率。通过反应器中活性污泥的流态化和电解质的添加,该电化学生物流化床系统不需要进行生物挂膜,即可使电子在电极、微生物和污染物直接传递。
     通过对实际焦化废水处理站工程运行数据的检测分析发现,在生物处理的总水力停留时间为76h的情况下,焦化废水经生物三相流化床A/O1/H/O2组合工艺处理后,生物处理出水平均COD、酚和氨氮分别为145.5mg/l、0.10mg/l和0.53mg/l。GC-MS分析表明,焦化废水中的酚类、吡啶、喹啉等易降解有机物得到了高效去除,长链烷烃、多环芳烃、苯系物等难降解、有毒物质在处理后的出水中仍然存在。
     针对焦化废水处理所需时间长的问题,本研究首先构建了生物流化床处理系统,其试验中的稳定运行最佳条件为:无机碳氮比CO32--C/N=2:1,有机碳氮比CH2-C/N=1.5:1。氨氮进水浓度300mg/l以下时,其去除率维持在95%以上;而厌氧反应阶段硝酸盐氮的去除效率在进水氨氮浓度低于200mg/l时也可达到95%以上。在低温条件下,AO生物流化床处理系统对硝酸盐氮和有机物的去除不彻底,22℃时硝酸盐氮的去除速率仅为2.87mg/l/h,约80%的硝酸盐氮不能被去除。
     焦化废水处理后出水中含有多环芳烃等难降解有机物,因此驯化和培养高效降解此类有机物的功能菌株来强化焦化废水降解可以减少出水中有毒物质的含量,降低环境风险。以多环芳烃芘为代表,通过富集培养和高浓度驯化的方法,从焦化废水处理站的活性污泥中筛选分离出以芘为唯一碳源生长的特异降解微生物菌,分别命名为Pyr2、Pyr41和Pyr42,通过16S rDNA基因片段序列鉴定,Pyr2,Pyr41和Pyr42分别可能属于Castellaniella菌属,Pseudomonas菌属和Burkholderia菌属。Pyr2的最佳生长环境是pH6.5,温度32℃和摇床转速为70rpm,在最佳条件下12d内可将100.39mg/l芘降解97.2%。Pyr2的芘降解过程与硝化和反硝化作用同步进行,其生物代谢过程中的C/N约为1.776。Pyr4(包括两个菌株Pyr41和Pyr42)的最佳生长环境是pH7.0,温度35℃和摇床转速为100rpm,在最佳条件下48h内可将50.00mg/l芘降解65.02%,其生物降解过程符合一级动力学反应。根据动力学计算,Pyr4对芘的代谢速度可达到文献中所述速度的10倍左右。添加葡萄糖或蒽醌,对Pyr4芘生物降解的促进作用最明显,可使比降解速率从0.0337h-1增加到0.0689h-1或0.0721h-1。通过GC-MS的分析结果,Pyr2的生物降解过程中没有检测到中间产物,而在Pyr4生物降解过程中检测到1-萘酚的存在。
     将筛选并扩大培养的芘降解菌添加到运行中的生物流化床反应器中,并通过电化学方法强化生物降解来处理模拟焦化废水。研究发现,电流与生物反应具有协同作用,但10mA以上的电流对生物电化学反应速率的促进作用不明显。电流为10mA生物电化学作用下,当反应器进水氨氮负荷为200mg/l,COD负荷为650mg/l,运行温度为22℃,回流比为1:1.5,反应器总HRT为15h时,硝酸盐氮的去除速率可达到10.92mg/l/h,其去除速率为单纯生物反应器的3倍左右。废水中添加Cu2+作为电解质可促进生物电化学反硝化过程。单纯生物反应器处理过程中苯酚、喹啉和芘的去除率仅为63.1%、50.4%和56.2%,而生物电化学系统处理的有机污染物的去除速率都明显增大,苯酚、喹啉和芘的去除率都达到95%以上。通过PCR-DGGE分析,电化学诱导后在厌氧反应器中,有2个菌株含量明显增加,经进化树分析分别为Pseudomonas sp.和Rhodobacter sp.;在好氧反应器中,微生物群落的多态性却呈现减少的趋势,有3个菌株逐渐消失,经进化树分析,这些菌株分别为Bacillus sp.,Rhodococcus sp.和Sphingomonas sp.。
     由此得到结论:从活性污泥中筛选得到的Castellaniella Pyr2菌,对芘的降解过程与硝化反硝化作用相偶联。焦化废水中一般都同时含有氨氮和难降解有机物,如何同时降解氮和有机物是目前的难题,而Castellaniella Pyr2具备同时降解的能力,可为工业废水处理的科学研究乃至工程应用提供菌种来源。
     电化学生物流化床处理方法是首次将流化床结构应用于生物电化学法处理废水的工艺中,有效解决了生物电化学过程中的电子传递问题,避免了电极生物膜法工艺微生物挂膜困难且电极表面积小等限制因素。电化学生物流化床处理方法应用于模拟焦化废水处理过程中,可使得达标处理所需的水力停留时间缩短3倍以上,并可有效去除焦化废水中含有的难降解有机物,避免环境危害。
Coking wastewater is with complex component and hard to be treated. Ammonia andrefractory organic compounds which included in coking wastewater may cause greatenvironment pollution. High concentration of free ammonia can directly affect fish and otheraquatic organisms even to die. In addition, nitrite and nitrate produced by ammonia oxidationhave carcinogenic effects. Refractory organic pollutants in coking wastewater containphenolic compounds, polycyclic aromatic hydrocarbons and nitrogen-, oxygen-, sulfur-heterocyclic organic compound. Within these pollutants, alkyl phenol, phthalic acid (ester),pyridine etc. are considered to be environmental endocrine disruptors, and polycyclicaromatic hydrocarbons are also identified as priority pollutants by the United States EPA.Generation and accumulation of these kinds of refractory organic pollutants in wastewater,may cause the conventional processing methods is difficult to reduce the risk.
     Bio-electrochemical method which applied to wastewater treatment has high electriccurrent efficiency and desired treatment effect. However, the technique, at present, isimmature and there are some key problems to be solved, for example, the difficult biofilmgrowing, and the low efficiency electron transference. So, bio-electrochemical method appliedto coking wastewater treatment is worth studying.
     This study aimed at treating of simulated coking wastewater containing highconcentration of ammonia and refractory organic compounds. Based on the AO biologicalfluidized bed reactor, strengthening methods, as organic degraders enrichment andelectrochemically inducing, are applied to improve nitrogen and organic pollutants removalefficiency in wastewater. By fluidized sludge and the electrolyte adding, thebio-electrochemical fluidized bed system can easily transfer electrons through electrode,microbial and the pollutants without bioflim growing.
     Based on the operation data of coking waste water treatment plant, the compersition ineffluent from biological fluidized bed A/O1/H/O2integrated process were COD145.5mg/l,phenolic compounds0.10mg/L, and ammonia0.53mg/l. By results of GC-MS, degradableorganic matter such as phenol, pyridine, quinoline, could be efficiently removed, whereasrefractory or toxic organic pollutants such as long-chain alkane, polycyclic aromatichydrocarbons, and benzene still remained in the effluent after treatment.
     Biological fluidized bed treatment system was constructed, and the optimal conditionswere: CO32--C/N=2:1, CH2-C/N=1.5:1. The removal rate of ammonia was up than95%wheninfluent ammonia concentration was under300mg/l; and the nitrate removal efficiency can also reach up to95%when influent ammonia concentration was less than200mg/l. Nitrateand organics can not thoroughly removed under low temperature. The nitrate removal rate isonly2.87mg/l/h under22℃, and80%of the nitrate remained in the effluent.
     As to treating the refractory organic pollutants in wastewater, polycyclic aromatichydrocarbons was studied as typical pollutants. By enrichment and domestication method,microbial grown with pyrene as sole carbon source were isolated from sludge of cokingwastewater treatment station and named Pyr2, Pyr41and Pyr42. By16S rDNA identification,Pyr2, Pyr41and Pyr42may belong to Castellaniella spp, Pseudomonas spp. andBurkholderia spp., respectively. Results showed that, optimal growth environment of Pyr2ispH6.5, temperature32℃and shaking speed is70rpm, and100.39mg/l pyrene can bedegraded by97.2%within12d under optimal conditions. Pyr2pyrene degradation processwas simultaneously accompanied with nitrification and denitrification, thus their biologicalmetabolism process of C/N is about1.776. Optimal growth environment of Pyr4(composedof two strains Pyr41and Pyr42) is pH7, temperature35℃and shaking speed is100rpm, and50mg/l pyrene can be degraded by65.02%within48h under optimal conditions. Pyr2pyrene biodegradation process is consistent with a first-order kinetic reaction. According tothe dynamics calculation, speed of Pyr4pyrene metabolism is about10times fastor than thereferrance.
     Pyr4pyrene biodegradation can be stimulated when glucose or anthraquinone added, andthe specific degradation rate increases from0.0337h-1to0.0689h-1or0.0721h-1. By theanalytical results of GC-MS, intermediate involved in Pyr2biodegradation process was notdetected, while1-naphthol was detected as one of the inermediates in the Pyr4biodegradation process.
     In the bio-electrochemical fluidized bed treatment process, there is a synergistic effectbetween electric and biological, but biological electrochemical reaction can not be obviousaccelerated when current supplied more than10mA. In the condition of the influent ammonia200mg/l, COD650mg/l, temperature22℃, reflux ratio1:1.5, HRT15h,10mA biologicalelectrochemical system could make nitrate removal rate reach up to10.92mg/l/h, which was3times higher than traditional bio-system. Adding of Cu2+could accelerate thisbio-electrochemical process. by contrast of phenol, quinoline and pyrene removal bytraditional bio-system was only63.1%,50.4%and56.2%, these removal bybio-electrochemical system could reach up to95%. By the PCR-DGGE analysis, in theanaerobic reactor after electrochemical inducing,2strains, Pseudomonas sp. and Rhodobacter sp. were obviously increased; in the aerobic reactor, microbial polymorphism had adecreasing trend, and there were3strains gradually disappeared, which were Bacillus sp.,Rhodococcus sp. and Sphingomonas sp..
     Nitrogen and refractory organic compounds are commonly exist in coking wastewater, sosimultaneous degradation of organic matter and nitrogen is the main problem of cokingwastewater treatment. Pyrene degradation process of Castellaniella Pyr2obtained from theactivated sludge was coupled with nitrification and denitrification. Thus, the specific strain ofCastellaniella Pyr2is worth scientific research and can be applied in industrial wastewatertreatment.
     The bio-electrochemical fluidized bed treating approach is the first time for fluidized bedreactor applied in bio-electrochemical reaction. Electron transfer and the limits of electrodemicrobial biofilm were effectively solved by the application of this approach. By using thebio-electrochemical fluidized bed approach to treat coking wastewater, the biologicalhydraulic remain time can be shortened for3times, and environment risk can also be deducedfor the efficient removal of refractory organic pollutants.
引文
[1] Li, N.; Liu, H.; Huang, J. Treatment effect on coking wastewater using three-phase biological fluid-bed withnew ultrastructure biological carriers [J]. Energy Procedia2011,11(10):2389-2395.
    [2] Liao, X.; Yan, X.; Wang, Y.; Li, P.; Ma, D. Environmental risk presented by arsenic contamination of buildingand facility surfaces in a coking plant [J]. Bulletin Of Environmental Contamination And Toxicology2012:1-7.
    [3] Li, Y.; Gu, G.; Zhao, J.; Yu, H. Anoxic degradation of nitrogenous heterocyclic compounds by acclimatedactivated sludge [J]. Process Biochemistry2001,37(1):81-86.
    [4]韦朝海;贺明和;任源;李国保;陈金贵焦化废水污染特征及其控制过程与策略分析[J].环境科学学报2007,27(7):1083-1093.
    [5]任源;韦朝海;吴超飞;李国保焦化废水水质组成及其环境学与生物学特性分析[J].环境科学学报2007,27(7):1094-1100.
    [6] Adam, J. Health aspects of nitrate in drinking-water and possible means of denitrification (literature review)[J]. Water Sa1980,6(2):79.
    [7] Hagin, J.; Olsen, S.; Shaviv, A. Review of interaction of ammonium‐nitrate and potassium nutrition ofcrops [J]. Journal Of Plant Nutrition1990,13(10):1211-1226.
    [8] L'hirondel, J.; L'hirondel, J.L., Nitrate and man: toxic, harmless or beneficial.[M] CABI:2002.
    [9] Camargo, J.A.; Alonso, A.; Salamanca, A. Nitrate toxicity to aquatic animals: a review with new data forfreshwater invertebrates [J]. Chemosphere2005,58(9):1255-1267.
    [10] Stuart, M.; Gooddy, D.; Bloomfield, J.; Williams, A. A review of the impact of climate change on futurenitrate concentrations in groundwater of the UK [J]. Science Of The Total Environment2011,409(15):2859-2873.
    [11] Jawad, I.M. Estimation of Nitrite, Nitrate and N-nitrosamines in selected food samples [j]. pakistan journalof nutrition2012,11(5):481-483.
    [12] Ogur, R.; Tekbas, O.F. A commonly used pesticide endosulfan in diet could cause hepatomegaly and kidneytumor when combined with nitrosamines [J]. Survival and Sustainability2011:599-605.
    [13] Zhao, L.J.; Zhong, R.G.; Zhen, Y. In a theoretical study on the critical difference between the mechanism ofDNAalkylation by nitrosamines and nitrosoureas,2008; IEEE:2008; pp873-877.
    [14] Lah, B.; Vidic, T.; Glasencnik, E.; Cepeljnik, T.; Gorjanc, G., et al. Genotoxicity evaluation of water soilleachates by Ames test, comet assay, and preliminary Tradescantia micronucleus assay [J]. EnvironmentalMonitoring AndAssessment2008,139(1):107-118.
    [15] Cyplik, P.; Marecik, R.; Piotrowska-Cyplik, A.; Olejnik, A.; Dro d yńska, A., et al. BiologicalDenitrification of High Nitrate Processing Wastewaters from Explosives Production Plant [J]. Water, Air,&Soil Pollution2012:1-10.
    [16]国家环保部,统计局和农业部全国第一次污染源普查公报[EB/OL]. http://news.xinhuanet.com/politics/2010-02/09/content_12960555.htm:(2010-02-09).
    [17]于振东;郑文华“十一五”与“十二五”焦化行业的回顾与展望[J].燃料与化工2012,43(1):1-6.
    [18]田贺忠;程轲;许嘉钰;郝吉明焦化行业脱硫工艺多级模糊综合评价[J].煤炭学报2010,35(9):1542-1547.
    [19] Lai, P.; Zhao, H.; Ye, Z.; Ni, J. Assessing the effectiveness of treating coking effluents using anaerobic andaerobic biofilms [J]. Process Biochemistry2008,43(3):229-237.
    [20] Lai, P.; Zhao, H.; Zeng, M.; Ni, J. Study on treatment of coking wastewater by biofilm reactors combinedwith zero-valent iron process [J]. Journal Of Hazardous Materials2009,162(2):1423-1429.
    [21] Bijing, C.; Li, X.; Dianhai, Y.; Qi, Z.; Guowei, G. A review on carbon source supplement and optimizationin denitrification process [J]. Water Purification Technology2007,6(011.
    [22]黄力群焦化废水处理技术研究开发最新进展[J].水处理技术2009,34(12):1-6.
    [23] Chen, H.; Yang, G.; Feng, Y.; Shi, C.; Xu, S., et al. Biodegradability enhancement of coking wastewater bycatalytic wet air oxidation using aminated activated carbon as catalyst [J]. Chemical Engineering Journal2012.
    [24] Zhao, Q.; Quan, X.; Tan, H.; Sang, X.; Ye, C. Photocatalytic degradation of organic pollutants in cokingplant wastewater [J][J]. Chemical Industry and Engineering Progress2009,5(044.
    [25] Li, F.Q.; Niu, H.L.; Pei, H.; An, X.C.; Fu, X.L., et al. An experimental study on coking wastewaterpretreatment by ozone oxidation [J]. Industrial Water&Wastewater2011,42(4):16-18.
    [26] Ye, S.; Sun, X.; Hu, L.; Zhao, J.; Huang, S., et al. Advanced treatment for total cyanide in cokingwastewater with chemical oxidation process [J]. Water Purification Technology2011,30(1):45-48.
    [27] Zheng, Y.; Zhang, Z.; Hu, H.T.; Wei, X.L. Study on in-depth processing of coking wastewater bycoagulation with aluminum sulfate [J].Advanced Materials Research2011,159(493-498.
    [28] Yuan, X.; Sun, H.; Guo, D. The removal of COD from coking wastewater using extractionreplacement–biodegradation coupling [J]. Desalination2012.
    [29] Bai, Y.; Sun, Q.; Sun, R.; Wen, D.; Tang, X. Bioaugmentation and adsorption treatment of cokingwastewater containing pyridine and quinoline using zeolite-biological aerated filters [J]. EnvironmentalScience&Technology2011,45(5):1940-1948.
    [30] Meng, G.; Liu, B.; Tao, D.; Li, P.; Zheng, J. In adsorptive removal of chemical oxygen demand and color onsewage sludge based activated carbon from biologically pretreated coking wastewater,2012, IEEE:2012:1-5.
    [31] Bai, X. Adsorption of organic pollutants from coking wastewater by activated coke [J]. Colloids andSurfaces A: Physicochemical and EngineeringAspects2010,362(1):140-146.
    [32]帅伟;吴艳林;胡芸;吴超飞;韦朝海焦化废水生物处理尾水的活性炭吸附及条件优化研究[J].环境工程学报2010,4(6):1201-1207.
    [33] Shi, J.; Zhang, L. In study on further treatment of coal coking wastewater by ultrasound wave, fenton'sreagent and coagulation,2009, IEEE Computer Society:2009:771-774.
    [34] Deci, W. Researches and development on control of organic pollutants with ultrasound technology [J].Ground Water2011,5(6):30-35.
    [35] Bao, M.; Wang, N.; Chen, Q.; Guo, S.; Li, X. Oxidation mechanism and application progress of Fentonprocess in wastewater treatment [J]. Chemical Industry and Engineering Progress2008,27(5):660-667.
    [36] Pan, L.T.; Wu, J.F. Progress on treatment technique of coking wastewater [J]. Environmental Science&Technology2010,10(1):10-21.
    [37] Jiang, W.; Zhang, W.; Li, B.; Duan, J.; Lv, Y., et al. Combined fenton oxidation and biological activatedcarbon process for recycling of coking plant effluent [J]. Journal of Hazardous Materials2011,189(1):308-314.
    [38] Chu, L.; Wang, J.; Dong, J.; Liu, H.; Sun, X. Treatment of coking wastewater by an advanced Fentonoxidation process using iron powder and hydrogen peroxide [J]. Chemosphere2012,86(4):409-414.
    [39] Mandal, T.; Maity, S.; Dasgupta, D.; Datta, S. Advanced oxidation process and biotreatment: Their roles incombined industrial wastewater treatment [J]. Desalination2010,250(1):87-94.
    [40] Yu, W.; Li, H.G.; Yu, P.; Wang, L.M.; Luo, Y.B. Characterization of Foam in Refinery Wastewater ActivatedSludge Process [J]. Environmental Science&Technology2011,3(1):10-15.
    [41] Zhu, F.; Wan, P.; Jia, W. In enhanced chemical coagulation for coking wastewater from effluent A/Obio-reactor,2011, IEEE:2011:1-4.
    [42] Xing-xun, X.; Zhen-xiao, L.; Li, H. Experimental study on treatment effects on municipal sewage by theA/O and diatomite nitrogen removal process [J]. Environment and Ecology in the Three Gorges2011,2(1):10-13.
    [43] Jingling, C.; Lianfeng, S.; Daojin, X.; Qian, W. The study on the application of improved A/A/O process insewage treatment [J]. Henan Science2009,10(1):10-43.
    [44] Wen, Z.; Feng, D.; Xin, X.A comparison factors of simultaneous nitrification-denitrification in aerobicgranular sludge reactor and suspended packing bioreactor [J]. Technology of Water Treatment2010,6(1):10-18.
    [45] Cai, J.; Wu, H.; Xiao, J.; He, S. Application of high solution bacteria in coking waste water treatment [J].Wisco Technology2009,3(1):10-23.
    [46] Song, H.Q.; Li, S.Q.; Min, X.L. Study on the treatment of cold rolling wastewater by using bio-fluidizedbed [J].Advanced Materials Research2012,356(1):78-82.
    [47] Fu, Z.; Zhang, Y.; Dang, Z.; Wang, X. Present status of biological fluidized-bed technology in textilewastewater treatment [J]. Environmental Science&Technology2005,19(1):23-25.
    [48] Zhiling, L.; Yu, D. Study on the application of bio-fluidized bed for wastewater treatment [J]. IndustrialWater Treatment2008,1(1):1-7.
    [49]何星海;武江津;常丽春;孙长虹;刘桂中官厅水库入库水生物接触A/O工艺试验[J].环境科学2003,6:125-129.
    [50]霍保全;景长勇;刘旭东悬浮载体流化床处理生活污水的研究[J].中国给水排水2009,25(21):210-214.
    [51] Cooper, P.; Wheeldon, D. Fluidized-and expanded-bed reactors for waste-water treatment [J]. WaterPollution Control1980,79(2):92-107.
    [52] Kim, J.; Kim, K.; Ye, H.; Lee, E.; Shin, C., et al. Anaerobic fluidized bed membrane bioreactor forwastewater treatment [J]. Environmental Science&Technology2010,45(2):576-581.
    [53] Sandu, S.I.; Boardman, G.D.; Watten, B.J.; Brazil, B.L. Factors influencing the nitrification efficiency offluidized bed filter with a plastic bead medium [J].Aquacultural Engineering2002,26(1):41-59.
    [54] Rittmann, B.E.; Manem, J.A. Development and experimental evaluation of a steady‐state, multispeciesbiofilm model [J]. BiotechnologyAnd Bioengineering1992,39(9):914-922.
    [55] Wiesmann, U.; Choi, I.S.; Dombrowski, E.M., Biological wastewater treatment.[M] Wiley Online Library:2006.
    [56] QingHua, S.; YaoHui, B.; Cui, Z.; Yana, X.; DongHui, W., et al. Aerobic biodegradation characteristics andmetabolic products of quinoline by a Pseudomonas strain [J]. Bioresource Technology2009,100(21):5030-5036.
    [57] Lee, E.Y.; Hong, S.H.; Oh, M.H.; Lim, J.S. In Characterization biodegradation of Benzene, Toluene,Ethylbenzene, and Xylenes by the Newly Isolated Bacterium Pseudomonas putida AY-10in Rhizosphere ofWastewater Treatment Reed [A] Proceedings of20113rd International Conference on Chemical,Biologicaland Environmental Engineering(ICBEE2011)[C]2011.
    [58] Zhang, J.; Jiang, R.B.; Zhang, X.X.; Hang, B.J.; He, J., et al. Flavobacterium haoranii sp. nov., acypermethrin-degrading bacterium isolated from a wastewater treatment system [J]. International Journal OfSystematicAnd Evolutionary Microbiology2010,60(12):2882-2886.
    [59] Yoon, H.S.; Aslam, Z.; Song, G.C.; Kim, S.W.; Jeon, C.O., et al. Flavobacterium sasangense sp. nov.,isolated from a wastewater stream polluted with heavy metals [J]. International Journal Of Systematic AndEvolutionary Microbiology2009,59(5):1162-1166.
    [60] Siripong, S.; Rittmann, B.E. Diversity study of nitrifying bacteria in full-scale municipal wastewatertreatment plants [J]. Water Research2007,41(5):1110-1120.
    [61]余敦耀;邱雁临;朱影高效硝化细菌的分离与鉴定[J].化学与生物工程2008,25(4):60-63.
    [62] Kampschreur, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.; Loosdrecht, M. Nitrous oxide emissionduring wastewater treatment [J]. Water Research2009,43(17):4093-4103.
    [63]张丽青;周波;张庆乐;吴守林絮凝剂产生菌的筛选及在偶氮染料废水处理中的应用[J].环境与健康杂志2009,26(3):192-195.
    [64]张斌;孙宝盛;刘慧娜;刘宪华;季民处理不同废水MBR系统中微生物群落结构的比较[J].环境科学2008,29(10):2944-2949.
    [65] Valero, C.; Read, L.; Mara, D.; Newton, R.; Curtis, T., et al. Nitrification-denitrification in wastestabilisation ponds: a mechanism for permanent nitrogen removal in maturation ponds [J]. Water ScienceAnd Technology2010,61(5):1137-1146.
    [66] Jahangir, M.; Khalil, M.; Johnston, P.; Cardenas, L.; Hatch, D., et al. Denitrification potential in subsoils: Amechanism to reduce nitrate leaching to groundwater [J]. Agriculture, Ecosystems&Environment2012,147(1):13-23.
    [67]王少坡;彭永臻;于德爽;张艳萍;胡建阁常温短程内源反硝化生物脱氮[J].北京工业大学学报2005,31(3):298-302.
    [68] Bernat, K.; Wojnowska-Bary a, I.; Dobrzyńska, A. Denitrification with endogenous carbon source at lowC/N and its effect on P (3HB) accumulation [J]. Bioresource Technology2008,99(7):2410-2418.
    [69] Fux, C.; Boehler, M.; Huber, P.; Brunner, I.; Siegrist, H. Biological treatment of ammonium-rich wastewaterby partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant [J]. JournalOf Biotechnology2002,99(3):295-306.
    [70] Robertson, L.A.; van Niel, E.W.J.; Torremans, R.A.M.; Kuenen, J.G. Simultaneous nitrification anddenitrification in aerobic chemostat cultures of Thiosphaera pantotropha [J]. Applied And EnvironmentalMicrobiology1988,54(11):2812-2818.
    [71] Gao, D.; Peng, Y.; Li, B.; Liang, H. Shortcut nitrification–denitrification by real-time control strategies [J].Bioresource Technology2009,100(7):2298-2300.
    [72] Jetten, M.S.M.; Niftrik, L.; Strous, M.; Kartal, B.; Keltjens, J.T., et al. Biochemistry and molecular biologyof anammox bacteria [J]. Critical Reviews In BiochemistryAnd Molecular Biology2009,44(2-3):65-84.
    [73] Van Hulle, S.W.H.; Volcke, E.I.P.; Teruel, J.L.; Donckels, B.; van Loosdrecht, M., et al. Influence oftemperature and pH on the kinetics of the SHARON nitritation process [J]. Journal Of Chemical TechnologyAnd Biotechnology2007,82(5):471-480.
    [74] Wei, J.S.G.Y.Z.; Jinbao, B.S.W. Mechanism of simultaneous nitrification and denitrification in a membranebioreactor and influencing factors [J]. Chinese Journal of Environmental Engineering2010,7(1):10-22.
    [75] Tesoriero, A.J.; Liebscher, H.; Cox, S.E. Mechanism and rate of denitrification in an agricultural watershed:Electron and mass balance along groundwater flow paths [J]. Water Resources Research2000,36(6):1545-1559.
    [76] Robertson, L.A.; Kuenen, J.G. Combined heterotrophic nitrification and aerobic denitrification inThiosphaera pantotropha and other bacteria [J].Antonie van Leeuwenhoek1990,57(3):139-152.
    [77] Bell, L.C.; Richardson, D.J.; Ferguson, S.J. Periplasmic and membrane-bound respiratory nitrate reductasesin Thiosphaera pantotropha: The periplasmic enzyme catalyzes the first step in aerobic denitrification [J].Febs Letters1990,265(1):85-87.
    [78] Geets, J.; Boon, N.; Verstraete, W. Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrientand oxygen fluctuations [J]. Fems Microbiology Ecology2006,58(1):1-13.
    [79] Müller, C.; Sherlock, R.; Williams, P. Field method to determine N2O emission from nitrification anddenitrification [J]. BiologyAnd Fertility Of Soils1998,28(1):51-55.
    [80] Anthonisen, A.; Loehr, R.; Prakasam, T.; Srinath, E. Inhibition of nitrification by ammonia and nitrous acid[J]. Journal (Water Pollution Control Federation)1976:835-852.
    [81] Jiménez, E.; Giménez, J.; Ruano, M.; Ferrer, J.; Serralta, J. Effect of pH and nitrite concentration on nitriteoxidation rate [J]. Bioresource Technology2011,102(19):8741-8747.
    [82] Yuan, X.; Gao, D. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granularsludge reactor [J]. Journal Of Hazardous Materials2010,178(1):1041-1045.
    [83] Kim, D.J.; Lee, D.I.; Keller, J. Effect of temperature and free ammonia on nitrification and nitriteaccumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH [J]. BioresourceTechnology2006,97(3):459-468.
    [84] Christensen, M.H.; Harremoes, P. Nitrification and denitrification in wastewater treatment [J]. Waterpollution microbiology1978,2(8):391-414.
    [85] Di, H.; Cameron, K. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leachingand nitrous oxide emissions in a simulated grazed and irrigated grassland [J]. Soil Use And Management2002,18(4):395-403.
    [86] Subbarao, G.; Sahrawat, K.; Nakahara, K.; Ishikawa, T.; Kishii, M., et al. Biological nitrificationinhibition—a novel strategy to regulate nitrification in agricultural systems [J]. Advances In Agronomy2012,114(2):241-249.
    [87] Harayama, S. Polycyclic aromatic hydrocarbon bioremediation design [J]. Current Opinion InBiotechnology1997,8(3):268-273.
    [88]刘世亮;骆永明多环芳烃污染土壤的微生物与植物联合修复研究进展[J].土壤2002,34(5):257-265.
    [89] Bourquin, A.; Pritchard, P. Microbial degradation of pollutants in marine environments.[M] Georgia StateUniversity:1979.
    [90]沈德中污染环境的生物修复.[M]化学工业出版社:2002.
    [91] Kim, S.J.; Kweon, O.; Jones, R.C.; et al. Complete and integrated pyrene degradation pathway inMycobacterium vanbaalenii PYR-1based on systems biology [J]. Journal Of Bacteriology2007,189(2):464-472.
    [92]谭文捷;李宗良;丁爱中;王金生土壤和地下水中多环芳烃生物降解研究进展[J].生态环境2007,16(4):1310-1317.
    [93] Trapido, M. Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles [J].Environmental Pollution1999,105(1):67-74.
    [94] Juhasz, A.L.; Naidu, R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: areview of the microbial degradation of benzo [a] pyrene [J]. International Biodeterioration&Biodegradation2000,45(1):57-88.
    [95] Su, D.; Li, P.; FRANK, S.; Xiong, X. Biodegradation of benzo [a] pyrene in soil by Mucorsp. SF06andBacillus sp. SB02co-immobilized on vermiculite [J]. Journal of environmental sciences2006,18(6):1204-1209.
    [96] Jimenez, I.Y.; Bartha, R. Solvent-augmented mineralization of pyrene by a Mycobacterium sp [J]. AppliedAnd Environmental Microbiology1996,62(7):2311-2316.
    [97] Volkering, F.; Breure, A.M.; van Andel, J.G.; Rulkens, W.H. Influence of nonionic surfactants onbioavailability and biodegradation of polycyclic aromatic hydrocarbons [J]. Applied And EnvironmentalMicrobiology1995,61(5):1699-1705.
    [98] Shin, K.H.; Kim, K.W.; Seagren, E. Combined effects of pH and biosurfactant addition on solubilizationand biodegradation of phenanthrene [J].Applied MicrobiologyAnd Biotechnology2004,65(3):336-343.
    [99]刘世亮;骆永明;丁克强;李华;吴龙华, et al.苯并[a]芘污染土壤的丛枝菌根真菌强化植物修复作用研究[J].土壤学报2004,41(3):336-342.
    [100]冯玉杰,电化学技术在环境工程中的应用.[M]化学工业出版社:2002.
    [101] Tian, M.; Wang, J.; Kurtz, J.; Mallouk, T.E.; Chan, M. Electrochemical growth of single-crystal metalnanowires via a two-dimensional nucleation and growth mechanism [J]. Nano Letters2003,3(7):919-923.
    [102] Guojian, H.; Xiaobo, L.; Deguan, W. Treatment of dyeing wastewater by three-dimensional electrodeprocess [J]. Environmental Protection of Chemical Industry2004,2(1):1-11.
    [103] Mellor, R.B.; Ronnenberg, J.; Campbell, W.H.; Diekmann, S. Reduction of nitrate and nitrite in water byimmobilized enzymes [J]. Nature1992,355(2):717-719.
    [104] Sakakibara, Y.; Kuroda, M. Electric prompting and control of denitrification [J]. Biotechnology AndBioengineering2004,42(4):535-537.
    [105] Jia, Y.H.; Tran, H.T.; Kim, D.H.; Oh, S.J.; Park, D.H., et al. Simultaneous organics removal andbio-electrochemical denitrification in microbial fuel cells [J]. Bioprocess and biosystems engineering2008,31(4):315-321.
    [106] Ghafari, S.; Hasan, M.; Aroua, M.K. Bio-electrochemical removal of nitrate from water and wastewater—areview [J]. Bioresource Technology2008,99(10):3965-3974.
    [107] Zhang, L.; Jia, J.; Ying, D.; Zhu, N.; Zhu, Y. Electrochemical effect on denitrification in differentmicroenvironments around anodes and cathodes [J]. Research In Microbiology2005,156(1):88-92.
    [108]曲久辉;范彬;刘锁祥;雷鹏举;刘会娟电解产氢自养反硝化去除地下水中硝酸盐氮的研究[J].环境科学2001,22(6):49-52.
    [109]庞朝晖;刘迎云;彭彩红电极生物膜处理渗滤液中硝酸盐氮的实验研究[J].中国农村水利水电2007,1).
    [110] Szekeres, S.; Kiss, I.; Kalman, M.; Soares, M.I.M. Microbial population in a hydrogen-dependentdenitrification reactor [J]. Water Research2002,36(16):4088-4094.
    [111] Zhou, M.; Fu, W.; Gu, H.; Lei, L. Nitrate removal from groundwater by a novel three-dimensionalelectrode biofilm reactor [J]. Electrochimica Acta2007,52(19):6052-6059.
    [112] Xiong, Y.; Strunk, P.J.; Xia, H.; Zhu, X.; Karlsson, H.T. Treatment of dye wastewater containing acidorange II using a cell with three-phase three-dimensional electrode [J]. Water Research2001,35(17):4226-4230.
    [113]范彬;曲久辉;刘锁祥;雷鹏举;孟光辉复三维电极生物膜反应器脱除饮用水中的硝酸盐[J].环境科学学报2001,21(1):39-43.
    [114]王海燕;曲久辉;雷鹏举介质粒径对复三维电极-生物膜脱硝反应器的影响[J].环境科学学报2003,23(1):64-68.
    [115]胡俊生;苑晓叶;张喆;谢添复极电催化氧化对苯二酚废水实验研究[J].科技信息2009,12(1):8-9.
    [116] Zhang, L.; Jia, J.; Zhu, Y.; Zhu, N.; Wang, Y., et al. Electro-chemically improved bio-degradation ofmunicipal sewage [J]. Biochemical Engineering Journal2005,22(3):239-244.
    [117] Watanabe, T.; Motoyama, H.; Kuroda, M. Denitrification and neutralization treatment by direct feeding ofan acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process[J]. Water Research2001,35(17):4102-4110.
    [118] Zhu, G.L.; Hu, Y.Y.; Wang, Q.R. Nitrogen removal performance of anaerobic ammonia oxidationco-culture immobilized in different gel carriers [J]. Water ScienceAnd Technology2009,59(12):2379.
    [119] Bojes, H.K.; Pope, P.G. Characterization of EPA's16priority pollutant polycyclic aromatic hydrocarbons(PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites inTexas [J]. Regulatory ToxicologyAnd Pharmacology2007,47(3):288-295.
    [120] Chen, S.H.; Aitken, M.D. Salicylate stimulates the degradation of high molecular weight polycyclicaromatic hydrocarbons by Pseudomonas saccharophila P15[J]. Environmental Science&Technology1999,33(3):435-439.
    [121] Cheung, P.; Kinkle, B. Mycobacterium diversity and pyrene mineralization in petroleum-contaminatedsoils [J].AppliedAnd Environmental Microbiology2001,67(5):2222-2229.
    [122] Ramirez, N.; Cutright, T.; Ju, L. Pyrene biodegradatin in aqueous solutions and soil slurries byMycobacterium PYR-1and enriched consortium [J]. Chemosphere2001,44(5):1079-1086.
    [123] Krivobok, S.; Kuony, S.; Meyer, C.; Louwagie, M.; Willison, J., et al. Identification of pyrene-inducedproteins in Mycobacterium sp. strain6PY1: evidence for two ring-hydroxylating dioxygenases [J]. JournalOf Bacteriology2003,185(13):3828-3841.
    [124] Ravelet, C.; Krivobok, S.; Sage, L.; Steiman, R. Biodegradation of pyrene by sediment fungi [J].Chemosphere2000,40(5):557-563.
    [125] Boonchan, S.; Britz, M.L.; Stanley, G.A. Degradation and mineralization of high-molecular-weightpolycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures [J]. Applied And EnvironmentalMicrobiology2000,66(3):1007-1019.
    [126] Kohlmeier, S.; Smits, T.H.M.; Ford, R.M.; Keel, C.; Harms, H., et al. Taking the fungal highway:Mobilization of pollutant-degrading bacteria by fungi [J]. Environmental Science&Technology2005,39(12):4640-4646.
    [127] Wick, L.Y.; Remer, R.; Wurz, B.; Reichenbach, J.; Braun, S., et al. Effect of fungal hyphae on the access ofbacteria to phenanthrene in soil [J]. Environmental Science&Technology2007,41(2):500-505.
    [128] Sabate, J.; Vinas, M.; Solanas, A.M. Laboratory-scale bioremediation experiments onhydrocarbon-contaminated soils [J]. International Biodeterioration&Biodegradation2004,54(1):19-25.
    [129] Lee, S.; Rhee, S.; Lee, G. Biodegradation of pyridine by freely suspended and immobilized Pimelobactersp [J].Applied Microbiology and Biotechnology1994,41(6):652-657.
    [130] Herbes, S. Rates of microbial transformation of polycyclic aromatic hydrocarbons in water and sedimentsin the vicinity of a coal-coking wastewater discharge [J]. Applied And Environmental Microbiology1981,41(1):20-28.
    [131] Kanaly, R.A.; Harayama, S. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbonsby bacteria [J]. Journal Of Bacteriology2000,182(8):2059-2067.
    [132] Vila, J.; Lopez, Z.; Sabate, J.; Minguillon, C.; Solanas, A.M., et al. Identification of a novel metabolite inthe degradation of pyrene by Mycobacterium sp strain AP1: Actions of the isolate on two-and three-ringpolycyclic aromatic hydrocarbons [J].AppliedAnd Environmental Microbiology2001,67(12):5497-5505.
    [133] Obayori, O.S.; Ilori, M.O.; Adebusoye, S.A.; Oyetibo, G.O.; Amund, O.O. Pyrene-degradation potentialsof Pseudomonas species isolated from polluted tropical soils [J]. World Journal Of Microbiology&Biotechnology2008,24(11):2639-2646.
    [134] Juhasz, A.L.; Britz, M.L.; Stanley, G.A. Degradation of fluoranthene, pyrene, benz[a]anthracene anddibenz[a,h]anthracene by Burkholderia cepacia [J]. Journal OfApplied Microbiology1997,83(2):189-198.
    [135] Santos, E.C.; Jacques, R.J.S.; Bento, F.M.; Peralba, M.D.R.; Selbach, P.A., et al. Anthracenebiodegradation and surface activity by an iron-stimulated Pseudomonas sp.[J]. Bioresource Technology2008,99(7):2644-2649.
    [136] Pathak, H.; Kantharia, D.; Malpani, A.; Madamwar, D. Naphthalene degradation by Pseudomonas spHOB1: In vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms [J].Journal Of Hazardous Materials2009,166(2-3):1466-1473.
    [137] Balashova, N.V.; Kosheleva, I.A.; Golovchenko, N.P.; Boronin, A.M. Phenanthrene metabolism byPseudomonas and Burkholderia strains [J]. Process Biochemistry1999,35(3-4):291-296.
    [138] Das, K.; Mukherjee, A.K. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilisand Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability [J]. Journal OfApplied Microbiology2007,102(1):195-203.
    [139] Habe, H.; Kanemitsu, M.; Nomura, M.; Takemura, T.; Iwata, K., et al. Isolation and characterization of analkaliphilic bacterium utilizing pyrene as a carbon source [J]. Journal of Bioscience and Bioengineering2004,98(4):306-308.
    [140] Newman, J.S.; Thomas-Alyea, K.E., Electrochemical systems.[M] Wiley Hoboken, NJ:2004.
    [141] Holmes, D.E.; Bond, D.R.; Lovley, D.R. Electron transfer by Desulfobulbus propionicus to Fe (III) andgraphite electrodes [J].Applied and Environmental Microbiology2004,70(2):1234-1237.
    [142] Chae, K.J.; Choi, M.J.; Lee, J.;Ajayi, F.; Kim, I.S. Biohydrogen production via biocatalyzed electrolysis inacetate-fed bioelectrochemical cells and microbial community analysis [J]. International Journal OfHydrogen Energy2008,33(19):5184-5192.
    [143] Aelterman, P.; Verstraete, W. Bioanode performance in bioelectrochemical systems: recent improvementsand prospects [J]. Trends In Biotechnology2009,27(3):168-178.
    [144] Ercolini, D. PCR-DGGE fingerprinting: novel strategies for detection of microbes in food [J]. Journal OfMicrobiological Methods2004,56(3):297-314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700