长期不同施肥制度下湖南红壤双季稻田甲烷排放的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室气体排放导致全球变暖,而且它的转化产物还直接影响人体的健康。稻田生态系统是大气CH_4的主要生物排放源之一,其对温室效应的影响已经成为全球关注的焦点。我国是稻谷产量大国,双季稻种植制度是典型的南方农田利用方式,所以其在大气CH_4不断增加的过程中起着十分重要的角色。本试验选取湖南长期不同施肥制度下红壤双季稻田为研究对象,采用静态箱-气相色谱法对双季稻田CH_4排放进行观测,研究了长期不同施肥制度(包括CK、NP、NK、NPK、OM和JF)对双季稻田温室气体CH_4排放季节变化规律和累积排放量的影响,以及由于长期不同施肥处理造成土壤理化性质发生的变化对CH_4排放的影响,探讨了各个环境和作物因素对CH_4排放的影响,建立了长期不同施肥制度下农田温室气体CH_4排放的预测模型,并估算长期不同施肥制度的CH_4排放对温室效应影响的贡献。
     研究结果表明:长期不同施肥制度下,双季稻田CH_4排放具有基本相同的季节变化规律,早稻各处理CH_4排放季节变化具有三段排放高峰,分别发生在移栽期,分蘖期和水稻成熟期。按生育期排放量,早稻CH_4排放主要集中在早稻生长中期,其中分蘖期和孕穗期排放量占总排放量的70%以上。晚稻CH_4排放呈单峰型,移栽后一周内各处理即达到排放全年最高峰,后期CH_4排放较少。按生育期排放量,晚稻CH_4排放主要集中于晚稻生长的前一个月,移栽返青期和分蘖期排放量占总排放量的60%以上。
     施肥是调控稻田CH_4排放的重要手段,长期不同施肥处理,早稻CH_4排放通量大小依次为:OM>JF>NPK>NP>NK>CK:晚稻依次为OM>JF>NPK>NK>NP>CK,施加有机肥促进CH_4排放,单施化肥全量养分的CH_4排放大于缺素施肥,对于缺素施肥的CH_4排放,早稻和晚稻略有不同。长期不同施肥处理对土壤全氮和有机碳的积累有一定影响,呈现升高趋势。研究表明土壤全氮和有机碳含量与稻田CH_4累积排放量有较好的相关性。长期施肥条件下,土壤pH呈下降趋势,不同施肥制度的下降程度基本相同,CH_4累积排放量与土壤pH成负相关。早晚稻田CH_4排放通量与土壤中铵硝动态变化并没有明显的相关性。
     温室气体CH_4排放的环境影响因子包括温度、土壤Eh、土壤pH、水层深度等,研究表明气温对晚稻的影响极显著,而对早稻的影响相对较弱。土壤温度对不同施肥制度处理,无论是早稻还是晚稻,其变化都与CH_4排放通量有极显著的相关性。土壤Eh对不同施肥制度下晚稻田的影响极显著,早稻生育期与晚稻略有不同,土壤Eh对晚稻的影响要强于早稻。无论何种施肥制度,早晚稻田各处理的CH_4排放通量与稻田水层深度相关性不显著。CH_4排放高峰期土壤pH值大多在5.5附近,与早稻田CH_4排放相关性不显著,而与晚稻田则有显著相关。
     温室气体CH_4排放的作物影响因子包括水稻生育期的植株高度、地上和地下部分的生物量,叶面积以及生物产量和经济产量等,研究表明稻田CH_4累积排放总量和水稻植株高度,地上和地下部分的生物量,有显著的正相关,与叶面积的相关不明显。水稻的生物产量和经济产量越高,稻田CH_4累积排放总量也越高。
     基于对不同施肥制度温室气体CH_4排放的研究,建立了各施肥制度下的六个预测方程,其拟合结果均与实测值有显著的相关关系,通过实测值与模拟值的对比发现,预测方程基本上体现了双季稻生育期CH_4排放的季节变化趋势。不同施肥制度下稻田CH_4排放对温室效应的贡献分析结果表明,无论是在20年还是在500年的时间尺度上,其贡献顺序都为有机无机配施>全量化肥>缺素施肥>对照。
It is well known that greenhouse gase emission result in global warming and its reaction product affect human's healthy directly Rice ecosystem is one of major sources of atmospheric methane(CH_4),its influence on greenhouse effect has been given attention by global researchers.Since China is the largest producer of rice grain and double-cropping rice system is typical planting pattern,it plays an important role in the increase of atmospheric methane.To study the effect of long-term fertilization treatment on the seasonal variation of CH_4 emission and the effect of soil physical and chemical property changes result from long-term fertilization on methane emission under different long-term fertilizing systems(including CK,NP,NK,NPK,OM and JF),methane emission fluxes from the double-cropping paddy field in Hunan red soil were monitored by using the method of static chamber-gas chromatographic techniques.This paper discussed the effect of environmental and crop factors on methane emission and produced a forecast model to simulate methane fluxes to estimate contribution of CH_4 emission on GWP under long-term different fertilizing systems.The results showed that:
     Methane emission from double cropping paddy field under long-term different fertilizing systems exhibited similar seasonal variation.During the early rice growth period, there were three peaks of methane emission at transplanting stage,tillering stage and maturing stage,respectively.CH_4 emission s dominantly occurred at the middle growth stage and methane accumulation emission occupied 70%of total emission.CH_4 emission of the late rice field had only one peak and reached the highest fluxes one week after transplanting,with little emission during the late growth period.CH_4 emission mainly occurred at one month after transplanting of the late rice,during the period of transplanting and tillering,CH_4 accumulation fluxes occupied 60%of total fluxes.
     Fertilization plays an important role in CH_4 flux.The rank of CH_4 emission in different fertilization treatments in early rice field was OM>JF>NPK>NP>NK>CK,but in late rice field it was OM>JF>NPK>NK>NP>CK.Methane fluxes in organic manure amendment treatments were significantly higher than other treatments.Methane fluxes in single chemical fertilizer treatments were higher than in unbalanced nutrient treatments.Studies on the effect of different long-term fertilizing systems on soil organic matter,total N and pH showed that,there was a significantly positive correlation between CH_4 fluxes and soil organic matter and total N,and a significantly negative correlation between CH_4 fluxes and soil pH.No significant correlation was found between CH4 flux and soil NH_4~+-N and NO_3~--N concentration.
     The environmental factors of different long-term fertilizing systems affecting methane emission from double cropping paddy fields were discussed,including temperature,soil Eh, soil pH,water depth.Under different long-term fertilizing systems,the results showed that, there was a significantly positive correlation between CH_4 emission flux and air temperature in the late rice field and comparatively weak correlation in the early rice field. This trend is same with the effect of soil Eh on CH_4 flux.There was a significant positive correlation between CH_4 flUX and soil temperature in double cropping paddy field.No significant correlation was found between CH_4 flUX and water depth.CH4 flUX peaks mostly appeared around pH 5.0.There was a significant positive correlation between CH_4 flux and soil pH in the late rice field.
     The crop factors of different long-term fertilizing systems affecting methane emission from double cropping paddy fields were discussed,including plant height,above-ground biomass,root biomass,leaf area,biomass and yields of rice grain.The results showed that, there was a significantly positive correlation between CH_4 flux and plant height, above-ground biomass and root biomass of paddy fields.No significant correlation was found between CH_4 flux and leaf area.The biomass and yields of rice grain were higher with CH_4 accumulation emission fluxes.
     Based on principal component analysis of the effect factors of CH_4 emission,six forecast equations of different long-term fertilizing systems were established.The simulated greenhouse gases fluxes based on these models roughly corresponded with the measured values in the same order of magnitude and the same dynamic characteristics. Furthermore,the contribution of CH_4 emission under long-term different fertilizing systems on GWP was estimated,its ranks on the time scale of 20 years to 500 years were organic manure amendment treatment>chemical fertilizer treatment>single nutrient treatment>control.
引文
1. ArunKumarRath, Swaina B, Ramakrishnan B, et al. Influence of fertilizer management and water regime on methane emission from rice fields, Agriculture. Ecosystems and Environment, 1999, 76:99-107.
    2. Aulakh M S, Wassmann R, Rennenberg H, et al. 2000. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars. Plant Biol, 2:182-194.
    3. Banker B C, Kludze H K, Alford D P, et al. Methane sources and sinks in paddy rice soils: Relationshi p to emissions. Agric Ecosys Environ, 1995, 553: 243-251.
    4. Bosse U et al. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiology Ecology, 1993, (13): 123-134.
    5. Bosse U, Frenzel P. Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa). Appl Environ Microbiol, 1997,63:1199-1207.
    6. Bouwman A. F. 1990. Introduction. In: A.F. Bouwman(ed.): Soils and the greenhouse effect[M]. John Wiley & Sons Ltd, Chichester, pp:25-32.
    7. Cai Z C. 1999. Methane emission from paddy soils. In: Ma Y J, Chen J F eds. Change in Paddy Soil Materials and its Effect on Eco-environment. Beijing: Science Press. 123-144 (in Chinese).
    8. Cai Z C, Xing G X, Yuan Y X, et al. Methane and nitrous oxide emission from ricepaddy fields as affected by nitrogen fertilisers and water management. Plant and Soil, 1997, 196:7-14.
    9. Cai Z C, and Yan X Y, 1999. Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition. Soil Biol. Biochemi. 31:715-725.
    10. Calhoun A, King G M. 1997. Regulation of root associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes. A ppl Envi ron Microbiol, 63 :3051-3058.
    11. Chanton J P, Whiting G J, Blair N E, et al. 1997. Methane emission from rice: Stable isotopes, diurnal variations and CO_2 exchange.Global Biogeochem Cyc, 11:15-27.
    12. Charholm M. 1985. Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants. In: Fritter A, Atkinson D, Read D, Usher M eds. Ecological Interactions in Soil. Oxford: Blackwell Scientific, 355-365.
    13. Chidthaisong A, Watanabe I. 1997. Methane formation and emission from flooded rice soil incorporated with ~(13)C-labelled rice straw. Soil Biol Biochem ,29 :1173-1181.
    14. Cicerone R. J. and Shelter J. D. Sources of atmospheric methane: Measurements in rice paddies and a discussion [J]. J. Geophys Res, 1981, 86: 7203-7209.
    15. Cicerone R J, Shetter J D, Delwiche C C. Seasonal variation of methane flux from a California rice paddy [J]. J.Geophys.Res, 1983, 88:11022-11024.
    16. Conen F. and Smith K. A. 2000. An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere[J]. European Journal of Soil Science, 51(1):111-117.
    17. Conlin T S S, Crowder A A. 1989. Location of radial oxygen loss and zones of potential iron uptake in a grass and two non-grass emergent species. Can J Bot, 67: 717-722.
    18. Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H_2, CO, CH_4, OCS, N_2O and NO). Microbiol Rev, 60: 609-640.
    19. Deborah A, Bossio, Wil]iamR,et al. Methane pool and flux dynamics in a rice field Following straw incorporation.Soil Biology and Bioehemistry,1999,31:1313-1322.
    20. Denier vander, Gon H A C, Neue H U. 1996. Oxidation of methane in the rhizosphere of rice plants. Biol Fert Soils, 22:359-366.
    21. Ding A.J., Willis C.R., Sass, R. L., et al. 1999. Methane emissions from rice fields: Effect of plant height among several rice cultivars [J]. Global Biogeochemical Cycles, 13(4): 1045-1052.
    22. Dornner, L., and Ramanathan, V. Methane and Nitrous Oxide: Their effects on the Terrestrial Climate. Journal of the Atmospheric Sciences. 1980, 37: 119-124.
    23. Dunfield P F, Knowles R. 1995. Kinetics of methane oxidation by nitrate and ammonium in a humisol. Appl Environ Microbiol, 61: 3129-3135.
    24. Gulledge J, Doyle A P, Schimel J P. 1997. Different NH_4~+-inhibition patterns of soil methane consumption: A result of distinct methane-oxidizer populations across sites? Soil Biol Biochem, 29:3-21 Microbiol, 64:253-257.
    25. Houba V J G, Novozamsky I, Huybregts A W M, et al. Comparison of soil extraction by 0.01 mol/1 CaCl_2, by EUF and by some conventional extraction procedures [J]. Plant and Soil, 1986, 96: 433-437.
    26. Huang Yao, Sass R.L. and Fisher F.M. Methane emission from Texas rice paddy soils. 1 .Quantitative multi-year dependence of CH_4 emission on soil, cultivar and grain yield [J]. Global Change Biology, 1997a, 3:479-489.
    27. Huang Yao, Sass R.L. and Fisher F.M.. Methane emission from Texas rice paddy soils.2.Seasonal contribution of rice biomass production to CH4 emission[J]. Global Change Biology. 1997b, 3:491-500.
    28. Hutchinson G. L. and Moiser A. R. 1981. Improved soil cover method for field measurement of nitrous oxide flux [J]. Soil Sci. Soc. Am. J., 45:311-316.
    29. IPCC, 1990. Climate Change: The IPCC Scientific Assessment Report prepared for Intergovernmen -tal Panel on Climate Change by working group I.
    30. IPCC, 1992. Climate change: The supplementary report to the IPCC scientific assessment. New York: Cambridge University Press.
    31. IPCC, 2001 a. Climate Change 2001 :The scientific Basis. Contribution of Work Group I to the Third Assessment Repor of the Intergovernmental Panel on Climate Change. Cambridge University Press: 40-45.
    32. IPCC, 2001b. Climate Change 2001 :The scientific Basis. Contribution of work Group I to the Third Assessment Repor of the Intergovernmental Panel on Climate Change.Cambridge University Press: 248-255.
    33. Jakebsen. P., Patrick W. H. Jr, and B. G. Willams, Sulfide and methane formation in soils and sediments [J]. Soil Sci., 1981, 132:279-287.
    34. Jia Z. J., Cai Z. C, Xu H., et al. Effects of rice cultivars on methane fluxes in a paddy soil [J] Nutrient Cycling in Agro ecosystems, 2002, 64: 87-94.
    35. Khalil M. A. K., Rasmussen R. A., Shearer M. J. 1998. Flux measurements and sampling strategies: Applications to methane emissions from rice fields [J]. Journal of Geophysical Research, 103(D19):25211-25218.
    36. King G M. Regulation by light of methane emissions from a wetland [J]. Nature, 1990, 345: 513-515.
    37. King G M, Schnell S. 1998. Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soil. Appl Environ Microbiol, 64: 253-257.
    38. Lauren, Pettygrove, Duxbury. Methane emissions associated with a green manure to flooded rice in California. Biogeochemistry, 1994, 24: 53-65.
    39. Lindau C. W., Delaune R. D., et al. Fertilizer effects on dinitrogen, nitrous oxide and methane emission from lowland rice [J]. Soil Sci. Soc. Am., 1990, 54: 1789-1794.
    40. Liu K X, Wen L Z, You Z L. Effect of combined application of organic and fertilizers on methane emission from paddy soil and rice growth. Pedosphere, 1997, 7(4):379-382.
    41. Magnussont T. 1993. Carbon dioxide and methane formation in forest mineral and peat soil during aerobic and anaerobic incubations. Soil Biol Biochem, 25:877-883.
    42. Milkha, Aulakh, Rejner Wassmann, et al. Methane transport capaeity of twenty-two Rice cultivars from five major Asian rice-growing countries. Agriculture Eeosystems and Environment, 2002, 91:59-71.
    43. Mishra S, Rath A K, Adhya T K, et al. 1997. Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biol Fert Soils, 24:399-405.
    44. Moore, Knowles. Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemitry, 1990, 11:45-61.
    45. Morrissey L A, Livingston G P. 1992. Methane emissions from Alaska arctic tundra:An assessment of local spatial variability. J Geophys Res , 97 (D15): 16661-16670.
    46. Mosier A. R., Schime D., et al. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands [J]. Nature, 1991, 350: 330-332.
    47. Nancy B Dise. Winter fluxes of methane from Minnesota peatlands. Biogeochemistry,1992, 17:71-83.
    48. Nesbit S. P. and Breitenbeck G A. A laboratory study of factors influencing methane uptake by soil [J]. Agri. Ecos. Environ., 1992, 41:39-54.
    49. Neue H. U., Lantin R. S., Wassmann R., et al. 1994. Methane emission from rice soils of the Philippines [M]. In: Atmospheric methane: Sources, sinks and role in global change (M.A.K Khslil,ed.), Spriger-Verlag Berlin Heidelberg, pp:55-63.
    50. Norton J M, Smith J L, Firestone M K. 1990. Carbon flow in the rhizosphere of ponderosa pine seedling. Soil Biol Biochem, 22 : 449-455.
    51. Nouchi I, Mariko S, Aoki K. 1990. Mechanism of methane transport from the rhizosphere through rice plants. Plant Physiol, 94:59-66.
    52. Nouchi I. 1994. Mechanisms of methane transport through rice plantst [M]. In: CH_4 and N_2O: Global emissions and controls from rice fields and other agricultural and industrial sources (eds Minami K,Mosier A. And Sass R.) [M] YOKENDO Publishers, Tokyo. pp: 87-104.
    53. Nouchi.I. 1994. Mechanism of methane transport through rice plants.In: Minami, K., Mosier, A., Sass,R.(eds). CH_4 and N_2O: Global emissions and controls from rice fields and other agricultural and industrial sources. NIAES Series 2, Tokyo.
    54. Papen, H. and Renneberg H., 1990. Microbial processes involved in emissions of radioactively important trace gases, Trans. 14th Intern. Congr. Soil Sci., Vol.II:232-237.
    55. . Ramanathan, V., et al. Climate-chemical interactions and effects of changing atmospheric trace gases. Rev, Geophys. Res. 1987, 25: 1441-1482.
    56. Wassmann R, Buendia L V, Lantin R S, et al. Mechanisms of crop management impact on methane emissions from rice fields in Los Banos, Philippines. Nutrient Cycling in Agroecosystems, 2000, 58:107-119.
    57. Sass R. L., Fisher F. M. and Harcombe. Mitigation of methane emission from rice fields: possible adverse effects of incorporated rice straw [J]. Global Biogeochemical Cycles, 1991, 5(3): 275-287.
    58. Sass R. L. and Fisher F. M. 1994. CH_4, emission from paddy fields in the United States Gulf Coast area. P 65-77. In K. Minami et al. (ed.) CH_4 and N_2O: global emissions and controls from rice fields and other agricultural and industrialsources. Yokendo Publishers, Tokyo.
    59. Schutz H., Seiler W., Conrad R. Proeesses involved in formation and emission of methane in riee paddies. Biogeoehemistry, 1989,7:33-53.
    60. Schutz H., Seiler W., Conrad R. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry, 1990. 11:77-95.
    61. Shangguan X J, Wang M X. Possible measures for the reduction of methane emission from rice paddy fields [J]. Advance in Earth Sciences, 1993, 8 (5):55-62.
    62. Shangguan X J, WangM X, Reine Wassmann, et al. Experimental study on methane production rate in rice paddy soil. Chinese Journal of Atmosphere Sciences. 1993, 17(3):313-320.
    63. Shao K S, Li Z. Effeet of rice cultivars and fertilizer management on methane Emission in a rice paddy in Beijing. Nutrient Cycling in Agroecosystems, 1997, 49:139-146.
    64. Smith C J, Patrick Jr W H. Nitrous oxide emission as affected by alternate an aerobic and aierobic conditions from soil suspensions enriched with (NH_4)_2SO_4 Soil Biol Biochem .1983, 15: 693 -696.
    65. Strayer R. F. and Tiedje J.M. 1978. Kinetic parameters of the conversion of the methane precursors to methane in hyperentrophic lake sediments. Appl. Environ. Microbial. 36: 330-346.
    66. Van den Berg L., Patel G B., Clark D S, et al. 1976. Factors affecting rate of methane formation from acetic acid by enriched methanogenic cultures. Can J Microbiol, 22:1312-1319.
    67. Wang M X, Khalil, Rasmussen. CH_4 Flux from biogas generators and rice paddies meaaured in Sichuan, China Ke xue tong bao, 1988,33 (11):942-947.
    68. Wang M X, Dai A G, Shen R X, et al. CH_4 emission from a Chinese rice paddy field [J]. Acta Meteorlogica Sinica, 1990, 4(3):265-274.
    69. Wang M X, Shangguan X J, Shen R X, et al. Methane production emission and possible control measures in the rice agriculture [J]. Advances in A tm ospheric Sciences, 1993, 10 (3):307-310.
    70. Wassmann R., Papen H., Rennenberg H. Methane emission from rice paddies and possible mitigation strategies. Chemosphere, 1993, 26(1-4):201-217.
    71. Wassmann R., Aulakh M S. 2000. The role of rice plants in regulating mechanisms of methane missions. Biol Fert Soils, 31:20-29.
    72. Yagi K. and Minami K., 1990a, Effect of organic matter application on methane emission from some Japanese paddy fields, Soil Sci. Plant Nutr., 36:599-610.
    73. Yagi K., Minami K., and Ogawa Y, 1990b, Effects of water percolation on methane emission from paddy fields,Res.Rep.Div.Environ.Planning,Natl.Inst.Ago-Environ.Sci.,6:105-112.
    74.Yu K W,Wang Z P,Chen G X.Nitrous oxide and methane transport through rice plants.Biol Fertil Soils 1997,24:341-343.
    75.Zhang F.D.Combined application of organic and inorganid fertiliters adeveloping approach of modern fertilizion technology.Soil and Fertilizers(in Chines),1984(1):23-25.
    76.Zhang X J,XU H,Chen G X.Major factors controlling nitrous oxide Emission and methane uptake from forest soil.Journal of Forestry Research,2001,12(4):239-242.
    77.鲍士旦.土壤农化分析[M].中国农业出版社,1996.
    78.陈德章,王明星,上官行健,黄俊.我国西南地区的稻田CH_4排放.地球科学进展,1993,8(5):47-54.
    79.陈德章,王明星.稻田甲烷排放和土壤、大气条件的关系[J].地球科学进展,1993,8(5):37-46.
    80.曹云英,朱庆森,郎有忠等.水稻品种及栽培措施对稻田甲烷排放的影响[[J].江苏农业研究,2000,21(3):22-27.
    81.蔡祖聪,沈光裕,颜晓元等.土壤质地、温度和Eh对稻田甲烷排放的影响[J].土壤学报,1998,35(2):145-153.
    82.蔡祖聪.水稻土甲烷排放(第九章).马毅杰,陈家坊等著《水稻土物质变化与生态环境》.科学出版社,1999,123-144.
    83.陈宗良,邵可声等.控制稻田甲烷排放的农业管理措施研究.环境科学研究,1994,7(1):2-11.
    84.陈中云,闵航,陈美慈等.不同水稻土甲烷氧化菌、产甲烷菌数量与甲烷排放量之间相关性的研究[J].生态学报,2001,21(9):1499-1506.
    85.陈中云,闵航,吴伟祥.不同离子对水稻田甲烷氧化活性影响的研究[J].植物营养与肥料学报,2002,8(2):219-223.
    86.黄国宏,肖笃宁,李玉祥等.芦苇湿地温室气体甲烷((CH4)排放研究[J].生态学报,2001,21(9):1494-1497.
    87.焦燕,黄耀等.有机肥施用、土壤有效铜和氮素对稻田甲烷排放的影响[J].农业环境科学学报,2003,22(5):563-569.
    88.李晶,王明星,陈德章.水稻田甲烷的减排方法研究及评价[J].大气科学,1998,22(3):354-362.
    89.林匡飞,项雅玲,姜达炳等.湖北地区稻田甲烷排放量及控制措施的研究[J].农业环境保护,2000,19(5):267-270.
    90.李琳,胡立峰,陈阜等.长期不同施肥类型对稻田甲烷和氧化亚氮排放速率的影响[J].农业环境科学学报,2006,25(增刊):707-710.
    91.卢维盛,廖宗文,张建国等.不同水旱轮作方式对稻田甲烷排放影响的研究[J].农业环境保护, 1999,18(5):200-202.
    92.孟范平.湿地甲烷释放研究进展[J].重庆环境科学,1997,(3):22-26.
    93.闵航,陈美慈,钱泽澎.水稻田的甲烷释放及其生物学机理[J].土壤学报,1993,30(2):125-130.
    94.闵航,陈中云,吴伟祥等.碳、氮物质对水稻田土壤甲烷氧化活性影响的研究[J].环境科学学报,2002,22(1):70-76.
    95.秦晓波,李玉娥,刘克樱等.长期施肥对湖南稻田甲烷排放的影响.中国农业气象,2006,27(1):19-22.
    96.齐玉春等.土壤氧化亚氮产生、排放及其影响因素.地理学报,1999,54(6):534-539.
    97.齐玉春,董云社,章中.华北平原典型农业区土壤甲烷通量研究[J].农村生态环境,2002,18(3):56-58,60.
    98.上官行健,王明星.稻田CH_4排放的控制措施.地球科学进展,1993,8(5):55-62.
    99.上官行健,王明星.稻田甲烷排放影响因子的研究进展[[J].中国农业气象,1993,14(4):48-53.
    100.上官行健,王明星,沈壬兴.稻田甲烷的排放规律[J].地球科学进展,1993a,8(5):23-36.
    101.上官行健,王明星,陈德章等.稻田CH_4的传输.地球科学进展,1993b,8(5):13-21.
    102.上官行健,王明星.我国华中地区稻田CH_4排放特征.大气科学,1994,18:358-365.
    103.孙文涛,肖千明,娄春荣等.土壤中甲烷的形成、排放及影响因素.杂粮作物,2000,20(5):44-47.
    104.宋文质,曾江海等.我国农田土壤的主要温室气体CO_2、CH_4和N_2O的排放研究.环境科学,1996,17(2):85-88.
    105.陶战,杜道灯等.不同农作措施对稻田甲烷排放通量的影响.农业环境保护,1995,14(3):101-104.
    106.魏朝富,高明,黄勤等.耕作制度对西南地区冬水田甲烷排放的影响[J].土壤学报,2000,37(2):157-164.
    107.吴兑主编.温室气体与温室效应.北京:气象出版社,2003.
    108.王玲,魏朝富,谢德体.稻田甲烷排放的研究进展[J].土壤与环境,2002,11(2):158-162.
    109.王明星.中国稻田甲烷排放.北京:科学出版社,2001,6-10.
    110.王明星,Khalil,Rasmussen.稻田和沼气池甲烷排放通量的测量.科学通报,1987,21:1646-1649.
    111.王明星,李品,郑循华等.稻田甲烷排放及产生、转化、输送机理.大气科学,1998,22(1):600-612.
    112.王明星,上官行健等.华中稻田甲烷排放的施肥效应及施肥策略.中国农业气象,1995,16(2):1-5.
    113.王明星,张仁健,郑循华.温室气体的源与汇.气候与环境研究,2000,5(1):75-79.
    114.徐华,蔡祖聪,李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响.农业环境保护,1999,18(4):145-149.
    115.谢小立,王卫东,上官行健等.施肥对稻田甲烷排放的影响[J].农业生态环境(学报),1995,11(1):10-14.
    116.徐雨昌,王增远,李震等.不同水稻品种对稻田甲烷排放量的影响[J].植物营养与肥料学报,1999,5(1):93-96.
    117.袁玲,杨邦俊等.长期施用有机肥和化肥对土壤有机质和氮素的影响[J].西南农业大学学报,1993,15(8):314-317.
    118.邹建文,黄耀,宗良纲等.不同种类有机肥施用对稻田CH_4和N_2O排放的综合影响.环境科学,2003,24(4):7-12.
    119.郑循华等.温度对农田N_2O产生与排放的影响.环境科学,1997,18(5):1-5.
    120.周毅,陶战,杜道灯.控制稻田甲烷排放的农业技术选择.农村生态环境(学报),1994,10(3):6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700