用户名: 密码: 验证码:
光周期对草原龙胆生长发育的影响及相关基因的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草原龙胆又名草原龙胆,是国际市场上非常流行的切花,矮生品种的培育使其在园林中的应用形式更为广泛。本文对‘德拉迷斯’草原龙胆展开光周期方面的研究,一方面从栽培的角度研究‘德拉迷斯’的光周期和花芽分化特性;另一方面从分子的角度探讨光周期调控‘德拉迷斯’开花的机理。
     本研究的主要结果如下:
     1.通过7种不同日长的光周期处理,确定了‘德拉迷斯’草原龙胆为量性长日照植物,促进开花的临界日长为14h。光照时间越长,植株生长越高,而真叶数减少。通过比较几种处理下‘德拉迷斯’的开花时间以及开花时的品质,确定14h是生产上能保证得到较好开花品质且比较节能的光周期。
     2.采用石蜡切片法对‘德拉迷斯’的花芽分化过程进行显微观察,可以将为期3周的分化过程划分为6个时期:营养生长期、花芽分化初期、萼片原基分化期、花瓣原基分化期、雄蕊原基分化期和雌蕊原基分化期。据此,将花芽分化初期确定为成花转变时期,此时顶端分生组织向上升起,并变得宽阔平坦,出现在萼片原基分化之前。
     3.通过观测‘德拉迷斯’花芽分化时期对应的营养生长指标,建立了花芽分化时期(DP)与营养生长(VGTs)之间的相关性。结果显示,株高、冠幅、真叶数和出苗周数都与花芽分化时期存在显著相关性,可以用来预测花芽分化进程。根据回归方程推算,‘德拉迷斯’成花转化时期发生在21片真叶期。因此,建议生产上在21片真叶之前用14h光周期进行处理,以期加速开花。
     4.采用同源克隆法从草原龙胆中克隆到光周期途径基因EgGI的gDNA和cDNA全长。通过几种光周期下的实时定量表达(qRT-PCR)分析均表明,EgGI受内源昼夜节律钟的调控,其表达量在光照8-12hr后达到峰值,至暗期下降。另外,分析在长、短日照下成花转变前后EgGI的表达水平,发现LD条件下EgGI的表达水平均明显高于SD条件下,推测EgGI可能参与草原龙胆成花转变之前的调控过程。
     5.从草原龙胆中克隆到两个CO基因的同源基因EgCOL1和EgCOL2。通过同源比对和进化树分析,发现EgCOL1划分在CO基因家族的第I组a亚类,与拟南芥AtCOLl和AtCOL2同源性最高;EgCOL2划分在第Ⅰ组c亚类,与拟南芥AtCOL5同源性最高。
     6.分析EgCOLl和EgCOL2在几种光周期下的表达节律,结果表明EgCOLl的表达受内源昼夜节律钟调控,而EgCOL2在四种光周期下昼夜节律性不明显。另外,分析EgCOLl和EgCOL2在成花转变前后的表达水平,发现两个基因在LD下的表达水平都要高于SD,且在成花转变时期都有明显的表达峰值,其中EgCOLl的对比更显著。推测这两个基因可能都参与了草原龙胆的成花转变过程。
     7.分别构建EgCOLl和EgCOL2基因的超表载体转化烟草,成功获得转基因烟草。表型观测发现,超量表达EgCOLl的烟草与对照在开花时间和外部形态特征上没有明显差别。超量表达EgCOL2的烟草出现了明显的早花现象,qRT-PCR分析发现,强表型植株EgCOL2表达水平明显较高,且上调烟草NtFT和NtSOCl的表达。说明EgCOL2基因具有促进烟草早花的功能。
Lisianthus is one of the most highly ranked cut flowers in international markets, and it is now enjoying increasing popularity as a pot plant in the landscape for the cultivation of dwarf varieties. The photoperiod regulation mechanism of lisianthus has been studied in this paper with the cultivar'Tiramisu'. On the one hand, we studied the photoperiod characteristics and floral transition in the aspect of cultivation, on the other hand, we explore the photoperiodic flowering mechanism from the molecular perspective.
     The main results of this study are as follows:
     1. The effects of the photoperiod on the flowering traits of Eustoma grandiflorum 'Tiramisu'(TDC) were investigated under7day-length treatments (10h/12h/14h/16h/18h/20h/24h).'Tiramisu'was deduced to be a facultative long-day plant, of which the critical day-length for flowering was14h. Plants tended to be taller and less leaf number under longer days. Compared the flowering time and flower quality in these photoperiods,14h was supposed to be the optimal photoperiod in the commercial production of lisianthus for the high flowering quality and low energy consumption.
     2. The flower bud differentiation process of 'Tiramisu' was observed by paraffin method. The differentiation process lasted about3weeks and was divided into six stages:vegetative growth phase, flower initiation phase, sepal primordia phase, petal primordia phase, stamen primordia phase and pistil primordia phase. The floral transition was distinguished in the flower initiation phase, which was characterized by a distinctly raised and broadened apical meristem before appearance of sepal primordia.
     3. By observing the vegetative growth corresponding to flower bud differentiation phase (DP), the correlation between DP and vegetative growth traits (VGTs) was established. The results indicated that, significant linear relationships existed between each growth characteristics of 'Tiramisu' and its flower bud differentiation phase. It could be estimated from the regression equations that the floral transition of TDC occured at21-leaf stage. Therefore, it is recommended that TDC planted under day-length of14h before21-leaf stage to promote flowering.
     4. Photoperiod pathway gene EgGI was isolated from lisianthus and the full gDNA and cDNA sequence was obtained with Tail-PCR method. Analysis the expression rhythms of EgGI in different photoperiods indicated that EgGI mRNA is under the control of endogenous circadian clock, and showed diurnal rhythms peaking at8-12hours later when transferred to light period, then decreased in the dark. In addition, analysis of the expression level of EgGI during floral transition in LD and SD condition indicated that, EgGI mRNA under LD condition was always significant higher than under SD condition, suggesting that EgGI possibly have involved in the process before floral transition.
     5. Two CO homologous genes were isolated from lisianthus and designated as EgCOL1and EgCOL2. Homologous alignment and phylogenetic tree analysis indicated that EgCOL1gene was divided to I a subclass of CO family, and the closest homologues were AtCOLl and AtCOL2; EgCOL2was divided to I c subclasses, and was most similar to AtCOL5.
     6. Circadian expression of EgCOLl and EgCOL2was analyzed under different photoperiods. The results indicated that EgCOLl was under the control of endogenous circadian clock; while EgCOL2had no obvious expression rhythms in four kinds of photoperiod. In addition, the transcriptional levels of EgCOLl and EgCOL2were much higher in LD condition than in SD condition, and the expression levels of the two genes both reached the peak during the floral transition period. There had more significant difference in the expression level of EgCOL1between SD and LD condition. These two genes might be involved in the process of floral transition.
     7. Over-expression vectors of EgCOLl and EgCOL2were constructed and transformed into tobacco. By phenotype observation, there were no differences between the tobacco transformed with EgCOLl and the wild type on flowering time and phenotype. The transgenic tobacco with EgCOL2showed a phenomenon of significant early flowering. Through expression analysis of transgenic plants, found that the plants with strong phenotype have significant higher expression levels in EgCOL2, and the expression level of NtFT and NtSOCl were also up regulated. These results suggest that EgCOL2play an important role in promoting early flowering in tobacco.
引文
1.郭蕊,赵祥云,王文和,陈伟之.百合花芽分化的形态学观察.沈阳农业大学学报,2006,37(1):31-34
    2.何燕红,艾叶,吴颖,郭蕾,包满珠.孔雀草花芽分化和花药发育.华中农业大学学报,2013,32(2):18-24
    3.贺海洋,朱金启,高琪洁,芸学部,高俊平,胡建芳.单叶蔷薇的花芽形态分化.园艺学报,2005,32(2):331
    4.黄凤兰,牛红云,孟凡娟,薛贵彬,胡宝忠,白迎春.芍药花芽分化过程的显微研究.东北农业大学学报,2009,40(3):57-61
    5.黄亦工,魏娜,孙宜.观赏植物花期催延技术的研究进展.宁夏农林科技,2006,3:32-33
    6.胡惠蓉,胡晓龙,狄文伟,包满珠.‘幻想’矮牵牛幼龄期和限界性诱导光周期的研究.园艺学报,2007,34(1):179-182
    7.李和平.植物显微技术(第二版).北京:科学出版社,2009.
    8.李合生.植物生理学(第三版).北京:高等教育出版社,2012.
    9.李宪利,袁志友,高东升.高等植物成花分子机理研究现状及展望.西北植物学报,2002,2(1):173-183
    10.李昀辉,李玉花.草原龙胆(Eustoma grandiflorum)单、重瓣花器官分化的形态学观察.园艺学报,2005,32(3):458-462
    11.刘海龙,宗敏,宣子灿,卢山,沈柏春,丁旭升,邱英雄.‘早银桂’与‘小叶苏桂’桂花花芽形态分化的比较.园艺学报,2007,34(6):1559-1562
    12.刘建武,孙成华,刘宁.花器官决定的ABC模型和四因子模型.植物学通报,2004,21(3):346-351
    13.刘生财,杨文文,吴高杰,赖钟雄.高等植物成花的生理生化与分子机制研究进展.亚热带农业研究,2012,8(1):37-41
    14.马芳芳.光周期对‘流星’翠菊开花的初步研究.[硕士毕业论文].武汉:华中农业大学图书馆,2009年
    15.宁云芬,龙明华,陶劲,杨美纯,韦鹏霄.新铁炮百合花芽分化过程的形态学观察.园艺学报,2008,35(9):1368-1372
    16.彭伟秀,杨建民,于伟,刘海霞,苏巧.安哥诺和黑宝石李花芽形态分化的初步研究.河北农业大学,2004,27(3):52-55
    17.曲波,张微,陈旭辉,李楠,崔娜,李天来.植物花芽分化研究进展.中国农学通报,2010,26(24):109-114
    18.孙昌辉,邓晓建,方军,储成才.高等植物开花诱导研究进展.遗传,2007, 29(10):1182-1190.
    19.孙建云,王庆亚,黄清渊.李花芽形态分化的研究.江西农业大学学报,2005,27(3):413-416
    20.王琴,陈金涛,叶建飞,甘林叶,胡惠蓉.‘地平线’天竺葵的花芽分化及光周期特性.园艺学报,2013,40(4):773-781
    21.王翊,马月萍,戴思兰.观赏植物花期调控途径及其分子机制.植物学报,2010,45(6):641-653
    22.韦三立.观赏植物花期控制.北京:中国农业出版社,1999
    23.武文琪,沈强,吴艳涛,史益敏.荷兰水仙鳞茎花芽分化与开花调节.上海交通大学学报.2007,25(5):445-450
    24.徐启江.草原龙胆花器官MADS-box基因克隆与表达分析.[博士毕业论文].哈尔滨:东北林业大学,2007年
    25.徐祖明,马芳芳,王琴,刘宏亮,石义岗,甘林叶,李程,胡惠蓉.光周期调控对温室松果菊生长发育特性的影响.农业工程学报.2008,24(2):39-43
    26.杨娜,郭维明,陈发棣,房伟民.光周期对秋菊品种‘神马’花芽分化和开花的影响.园艺学报,2007,34(4):965-972
    27.赵培飞,黎霞.云南省花卉设施栽培的现状及建议.北方园艺,2014,(24):184-187
    28.曾群,赵仲华,赵淑清.植物开花时间调控的信号途径.遗传,2006,28(8):1031-1036
    29.郑岑,张立平,唐忠辉,赵昌平,苑少华.TAIL-PCR技术及其在植物基因中的克隆.基因组学与应用生物学,2009,28(3):544-548
    30. Adams SP, Pearson S, Hadley P. An appraisal of the use of reciprocal transfer experiments: assessing the stages of photoperiods ensitivity in chrysanthemum cv. Snowdon (Chrysanthemum morifolium Ramat.). J Exp Bot, 1998,49:1405-1411
    31. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science,2001,293(5531):880-883
    32. Almada R, Cabrera N, Casaretto J, Ruiz-Lara S, Villanueva EG. VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Rep, 2009,28:1193-1203
    33. An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development, 2004,131(15):3615-3626
    34. Aranovich D, Lewinsohn E, Zaccai M, Post-harvest enhancement of aroma in transgenic lisianthus (Eustoma grandiflorum) using the Clarkia breweri benzyl alcohol acetyltransferase (BEAT) gene. Postharvest Biology and Technology, 2007,43:255-260
    35. Ayre BG, Turgeon R. Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol, 2004,135(4):2271-2278
    36. Azrak MF. Cultural studies of greenhouse grown Eustoma grandiflorum. (MS dissertation). Fort Collins: Colorado State University, 1984
    37. Barak S, Tobin EM, Green RM, Andronis C, Sugano S. All in good time: the Arabidopsis circadian clock. Trends Plant Sci, 2000,5(12):517-522
    38. Bernier G, Kinet JM, Sachs RM. The Physiology of flowering, Vol.1. Boca Raton, Florida, USA: CRC Press, 1981,106-107
    39. Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G,
    Samach A, Lifschitz E. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J, 2006,46(3):462-476
    40. Bldzquez MA, Ferrandiz C, Madueno F, Parcy F. How floral meristems are built. Plant Molecular Biology,2006,60:855-870
    41. Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 2006,312:1040-1043
    42. Boss PK, Bastow RM, Mylne JS, Dean C. Multiple pathways in the decision to flower:enabling, promoting, and resetting. Plant Cell, 2004,16:S18-S31
    43. Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K I, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer TA, Getzoff ED. Identification of a new cryptochrome class: structure, function, and evolution. Mol Cell, 2003,11(1): 59-67
    44. Chen L Y, Chu C Y, Huang MC. Inflorescence and flower development in Chinese Ixora. JAmer Soc Hort Sci, 2003,128(1):23-28
    45. Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ. Molecular characterization and expression profiles of MaCOLl, a CONSTANS-like gene in banana fruit. Gene,2012,496:110-117
    46. Cheng XF, Wang ZY. Overexpression of COL9, a CONSTANS-like gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J, 2005,43(5):758-768
    47. Chia TYP, Miiller A, Jung C, Mutasa-Gottgens ES. Sugar beet contains a large CONSTANS-like gene family including a CO homologue that is independent of the early-bolting (B) gene locus. J Exp Bot, 2008,59(10):2735-2748
    48. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316(5827):1030-1033
    49. Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA. ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell, 2001,13: 1305-1315
    50. Dadpour M R, Naghiloo S, Gohari G, Aliakbari M. Inflorescence and floral ontogeny in Crocus sativus L. (Iridaceae). Flora, 2012,207:257-263
    51. Damann MP, Lyons RE. Juvenility, flowering, and the effects of a limited inductive photoperiod in Coreopsis grandiflora and C. lanceolata. J Am Soc Hortic Sci,1993,118(4):513-518
    52. Damann MP, Lyons RE. Juvenility and Photoperiodic flowering requilements of Chrysanthemum×superbum 'G. Marconi'and'Snow Lady'grown under short-and long-day conditions. J. Amer. Soc. Hort. Sci.,1995,120(2):241-245
    53. Datta S, Hettiarachchi GHCM, Deng XW, Holm M. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell,2006,18:70-84
    54. Deroles SC, Brdaley JM, Sehwinn KE, Markham K, R, Bloor S, Manson DG, Davies KM. An antisense chalcone synthase cDNA ledes to novel colour patterns in lisinathus (Eustoma grnadiflourm) flowesr. Mol Breeding, 1998,4:59-66
    55. Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ Amasino RM. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature, 2002,419(6902):74-77
    56. Drabesova J, Chab D, Kolar J, Haskovcova K, Storchova H. A dark-light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum. Journal of Experimental Botany, 2014,1-10
    57. Dunford RP, Griffths S, Christodoulou V, Laurie DA. Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet, 2005,110:925-931
    58. Ellis RH, Collinson ST, Hudson D, Patefield WM. The analysis of reciprocal transfer experiments to estimate the durations of the photoperiod-sensitive and photoperied-insensitive phases of plant development: An example in soyabean. Annals of Botany, 1992,70:87-92.
    59. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M. Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res.,2005,14(5): 703-12.
    60. Evenari M, Gutterman Y. The photoperiodic response of some desert plants. Z Pflanzenphysiol, 1966,54(12):7-27
    61. Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol, 2005,15:47-54
    62. Fornara F, de Montaigu A, Coupland G. SnapShot: Control of flowering in Arabidopsis. Cell, 2010,141(3):550-550
    63. Fornara F, Panigrahi K, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell, 2009,17(1):75-86
    64. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J. GIGANTEA:a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J, 1999,18(17):4679-4688
    65. Franklin KA, Larner VS, Whitelam GC. The signal transducing photoreceptors of plants. Int J Dev Biol, 2005,149:653-664
    66. Gimenez R, Sorlino DM, Bertero HD, Ploschuk EL. Flowering regulation in the facultative biennial Oenothera biennis L.:Environmental effects and their relation to growth rate. Ind Crops Prod, 2013,44:593-599
    67. Gonzalez-Schain ND, Suarez-Lopez P. CONSTANS delays flowering and affects tuber yield in potato. Biol. Plantarum, 2008,52,251-258.
    68. Goto N, Kumagai T, Koornneef M. Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol Plant, 1991,83(2):209-215
    69. Griffiths S, Dunford RP, Coupland G, Laurie DA. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol, 2003,131(4):1855-1867
    70. Grueber KL, Corr BE, Wilkins HF. Eustoma grandiflorum (Lisianthus russellianus). Minn. State Flor Bull,1984,33:10-14
    71. Halevy AH, Kofranek AM. Evaluation of lisianthus as a new flower crop. HortScience, 1984,19
    72. Halliday KJ, Salter MG, Thingnaes E, Whitelam GC. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J,2003,33:875-885
    73. Harbaugh BK. Flowering of Eustoma grandiflorum (Raf.) Shinn. Cultivars influenced by photoperiod and temperature. HortScience, 1995,30(7):1375-1377
    74. Harmer SL, Hogenesch JB, Straume M, Chang H S, Han B, Zhu T, Wang X, Kreps JA, Kay SA. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science,2000,290(5499):2110-2113
    75. Hassidim M, Harir Y, Yakir E, Kron I, Green RM. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta,2009,230:481-491
    76. Hayama R, Agashe B, Luley E, King R, Coupland G. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell, 2007,19:2988-3000.
    77. Hayama R, Coupland G. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol, 2003,6:13-19
    78. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003,422(6933):719-722
    79. Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA. LUX ARRHYTHMO encodes a MYB domain protein essential for circadian rhythms. Proc Natl Acad Sci USA,2005,102:10387-10392
    80. Hecht V, Knowles CL, Vander Schoor JK, Liew LC, Jones SE, Lambert MJ, Weller JL. Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiology, 2007,144:648-661
    81. Hedden P. Recent advances in gibberellin biosynthesis. J Exp Bot, 1999,50(334): 553-563
    82. Higuchi Y, Sage-Ono K, Sasaki R, Ohtsuki N, Hoshino A, Iida S, Kamada H, Ono M. Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant. Plant Cell Physiol, 2011,52(4):638-650
    83. Higuchi Y, Sumitomo K, Oda A, Shimizu H, Hisamatsu T. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. J Plant Physiol, 2012,169(18):789-1796
    84. Hisamatsu T, Koshioka M, Nishijima T, Mander LN. Identification of endogenous gibberellins and their role in rosetted seedlings of Eustoma grandiflorum. JJpn Soc Hortic Sci, 1998,67
    85. Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, Fossdal CG, Olsen JE. Identification of PaCOLl and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiol Biochem, 2009,47(2):105-115
    86. Horsch RB, Fry JE, Hoffman NL, Eicholtz D, Rogers SG, Fraley RT. A simple and general method for transferring genes into plants. Science, 1985,227: 1229-1231
    87. Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AA. Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ,2007,30(3):333-349
    88. Huang CK, Chang BS, Wang KC, Her SJ, Chen TW, Chen YA, Cho CL, Liao LJ, Huang KL, Chen WS, Liu ZH. Changes in polyamine pattern are involved in floral initiation and development in Polianthes tuberosa. J Plant Physiol, 2004, 161(6):709-713
    89. Huang CH, Chu CY. The flower development and photoperiodism of native Kalanchoe spp. in Taiwan. Sci Hortic,2012,146:59-64
    90. Huq E, Tepperman J M, Quail PH. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci U S A, 2000,97(17): 9789-9794
    91. Imaizumi T. Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol, 2010,13:83-89
    92. Imaizumi T, Kay SA. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci,2006,11:550-558.
    93. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature, 2003,426 (6964): 302-306
    94. Islam N, Patil GG, Gislerod HR. Effect of photoperiod and light integral on flowering and growth of Eustoma grandiflorum (Raf.) Shinn. Sci Hortic, 2005, 103(4):441-451
    95. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev, 2002,16(15):2006-2020
    96. Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J, 2000, 22(5):391-399
    97. Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J, 2008,27(8):1277-1288
    98. Jarillo JA, del Olmo I, Gomez-Zambrano A, Lazaro A, Lopez-Gonzalez L, Miguel E, Narro-Diego L, Saez D, M Pineiro. Review. Photoperiodic control of flowering time. Spanish Journal of Agricultural Research, 2008,6(Special issue): 221-244
    99. Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR. An Arabidopsis circadian clock component interacts with both CRY1 and PHYB. Nature,2001,410:487-490
    100. Jiao Y, Lau OS, Deng XW. Light-regulated transcriptional networks in higher plants. Natl Rev Genet, 2007,8:217-230
    101. Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM. The GIGA NTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell, 2007,19(9):2736-2748
    102. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT. Science,1999,286(5446):1962-1965
    103. Kawabata S, Yokoo M, Nii K. Quantitative analysis of corolla shapes and petal contours in single-flower cultivars of lisianthus. Sci Hortic, 2009,121(2): 206-212
    104. Kevei E, Gyula P, Hall A. Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Plant Physiol, 2006,140:933-945
    105. Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu SH. The Arabidopsis B-box zinc finger family. Plant Cell, 2009,21:3416-3420
    106. Kikis EA, Khanna R, Quail PH. ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J, 2005,44(2):300-313
    107. Kim SJ, Moon J, Lee I, Maeng J, Kim SR. Molecular cloning and expression analysis of a CONSTANS homologue, PnCOLl, from Pharbitis nil. J Exp Bot. 2003,4(389):1879-1887.
    108. Knott JE. Effect of a localized photoperiod on spinach. In Proc Am Soc Hortic Sci, 1934,31:152-154
    109. Kobayashi Y, Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes development, 2007,21(19): 2371-2384
    110. Koornneef M, Hanhart C J, van der Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet, 1991,229(1): 57-66
    111. Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, Jang S; Kulajta C, Braun H, Coupland G, Hoecker U. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development, 2006,133(16):3213-3222
    112. Ledger S, Strayer C, Ashton F, Kay SA, Putterill J. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J, 2001,26(1):15-22
    113. Lewis RS, Kernodle SP. A method for accelerated trait conversion in plant breeding. Theor. Appl. Genet.,2009, 118:1499-1508
    114. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Pans, 2006,103(16):6398-6403
    115. Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell, 2001,13:1293-1304
    116. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods. 2001, 25(4):402-8.
    117. Locke JCW, Millar AJ, Turner MS. Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J Theor Biol, 2005a,234(3):383-393
    118. Locke JC, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol, 2005b,1:E1-E9
    119. Lugassi-Ben-Hamo M, Kitron M, Bustan A, Zaccai M. Effect of shade regime on flower development, yield and quality in lisianthus. Sci Hortic, 2010,124(2): 248-253
    120. Martinez-Garcia JF, Virgos-Soler A, Prat S. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci USA,2002,99(23):15211-15216
    121. Martinez-Garcia JF, Huq E, Quail PH. Direct targeting of light signals to a promotor element-bound transcription factor. Science, 2000,288:859-863
    122. Mas P, Alabadi D, Yanovsky MJ, Oyama T, Kay SA. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell, 2003,15(1):223-236
    123. Mas P, Devlin PF, Panda S, Kay SA. Functional interaction of phytochrome B and cryptochrome 2. Nature, 2000,408(6809):207-211
    124. Matsuo T, Shirasaki T. Effect of rate of fertilization on the growth and nutrient uptake of Eustoma grandiflorum. J Japan Soc Hort Sci, 1990,59 (Suppl 1): 584-585 (in Japanese)
    125. McClung CR. Plant circadian rhythms. Plant Cell, 2006,18(4):792-803
    126. Mcwatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM, Gyula P, Nagy F, Millar AJ, Davis SJ. ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol, 2007,144:391-401
    127. Millar AJ. Input signals to the plant circadian clock. J Exp Bot, 2004,55:277-283
    128. Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science, 1995,267:1161-1163
    129. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell, 2005,17:2255-2270
    130. Mizuno T, Nakamichi N. Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol, 2005,46(5):677-685
    131. Mockler TC, Guo H, Yang H, Duong H, Lin C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development, 1999,126(10):2073-2082
    132. Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austin-Phillips S, Quail PH. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell, 2003, 15(9):1962-80.
    133. Mouradov A, Cremer F, Coupland G. Control of flowering time:interacting pathways as a basis for diversity. Plant Cell, 2002,14:S111-S130
    134. Mozley D, Thomas B. Developmental and Photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Heynh. Landsberg erecta. J. Exprimental Botany, 1995,46:173-179
    135. Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol, 2005,46(5):686-698
    136. Nakano Y, Kawashimaa H, Kinoshitaa T, Yoshikawaa H, Hisamatsub T. Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression. Physiologia Plantarum, 2011,141:383-393
    137. Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell, 2000,101: 331-340
    138. Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J, 2003,36:82-93.
    139. Ni M, Tepperman J, Quail P. Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature, 1999,400:781-784
    140. Niwa Y, Ito S, Nakamichi N, Mizoguchi T, Niinuma K, Yamashino T, Mizuno T. Genetic linkages of the circadian clock-associated genes, TOC1, CCA1 and LHY, in the photoperiodic control of flowering time in Arabidopsis thaliana. Plant Cell Physiol, 2007,48(7):925-937
    141. Nordli EF, Strom M, Torre S. Temperature and photoperiod control of morphology and flowering time in two greenhouse grown Hydrangea macrophylla cultivars. Sci Hortic, 2011,127(3):372-377
    142. Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T. Long-distance, graft-transmissible action of FLOWERING LOCUS T protein to promote flowering, Plant Cell Physiol, 2008, 49(11):1645-1658
    143. Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T. CsFTL3, a chrysanthemum FLOWERING LOCUS T-LIKE gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot, 2012,63(3): 1461-1477
    144. Ohkawa K. Technology of floriculture. Eustoma, Cultural practice and flowering control. Seibundo Shinkosha, Tokyo, 2003,133-134
    145. Oka M, Tasaka Y, Iwabuchi M, Mino M. Elevated sensitivity to gibberellin by vernalization in the vegetative rosette plants of Eustoma grandiflorum and Arabidopsis thaliana. Plant Science, 2001,160:1237-1245
    146. Onai K, Ishiura M. PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes to Cells, 2005,10(10):963-972
    147. Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science, 1999,285(5433):1579-1582
    148. Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995,80(6):847-857
    149. Reeves PH, Coupland G. Response of plant development to environment: control of flowering by daylength and temperature. Current Opinion in Plant Biology, 2000,3:37-42.
    150. Ren Y, Chang HL, Tian XH, Song P, Endress PK. Floral development in Adonideae (Ranunculaceae). Flora, 2009,204:506-517
    151. Riboni M, Galbiati M, Tonelli C, Conti L. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and suppressor of overexpression of CONSTANSI. Plant Physiol, 2013,162(3):1706-1719
    152. Richardson K, Fowler S, Pullen C, Skelton C, Morris B, Putterill J. T-DNA lagging of a flowering-time gene and improved gene transfer by in planta transformation of Arabidopsis. Aust. J. Plant Physiol. 1998,25:125-130
    153. Robson F, Costa MR, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J, 2001,28:619-631
    154. Roh MS, Halevy AH, Wilkins HF. Eustoma grandiflorum. Handbook of Flowering, 1989,6,322-327
    155. Roh M, Lawson RH. The lure of lisianthus. Greenhouse Manager, 1984,2(11): 103-121
    156. Runkle ES, Heins RD, Cameron A C, Carlson WH. Flowering of Phlox paniculata is influenced by photoperiod and cold treatment. HortScience, 1998, 33(7):1172-1174
    157. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-sommer Z, Yanofsky MF, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000,288:1613-1616.
    158. Sawa M, Kay SA. GIGANTEA directly activates FLOWERING LOCUS T in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2011,108(28):11698-11703
    159. Sawa M, Nusinow DA, Kay SA, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007, 318(5848):261-265
    160. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre I A, Coupland G. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 1998,93(7):1219-1229
    161. Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell, 2001,13:2659-2670
    162. Schwinn KEM, Davies K, Deroles SC, Markham KR, Miller RM, Bradley JM, Manson DG, Given NK. Expression of an Antirrhinum majus UDP-glucose: flavonoid-3-O-glucosyltransferase transgene alters flavonoid glycosylation and acylation in lisianthus (Eustoma grandiflorum Grise.) Plant Sci, 1997,125(1): 53-61
    163. Searle I, Coupland G. Induction of flowering by seasonal changes in photoperiod. EMBO J, 2004,23(6):1217-1222
    164. Sharrock RA, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytoehromes. Plant Physiol. 2002,130:442-456
    165. Shimizu M, Ichikawa K, Aoki S. Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochemical and Biophysical Research Communications. 2004,324:1296-1301
    166. Simon R, Igeno MI, Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature, 1996,384:59-62.
    167. Somers DE. Entrainment of the circadian clock. In:Endogenous plant rhythms. Annual Plant Reviews, vol 21 (Hall A, McWatters H, eds) Blackwell Publishing, Oxford, UK 2005,85-105
    168. Somers DE, Schultz TF, Milnamow M, Kay SA. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell, 2000,101:319-329
    169. Sonsteby A, Heide OM. Environmental control of growth and flowering of Rubus idaeus. Sci Hortic,2008,117:249-256
    170. Sonsteby A, Opstad N, Myrheim U, Heide OM. Interaction of short day and timing of nitrogen fertilization on growth and flowering of 'Korona' strawberry (Fragariaxananassa Duch.). Sci Hortic, 2009,123:204-209
    171. Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science, 2000,289(5480):768-771
    172. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001,410(6832):1116-1120
    173. Takada S, Goto K. TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell,2003,15:2856-2865.
    174. Takeda T. Studies on rosette formation and bolting of seedlings and lateral buds of Eustoma grandiflorum. J Japan Soc Hort Sci, 1994,63:653-662 (in Japanese)
    175. Terryn N, Neyt P, De Clercq R, De Keyser A, Van Den Daele H, Ardiles W, Dehais P, Rouze P, Gielen J, Villarroel R, Van Montagu M. Sequence analysis of a 24-kb contiguous genomic region at the Arabidopsis thaliana PFL locus on chromosome 1. FEBS Lett,1997,416:156-160
    176. Thomas B, Vince-Prue D. Photoperiodism in plants.2thed. New York:Academic Press. 1997.1-6
    177. Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol, 2010,187:57-66
    178. Torok M, Etkin LD. Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation, 2001,67(3):63-71
    179. Tseng TS, Salome PA, McClung CR, Olszewski NE. SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, fowering, and rhythms in cotyledon movements. Plant Cell, 2004,16:1550-1563
    180. Tsukada T, Kobayashi T, Nagase Y. Studies on the physiological characters and cultivation of Russel Prairie Gentian. II. Effect of temperature and photoperiod on the growth and flowering. Bull Nagano Veg Ornam Crops Exp Sta, 1982,2:77-88 (in Japanese)
    181. Valverde F. CONSTANS and the evolutionary origin of photoperiodic timing of flowering. Journal of Experimental Botany, 2011:1-11
    182. Wang ZC, Acock MC, Acock B. Photoperied sensitivity during flower development of opium poppy (Papaver somniferum L.). Ann Bot, 1997,79: 129-132
    183. Wang ZY, Tobin EM. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED1(CCAI) gene disrupts circadian rhythms and suppresses its own expression. Cell, 1998,93(7):1207-1217
    184. Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell, 2006, 18(11):2971-2984
    185. Xiang L, Li X, Qin D, Guo F, Wu C, Miao L, Sun C. Functional analysis of FLOWERING LOCUS T orthologs from spring orchid (Cymbidium goeringii Rchb. f.) that regulates the vegetative to reproductive transition. Plant Physiol Biochem,2012,58:98-105
    186. Yamada A, Tanigawa T, Suyama T, Matsuno T, Kunitake T. Night break treatment using different light sources promotes or delays growth and flowering of Eustoma grandiflorum (Raf.) Shinn. J Japan Soc Hort Sci, 2008,77:69-74
    187. Yamada A, Tanigawa T, Suyama T, Matsuno T, Kunitake T. Red:far-red light ratio and far-red light integral promote or retard growth and flowering in Eustoma grandiflorum (Raf.) Shinn. Sci Hortic, 2009,120(1):101-106
    188. Yanagida M, Mino M, Iwabuchi M, Ogawa K. Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant Eustoma grandiflorum. Plant Cell Physiol,2004, 45(2):129-137
    189. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Babac T, Yamamotoc K, Umeharaa Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000,12(12):2473-2483
    190. Yanovsky MJ, Kay SA. Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol, 2003,4(4):265-275
    191. Yap YM, Loh CS, Ong BL. Regulation of flower development in Dendrobium crumenatum by changes in carbohydrate contents, water status and cell wall metabolism. Sci Hortic,2008,119(1):59-66
    192. Yeh DM, Atherton JG. Manipulation of flowering in cineraria. I. Effects of Photoperiod. Journal of Horticultural Science, 1997,72(l):43-54.
    193. Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Lee JS, Ahn JH. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol,2005,139(2):770-778
    194. Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, Liu L, Zhang Y, Irigoyen ML, Sullivan JA, Zhang Y, Lee I, Xie Q, Paek NC, Deng WX. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell,2008,32:617-630
    195. Zaccai M, Edri N. Floral transition in lisianthus (Eustoma grandiflorum). Sci Hortic,2002,95:333-340
    196. Zaccai M, Lewinsohn E, Pichersky E. Modifying lisianthus traits by genetic engineering. In: ⅩⅩ International Eucarpia Symposium, Section Ornamentals, Strategies for New Ornamentals-Part Ⅰ, 2001,552:137-142
    197. Zeevaart JA. Physiology of flower formation. Annu Rev Plant Physiol,1976, 27(1):321-348
    198. Zeevaart JA. Leaf-produced floral signals. Current Opinion in Plant Biology, 2008,11:541-547.
    199. Zhang D, Shen XH, Zhuo LH. Flower development and anatomy of Agapanthus praecox ssp. Orientalis Leighton. Agricultural Sciences in China, 2011,10(9): 1365-1373
    200. Zhang JX, Wu KL, Tian LN, Zeng SJ, Duan J. Cloning and characterization of a novel CONSTANS-liks gene from Phalaenopsis hybrida. Acta Physiol Plant, 2011,33(2):409-417
    201. Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS. The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Molecular Biology, 2005,58:53-64
    202. Zobell O, Coupland G, Reiss B. The Family of CONSTANS-Like Genes in Physcomitrella patens. Plant Biol, 2005,7(3):266-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700