SSH筛选济宁青山羊性早熟相关基因及KiSS-1、GPR54、Lin28B基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究分为两部分:
     第一部分:
     缩短母羊的初情期,有助于减少后备母羊的生产投入。济宁青山羊是一个性早熟的山羊品种。本部分研究旨在利用抑制消减杂交技术(SSH)筛选济宁青山羊性早熟相关基因,为进一步深入开展山羊性早熟的分子机理研究及通过遗传选择缩短山羊初情期提供理论基础。应用抑制消减杂交技术成功构建了济宁青山羊与辽宁绒山羊幼年期、初情期、初情期同龄对照间下丘脑、垂体、卵巢-子宫、肾上腺的消减cDNA文库,并对差异表达基因进行了生物信息学分析。取得结果如下:
     1.应用SSH技术构建济宁青山羊与辽宁绒山羊幼年期、初情期、初情期同龄对照间下丘脑、垂体、卵巢-子宫、肾上腺共12个正向消减cDNA文库,以GAPDH为指标检测消减文库的消减效率在25以上,表明差异表达基因得到了有效的富集。经PCR和测序鉴定,插入片段大小在250-900 bp之间。
     2. 12组消减文库中共获得2046条差异表达EST,其中包括幼年期698条、初情期对照623条、初情期725条,在每个发育时期下丘脑和垂体中获得的差异表达EST多些,卵巢-子宫和肾上腺中较少一些。对各组差异表达EST按照已知基因、已知EST和未知EST进行了分类,并对差异表达EST进行了出现频次统计。
     3.将各组已知基因进行了在线功能分类。根据PANTHER数据库分析,差异表达基因主要涉及信号转导与细胞间通讯、物质转运、复制/转录/翻译相关、细胞结构与运动、代谢、细胞与机体防御。根据COG分类结果,获得的差异表达基因涉及细胞进程与信号、信息储存与加工、代谢3大类,含16小类。
     4.将已知基因提交KEGG Pathway数据库进行通路分析,发现差异表达基因参与最多的是Metabolic pathways,其次是Parkinson’s disease和Oxidative phosphorylation。
     5.将已知基因进行蛋白质互作关系分析,发现获得的差异表达基因形成了核糖体结构/蛋白质翻译和氧化磷酸化两个主要的作用网络。
     第二部分:
     KiSS-1和GPR54是调控动物初情期启动的重要基因。Lin28B基因内或附近的变异与女孩月经初潮年龄在基因组水平上相关。本部分研究旨在寻找新的山羊性早熟相关基因,了解其作用机制,期望能够用于缩短山羊初情期的分子育种。
     试验一:克隆了山羊KiSS-1基因4118 bp的序列,预测含408 bp的ORF,编码135 aa。该蛋白质含有一个17 aa的信号肽,是一个分泌型蛋白。其序列与牛、绵羊的同源性较高,分别为91.11%和95.24%,与人、小鼠、大鼠、猪的同源性较低,分别为60.53%、58.12%、59.66%、72.50%。在山羊KiSS-1内含子1中发现3个突变位点(G296C、G454T和T505A),外显子2中没有发现突变位点,内含子2中发现一个18 bp缺失(-)/插入(+)突变(1960-1977),外显子3中发现两个突变位点(G3433A[A86T]和C3688A)。这些突变位点在性早熟和性晚熟山羊品种之间的基因型分布没有规律性差异。296位点CC型济宁青山羊产羔数比GG、GC型分别多0.80只(P<0.01)和0.77只(P<0.01),GG与GC基因型个体间产羔数差异不显著。1960-1977位点-/-个体比+/+、+/-个体产羔数分别多0.77只(P<0.01和0.73只(P<0.01),+/+与+/-间差异不显著。其他4个位点基因型间产羔数差异不显著。本研究初步表明山羊KiSS-1基因296位点C等位基因和1960-1977位点的(-)等位基因可能与济宁青山羊的高产羔数有关。
     试验二:克隆了山羊GPR54基因4258 bp的序列,预测含1137 bp的ORF,编码378 aa,含有7个跨膜域。该蛋白序列与牛、绵羊的同源性最高,分别为94.57%和99.58%,和人、小鼠、大鼠、猪的同源性较高,分别为86.69%、84.88%、82.47%、88.99%。山羊GPR54基因外显子1-4上没有发现突变位点,外显子5上发现3个突变位点(G4014A[G328D]、G4136A[G368S]和C4152T[P373L],这3个突变位点可能与济宁青山羊的性早熟有一定关系。4152位点的TT和CT型济宁青山羊产羔数比CC型分别多1.02 (P<0.01)和0.84(P<0.01),TT与CT基因型个体间产羔数差异不显著。其他两个位点基因型间产羔数差异不显著。本研究初步表明山羊GPR54基因4152位点T等位基因可能与济宁青山羊的高产羔数有关。
     试验三:克隆获得山羊Lin28B基因mRNA序列916 bp,含有744 bp的CDS区,编码247 aa,预测山羊Lin28B蛋白含有一个冷休克结构域和一对锌指结构域。该蛋白序列与人、猕猴、大鼠、小鼠、牛的同源性分别为90. 80%、90.32%、76.19%、76.92%和94.09%。山羊Lin28B存在可变剪接,剪接位点发生在内含子3中,并且内含子3的3’-端含有一个微卫星序列。测序在外显子1-3上未发现突变位点,在外显子4上发现9个突变位点(G911A、C1026T、A2934T、C3053T、G3248A、C3414G、A3770T、C4478T和G4742A),全部位于3’-UTR。对其中8个位点在12个山羊品种中进行了检测,这8个位点的基因型分布在性早熟山羊品种和性晚熟山羊品种中没有明显规律。2934位点TT和AT基因型济宁青山羊产羔数比AA基因型分别多0.83只(P<0.01)和0.48只(P<0.05),TT与AT基因型个体间差异不显著,另外7个位点基因型个体间产羔数差异不显著。本研究初步表明山羊Lin28B基因2934位点T等位基因可能与济宁青山羊的高产羔数有关。
This research contains two parts.
     PartⅠ: The cost of developing replacement nanny goats could be reduced by decreasing age at puberty because nanny goats can be brought into production at earlier age. Jining Grey goat is a sexual precocious breed. The objective of this study was to screen genes related with puberty to look into molecular mechanism of puberty and establish fundamental materials and techniques for further study and genetic selection.
     Subtracted cDNA libraries of hypothalamus, pituitary, ovary-uterus and adrenal gland of juvenile stage, puberty and the same age control of puberty between Jining Grey goats and Liaoning Cashmere goats were constructed using suppression subtractive hybridization (SSH). And the differential expression genes were analyzed by bioinformatics. The main results obtained were listed as follows:
     1. The 12 forward subtracted cDNA libraries of hypothalamus, pituitary, ovary-uterus and adrenal gland of juvenile stage, puberty and same age control of puberty between Jining Grey goats and Liaoning Cashmere goats were constructed using suppression subtractive hybridization (SSH). The subtraction efficiency was estimated by GAPDH gene, and the results showed that the GAPDH was subtracted efficiently at 25 folds at least, which demonstrated that differential expression genes were also enriched efficiently. The size of inserted fragments was 250-900 bp identified by PCR and sequencing.
     2. There were 2046 differentially expressed ESTs in 12 subtracted cDNA libraries, which contained 689 ESTs at juvenile stage, 725 ESTs at puberty and 623 ESTs at the same age control of puberty. The number of differential expressed ESTs from hypothalamus and pituitary was a little more than ovary-uterus and adrenal gland at every stage. The differentially expressed ESTs in each subtracted cDNA libraries were classified to high homology genes, high homology ESTs and novel ESTs according to sequence homology in the GenBank nr and EST database.
     3. The high homology genes were carried out functional classification at the internet. The high homology genes were related to signal transduction and cell-cell communication, material transport, replication/transcription/translation correlated, cell structures and motion, metabolism, defension of cell and organism according to PANTHER site. And based on COG classification, the high homology genes were related to cellular processes and signaling, information storage and processing and metabolism, three main types, 16 subdivisions.
     4. Pathway analysis in KEGG pathway database of the high homology genes revealed the most three pathways with most genes involving: metabolic pathways, Parkinson’s disease and oxidative phosphorylation.
     5. Protein interaction analysis of the high homology genes revealed the most dominant network: structure of ribosome/protein translation and oxidative phosphorylation.
     PartⅡ:
     The kisspeptin/GPR54 pathway is crucial in the process of puberty onset. Variations in or near Lin28B reached a genome-wide association with age at menarche. The aim of the current research was to find new genes associated with sexual precocity of goat and understand the mechanism of action, and provide some useful information for the molecular breeding to shorten the timing of puberty of goat.
     In the first experiment, a DNA fragment with 4118 bp of goat KiSS-1 was obtained, which contains an open reading frame (ORF) of 408 bp and encodes 135 amino acids, having 91.11% and 95.24% identity with the protein sequence of bovine and sheep, respectively, and 60.53%, 58.12%, 59.66%, 72.50% with human, mouse, rat and pig, respectively. The protein was predicted containing a signal peptide of 17 amino acids. There were two mutations (G3433A [A86T] and C3688A) in exon 3, three mutations (G296C, G454T and T505A) in intron 1 and a 18 bp deletion (-)/insertion (+) (1960-1977) in intron 2 and no mutation in exon 2. The genotype distribution of the six mutations didn’t show obvious difference between sexual precocious and sexual late-maturing goat breeds and no consistency within the sexual late-maturing breeds. For the 296 locus, the Jining Grey goats with genotype CC had 0.80 (P<0.01) or 0.77 (P<0.01) kids more than those with genotype GG or GC, respectively. No significant difference (P>0.05) was found in litter size between GG and GC. For the 1960-1977 locus, the Jining Grey goat with genotype -/- had 0.77 (P<0.01) or 0.73 (P<0.01) kids more than those with +/+ or +/-, respectively. No significant difference (P>0.05) was found in litter size between +/+ and +/- genotypes. For the other four loci, no significant difference (P>0.05) was found in litter size between different genotypes in Jining Grey goats. The present study preliminarily indicated an association between allele C of the 296 locus and allele - of the 1960-1977 locus in KiSS-1 and high litter size in Jining Grey goats.
     In the second experiment, a DNA fragment of 4258 bp of goat GPR54 was obtained, which contains an ORF of 1137 bp and encodes 378 amino acids, having 94.57% and 99.58% identity with the protein sequence of bovine and sheep, respectively, and 86.69%, 84.88%, 82.47%, 88.99% with human, mouse, rat and pig, respectively. The protein was predicted to have seven transmembrane regions. There were no base pair variation in exons 1-4 and three base changes (G4014A [G328D], G4136A [G368S] and C4152T [P373L]) in exon 5 by sequencing and the three mutations may have some correlation with sexual precocity in goats. For the 4152 locus, the Jining Grey goat with genotype TT and CT had 1.02 (P<0.01) and 0.84 (P<0.01) kids more than those with genotype CC, respectively. No significant difference (P>0.05) was found in litter size between TT and CT genotypes in Jining Grey goat. For the other two loci, no significant difference (P>0.05) was found in litter size between different genotypes. The present study preliminarily indicated an association between allele T of the 4152 locus in GPR54 and high litter size in Jining Grey goats.
     In the third experiment, an mRNA sequence with 916 bp of goat Lin28B was obtained, containing a CDS of 744 bp, encoding 247 amino acids, which was predicted having a cold shock domain and a pair of zinc finger domain. The 247-amino acid has 90. 80%, 90.32%, 76.19%, 76.92% and 94.09% identify with the protein sequence of human, macaque, rat, mouse and bovine, respectively. Two alternative transcripts were detected expressing in goat tissues. And the alternative splicing site lies in intron 3, which contain a microsatellite sequence in its 3’- terminal. There was no mutation in exons 1-3 and nine mutations found in exon 4 (G911A, C1026T, A2934T, C3053T, G3248A, C3414G, A3770T, C4478T and G4742A), which were all in 3’-UTR, by sequencing. The genotype distribution of the eight sites detected didn’t show obvious difference between sexual precocious and sexual late-maturing goat breeds and no consistency within the sexual late-maturing breeds. For the 2934 locus, Jining Grey goats with genotype TT and AT had 0.83(P<0.01) and 0.48(P<0.05) kids more than the goats with genotype AA, and no significant difference (P>0.05) was found in litter size between TT and AT genotypes in Jining Grey goat. For the other seven loci, no significant difference (P>0.05) was found in litter size between different genotypes in Jining Grey goats. The present study preliminarily indicated an association between allele T of the 2934 locus in Lin28B and high litter size in Jining Grey goats.
引文
1.王建辰,郝志明,孙厚恩,黄群山.西农莎能奶山羊母羔初情期的研究.核农学报.1988, 2(1):40-46.
    2. Anderson CA, Zhu G, Falchi M, van den Berg SM, Treloar SA, Spector TD, Martin NG, Boomsma DI, Visscher PM, Montgomery GW. A genomewide linkage scan for age at menarche in three populations of European descent. J Clin Endocrinol Metab. 2008, 93: 3965-3970.
    3. Alos N, Moisan AM, Ward L, Desrochers M, Legault L, Leboeuf G, Vliet GV, Simard J. A novel A10E homozygous mutation in the HSD3B2 gene causing Severem Salt-Wasting 3?-Hydroxysteroid Dehydrogenase deficiency in 46,XX and 46,XY French-Canadians: evaluation of gonadal function after puberty. J Clin Endocrinol Metab. 2000, 85: 1968-1974.
    4. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008, 321: 699-702.
    5. Arai AC, Xia YF, Suzuki E, Kessler M, Civelli O, Nothacker HP. Cancer metastasis-suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells. J Neurophysiol. 2005, 94: 3648-3652.
    6. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics. 2008, 40: 499-507.
    7. Bettendorf M, de Zegher F, Albers N, Hart CS, Kaplan SL, Grumbach MM. Acute N-methyl-d,l-aspartate administration stimulates the luteinizing hormone releasing hormone pulse generator in the ovine fetus. Horm Res. 1999, 51: 25-30.
    8. Bourguignon JP, Gérard A, Gonzalez MLA, Purnelle G, Franchimont P. Endogenous glutamate involvement in pulsatile secretion of gonadotropin-releasing hormone: evidence from the effect of glutamine and developmental changes. Endocrinology. 1995, 136: 911-916.
    9. Bourguignon JP, Gérard A, Purnelle G, Czajkowski V, Yamanaka C, Lema?tre M, Rigo JM, Moonen G, Franchimont P. Duality of glutamatergic and GABAergic control of pulsatile GnRH secretion by rat hypothalamic explants. II. Reduced NR2C- and GABAA-receptor-mediated inhibition at initiation of sexual maturation. J Neuroendocrinol. 1997, 9: 193-199.
    10. Bourguignon JP, Jaeken J, Gérard A, de Zegher F. Amino acid neurotransmission and initiation of puberty: evidence from nonketotic hyperglycinemia in a female infant and gonadotropinreleasing hormone secretion by rat hypothalamic explants. J Clin Endocrinol Metab.1997, 82: 1899-1903.
    11. Brann DW, Mahesh VB. Excitotary amino acids: evidence for a role in the control of reproduction and anterior pituitary hormone secretion. Endocr Rev. 1997, 18: 678-700.
    12. Büssing I, Slack FJ, Gro?hans H. let-7 microRNAs in development, stem cells and cancer. Trends in Molecular Medicine. 2008, 14(9): 400-409.
    13. Carbone S, Szwarcfarb B, Rodina D, Feleder C, Moguilevsky JA. Differential effects of theN-methyl-d-aspartate and non-Nmethyl-d-aspartate receptors of the excitatory amino acids system on LH and FSH secretion. Its effects on the hypothalamic luteinizing hormone releasing hormone during maturation in male rats. Brain Res. 1996, 707: 139-145.
    14. Castano JP, Martínez-Fuentes AJ, Gutiérrez-Pascual E, Vaudry H, Tena-Sempere M, Malagon MM. Intracellular signaling pathways activated by kisspeptins through GPR54: do multiple signals underlie function diversity? Peptides. 2009, 30: 10-15.
    15. Castellano JM, Navarro VM, Fernandez-Fernandez R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E and et al. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology. 2005, 146: 3917-3925.
    16. Cerrato F, Shagoury J, Kralickova M, Dwyer A, Falardeau J, Ozata M, Van Vliet G, Bouloux P, Hall JE, Hayes FJ and et al. Coding sequence analysis of GNRHR and GPR54 in patients with congenital and adult-onset forms of hypogonadotropic hypogonadism. Eur J Endocrinol. 2006, 155 (Suppl 1): S3-S10.
    17. Cianflone K, Lu HL, Smith J, Yu W, Wang HW. Adiponectin, acylation stimulating protein and complement C3 are altered in obesity in very young children. Clinical Endocrinology. 2005, 62: 567-572.
    18. Chan YM, de Guillebon A, Lang-Muritano M, Plummer L, Cerrato F, Tsiaras S, Gaspert A, Lavoie HB, Wu CH, Crowley J and et al. GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA. 2009, 106: 11703-11708.
    19. Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA and et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci USA. 2009, 106(9): 3384-3389.
    20. Clarkson J, Herbison AE. Development of GABA and glutamate signaling at the GnRH neuron in relation to puberty. Molecular and Cellular Endocrinology. 2006, 254-255: 32-38.
    21. Claypool LE, Kasuya E, Saitoh Y, Marzban F, Terasawa E. N-methyl-d,l-aspartate (NMDA) induces the release of luteinizing hormone-releasing hormone (LHRH) in prepubertal and pubertal female rhesus monkeys as measured by in vivo push-pull perfusion in the stalk-median eminence. Endocrinology. 2000, 141: 219-228.
    22. Cousins SW, Marin-Castano ME, Espinosa-Heidmann DG, Alexandridou A, Striker L, Elliot S. Female gender, estrogen loss, and sub-RPE deposit formation in aged mice. Invest Ophthal Vis Sci. 2003, 44: 1221-1229.
    23. d’Anglemont de Tassigny X, Fagg LA, Dixon JPC, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MBL and et al. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci USA. 2007, 104(25): 10714-10719.
    24. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA. 2003, 100(19): 10972-10976.
    25. Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA and et al. Kisspeptin-54 stimulates the hypothalamicpituitary gonadal axis in human males. J Clin Endocrinol Metab. 2005, 90: 6609-6615.
    26. Dhillo WS, Chaudhri OB, Thompson EL, Murphy KG, Patterson M, Ramachandran R, Nijher GK, Amber V, Kokkinos A, Donaldson M and et al. Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J Clin Endocrinol Metab. 2007, 92: 3958-3966.
    27. Dode C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A and et al. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet. 2006, 2: e175.
    28. Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F and et al. Loss of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003, 33: 463-465.
    29. Drabkin HA, West JD, Hotfilder M, Heng YM, Erickson P, Calvo R, Dalmau J, Gemmill RM, Sablitzky F. DEF-3(g16/NY-LU-12), an RNA binding protein from the 3p21.3 homozygous deletion region in SCLC. Oncogene. 1999, 18: 2589-2597.
    30. Dumalska I, Wu M, Morozova E, Liu R, van den Pol A, Alreja1 M. Excitatory effects of the puberty-initiating peptide kisspeptin and group I metabotropic glutamate receptor agonists differentiate two distinct subpopulations of gonadotropin-releasing hormone neurons. The Journal of Neuroscience. 2008, 28(32): 8003- 8013.
    31. Ebling FJ, Chwartz ML, Foster DL. Endogenous opioid regulation of pulsatile uteinizing hormone secretion during sexual maturation in the female sheep. Endocrinology. 1989, 125: 369-383.
    32. Eler JP, Silva JA, Ferraz JB, Dias F, Oliveira HN, Evans JL, Golden BL. Genetic evaluation of the probability of pregnancy at 14 months for Nellore heifers. J Anim Sci. 2002, 80: 951-954.
    33. Elks CE, Perry JRB, Sulem P, Chasman DI, Franceschini N, He C, Lunetta KL, Visser JA, Byrne EM, Cousminer DL and et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nature Genetics. 2010, 42(12): 1077-1085.
    34. Evans WS, Weltman ML, Johnson ML, Weltman A, Veldhuis JD, Rogol AD. Effects of opioid receptor blockade on luteinizing hormone (LH) pulses and interpulse LH concentrations in normal women during the early phase of the menstrual cycle. J Endocrinol Invest. 1992, 15: 525-531.
    35. Falardeau J, Chung WC, Beenken A, Raivio T, Plummer L, Sidis Y, Jacobson-Dickman EE, Eliseenkova AV, Ma J, Dwyer A and et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest. 2008, 118: 2822-2831.
    36. Feleder C, Jarry H, Leonhardt S, Wuttke W, Moguilevsky JA. The GABAergic control of gonadotropin-releasing hormone secretion in male rats during sexual maturation involves effects on hypothalamic excitatory and inhibitory amino acid systems. Neuroendocrinology. 1996, 64: 305-312.
    37. Feng T, Zhao YZ, Chu MX, Zhang YJ, Fang L, Di R, Cao GL, Li N. Association between sexualprecocity and alleles of KISS-1 and GPR54 genes in goats. Anim Biotechnol. 2009, 20(3): 172-176.
    38. Forni S, Albuquerque LG. Estimates of genetic correlations between days to calving and reproductive and weight traits in Nelore cattle. J Anim Sci. 2005, 83: 1511-1515.
    39. Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun. 2003, 312(4): 1357-1363.
    40. Gabi?a A.Improvement of the reproductive perfoermance of Rasa Aragonesa flocks in frequenct lambing systems.II. Repeatability and heritability of sexual precocity, fertility and litter size. Selection strategies. Livestock production science. 1989, 22:87-89.
    41. Gay VL, Plant TM. N-Methyl-d,l-aspartate elicits hypothalamic GnRH release in prepubertal male rhesus monkeys (Macaca mulatto). Endocrinology. 1987, 120: 2289-2296.
    42. Gajdos ZKZ, Butler JL, Henderson KD, He C, Supelak PJ, Egyud M, Price A, Reich D, Clayton PE, Marchand L and et al. Association studies of common variants in ten hypogonadotropic hypogonadism genes with age at menarche. J Clin Endocrinol Metab. 2008, 93: 4290-4298.
    43. Gajdos ZKZ, Henderson KD, Hirschhorn JN, Palmert MR. Genetic determinants of pubertal timing in the general population. Molecular and Cellular Endocrinology. 2010, 324: 21-29.
    44. Gore AC, Terasawa E. A role for norepinephrine in the control of puberty in the female rhesus monkey, Macaca mulatta. Endocrinology. 1991, 129: 3009-3017.
    45. Gore AC, Saitoh Y, Terasawa E. Effects of adrenal medulla transplantation into the third ventricle on the onset of puberty in female rhesus monkeys. Exp Neurol. 1996, 140: 172-183.
    46. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A Role for Kisspeptins in the Regulation of Gonadotropin Secretion in the Mouse. Endocrinology. 2004, 145(9): 4073-4077.
    47. Greives TJ, Mason AO, Scotti MA, Levine J, Ketterson ED, Kriegsfeld, Demas GE. Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology, 2007, 148(3): 1158-1166.
    48. Grosser PM, O’Byrne KT, Williams CL, Thalabard JC, Hotchkiss J, Knobil E. Effects of naloxone on estrogen-induced changes in hypothalamic gonadotropin-releasing hormone pulse generator activity in the rhesus monkey. Neuroendocrinology. 1993, 57: 115-119.
    49. Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T, Aburatani H. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene. 2006a, 384: 51-61.
    50. Guo Y, Shen H, Xiao P, Xiong DH, Yang TL, Guo YF, Long JR, Recker RR, Deng HW. Genomewide linkage scan for quantitative trait loci underlying variation in age at menarche. J Clin Endocrinol Metab. 2006b, 91: 1009-1014.
    51. Gure AO, Altorki NK, Stockert E, Scanlan MJ, Old LJ, Chen YT. Human lung cancer antigens recognized by autologous antibodies: definition of a novel cDNA derived from the tumor suppressor gene locus on chromosome 3p21.3. Cancer Res. 1998, 58: 1034-1041.
    52. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005, 25(49): 11349-11356.
    53. Hardelin JP, Levilliers J, Blanchard S, Carel JC, Leutenegger M, Pinard-Bertelletto JP, Bouloux P, Petit C. Heterogeneity in the mutations responsible for X chromosome-linked Kallmann syndrome. Hum. Mol. Genet. 1993, 2: 373-377.
    54. Hashizume T, Saito H, Sawada T, Yaegashi T, Ezzat AA, Sawai K, Yamashita T. Characteristics of stimulation of gonadotropin secretion by kisspeptin-10 in female goats. Anim Reprod Sci. 2010, 118: 37-41.
    55. Hauge-Evans AC, Richardson CC, Milne HM, Christie MR, Persaud SJ, Jones PM. A role for kisspeptin in islet function. Diabetologia. 2006, 49: 2131-2135.
    56. He C, Kraft P, Chen C, Buring JE, ParéG, Hankinson SE, Chanock SJ, Ridker PM, Hunter DJ, Chasman DI. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nature Genetics. 2009, 41(6): 724-728.
    57. Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Molecular Cell. 2008, 32: 276-284.
    58. Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN. TUT4 in concert with Lin28 suppresses microrna biogenesis through pre-microrna uridylation.Cell. 2009, 138: 696-708.
    59. Hou JX, An XP, Wang JG, Song YX, Cui YH, Wang YF, Chen QJ, Cao BY. New genetic polymorphismsof KiSS-1 gene andtheirassociationwith litter size in goats. Small Ruminant Research. 2011, 96(2-3): 106-110.
    60. Huijbregts L, de Roux N. KISS1 is down-regulated by 17β-Estradiol in MDA-MB-231 cells through a nonclassical mechanism and loss of ribonucleic acid polymerase II binding at the proximal promoter. Endocrinology. 2010, 151(8): 3764-3772.
    61. Hutchens LK, Hintz RL, Johnson RK. Genetic and phenotypic relationships between pubertal and growth characteristics of gilts. Journal of animal science. 1981, 53: 946-951.
    62. I’Anson H, Herbosa CG, Ebling FJ, Wood RI, Bucholtz DC, Mieher CD, Foster DL, Padmanabhan V. Hypothalamic versus pituitary stimulation of luteinizing hormone secretion in the prepubertal female lamb. Neuroendocrinology. 1993, 57: 467-475.
    63. Iiri T, Herzmark P, Nakamoto JM, van Dop C, Bourne HR. Rapid GDP release from Gsαin patients with gain and loss of endocrine function. Nature. 1994, 371: 164-168.
    64. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004, 80(4): 264-272.
    65. Jeong SH, Wu HG, Park WY .LIN28B confers radio-resistance through the posttranscriptionalcontrol of KRAS. Experimental and Molecular Medicine. 2009, 41(12): 912-918.
    66. Ji J, Wang XW. A Yin-Yang balancing act of the lin28/let-7 link in tumorigenesis. Journal of Hepatology. 2010, 53: 974-975.
    67. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, Clarke R, Sholler PF, Lirio AA, Foss C and et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nature Medicine. 2003, 9: 1081-1084. Karapanou O, Papadimitriou A. Determinants of menarche. Reproductive Biology and Endocrinology. 2010, 8: 115-122.
    68. Kasuya E, Nyberg CL, Mogi K, Terasawa E. A role ofγ-amino butyric acid (GABA) and glutamate in control of puberty in female rhesus monkeys: effect of an antisense oligodeoxynucleotide for GAD67 messenger ribonucleic acid and MK801 on luteinizing hormone-releasing hormone release. Endocrinology. 1999, 140: 705-712.
    69. Keen KL, Burich AJ, Mitsushima D, Kasuya E, Terasawa E. Effects of pulsatile infusion of the GABAA receptor blocker bicuculline on the onset of puberty in female rhesus monkeys. Endocrinology. 1999, 140: 5257-5266.
    70. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M and et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008, 83: 511-519.
    71. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Poul EL, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F and et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G proteincoupled receptor GPR54. J Biol Chem. 2001, 276: 34631-34636.
    72. Krewson TD, Supelak PJ, Hill AE, Singer JB, Lander ES, Nadeau JH, Palmert MR. Chromosomes 6 and 13 Harbor Genes that Regulate Pubertal Timing in Mouse Chromosome Substitution Strains. Endocrinology. 2004, 145(10): 4447-4451.
    73. Krsmanovic LZ, Hu L, Leung PK, Feng H, Catt KZ. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol Metab. 2009, 20: 402-408.
    74. Lanfranco F, Gromoll J, von Eckardstein S, Herding EM, Nieschlag E, Simoni M. Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54 genes in male idiopathic hypogonadotropic hypogonadism. Eur J Endocrinol. 2005, 153(6): 845-852.
    75. Lee JH, Miel ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR. KiSS-1, a novel human malignant melanoma metastissuppressor gene. J Natl Cancer Inst. 1996, 88(23): 1731-1736.
    76. Lee DK, Nguyen T, O'Neill GP, Cheng R, Liu Y, Howard AD, Coulombe N, Tan CP, Tang-Nguyen AT, George SR and et al. Discovery of a receptor related to the galanin receptors. FEBS Lett. 1999, 446(1): 103-107.
    77. Lents CA, Heidorn NL, Barb CR, Ford JJ. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction. 2008, 135: 879-887.
    78. Li S, Ren J, Yang G, Guo Y, Huang L. Characterization of the porcine kisspeptins receptor gene and evaluation as candidate for timing of puberty in sows. J Anim Breed Genet. 2008, 125(4): 219-227.
    79. Lin L, Conway GS, Hill NR, Dattani MT, Hindmarsh PC, Achermann JC. A homozygous R262Q mutation in the gonadotropin-releasing hormone receptor presenting as constitutional delay of growth and puberty with subsequent borderline oligospermia. J Clin Endocrinol Metab. 2006, 91: 5117-5121.
    80. Long JR, Xu H, Zhao LJ, Liu PY, Shen H, Liu YJ, Xiong DH, Xiao P, Liu YZ, Dvornyk V and et al. The oestrogen receptor alpha gene is linked and/or associated with age of menarche in different ethnic groups. J Med Genet. 2005, 42: 796-800.
    81. Lu L, Katsaros D, Shaverdashvili K, Qian B, Wu Y, Longrais IAR, Preti M, Menato G, Yu H. Pluripotent factor lin-28 and its homologue lin-28b in epithelial ovarian cancer and their associations with disease outcomes and expression of let-7a and IGF-II European Journal of Cancer. 2009, 45: 2212-2218.
    82. Luan X, Zhou Y, Wang W, Yu H, Li P, Gan X, Wei D, Xiao J. Association study of the polymorphisms in the KISS1 gene with central precocious puberty in Chinese girls. Eur J Endocrinol. 2007a, 157: 113-118.
    83. Luan X, Yu H, Wei X, Zhou Y, Wang W, Li P, Gan X, Wei D, Xiao J. GPR54 polymorphisms in Chinese girls with central precocious puberty. Neuroendocrinology. 2007b, 86(2): 77-83.
    84. MacDonald MC, Robertson HA, Wilkinson M. Age- and dose-related NMDA induction of fos-like immunoreactivity and c-fos mRNA in the arcuate nucleus. Brain Res Dev Brain Res. 1993, 73: 193-198.
    85. Mantovani G, Bondioni S, Lania AG, Corbetta S, de Sanctis L, Cappa M, Battista ED, Chanson P, Beck-Peccoz P, Spada A. Parental origin of Gs {alpha} mutations in the McCune-Albright syndrome and in isolated endocrine tumors. The Journal of Clinical Endocrinology & Metabolism. 2004, 89(6): 3007-3009.
    86. Mariot V, Wu JY, Aydin C, Mantovani G, Mahon MJ, Linglart A, Bastepe M. Potent constitutive cyclic AMP-generating activity of XLαs implicates this imprinted GNAS product in the pathogenesis of McCune–Albright Syndrome and fibrous dysplasia of bone. Bone. 2010, 48: 312-320.
    87. Matsui H, Takatsu Y, Kumano S, Matsumoto H and Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun. 2004, 320: 383-388.
    88. Matzuk MM. LIN28 lets BLIMP1 take the right course. Developmental Cell. 2009, 17(2): 160-161.
    89. Medhamurthy R, Gay VL, Plant TM. Repetitive injections of l-glutamic acid, in contrast to those of N-methyl-d,l-aspartic acid, fail to elicit sustained hypothalamic GnRH release in the prepubertal male rhesus monkey (Macaca mulatta). Neuroendocrinology. 1992, 55: 660-666.
    90. Meiji-Roelofs HMA, Kramer P, van Leeuwen ECM. The N-methyl-d-aspartate receptor antagonist MK-801 delays the onset of puberty and may acutely block the first spontaneous LH surge andovulation in the rat. J Endocrinol. 1991, 131: 435-441.
    91. Mendonca BB, Bloise W, Arnhold IJ P, Batista MC, Toledo SPA, Drummond MCF, Nicolau W, Mattar E. Male pseudohermaphroditism due to nonsalt-losing 3-beta-hydroxysteroid dehydrogenase deficiency: gender role change and absence of gynecomastia at puberty. J Steroid Biochem. 1987, 28: 669-675.
    92. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB and et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA. 2005, 102(5): 1761-1766.
    93. Mialon MM, Renand G, Krauss D, Menissier F. Genetic variability of the length of postpartum anoestrus with age at puberty. Genetic Selection Evolution. 2000, 32: 403-414.
    94. Mitsushima D, Kimura F. The maturation of GABAA receptor mediated control of luteinizing hormone secretion in immature male rats. Brain Res. 1997, 748: 258-262.
    95. Mitsushima D, Hei DL, Terasawa E.γ-aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormonereleasing hormone before the onset of puberty. Proc Natl Acad Sci USA. 1994, 91: 395-399.
    96. Miura K, Acierno Jr JS, Seminara SB. Characterization of the human nasal embryonic LHRH factor gene, NELF, and a mutation screening among 65 patients with idiopathic hypogonadotropic hypogonadism (IHH). J Hum Genet. 2004, 49: 265-268.
    97. Moguilevsky JA, Carbone S, Szwarcfarb DR, Scacchi P. Hypothalamic excitatory amino acid system during sexual maturation in female rats. J Steroid Mol Biochem Mol Biol. 1995, 53: 337-341.
    98. Morris JA, Jordan CL, Breedlove SM. Sexual differentiation of the vertebrate nervous system. Nat Neurosci. 2004, 7: 1034-1039.
    99. Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P and et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001, 276(31): 28969-28975.
    100. Nathan BM, Hodges CA, Supelak PJ, Burrage LC, Nadeau JH, Palmert MR. A quantitative trait tocus on chromosome 6 regulates the onset of puberty in mice. Endocrinology. 2006, 147: 5132-5138.
    101. Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor GPR54 in rat hypothalamus and potent LH releasing activity of KiSS-1 peptide. Endocrinology. 2004a, 145:4565-4574.
    102. Navarro VM, Fernandez-Fernandez R, Castellano JM, Roa J, Mayen A, Barreiro ML, Gaytan F, Aguilar E, Pinilla L, Dieguez C and et al. Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol. 2004b, 561: 379-386.
    103. Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P and et al. Characterization of the potent LH releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology. 2005a, 146: 156-163.
    104. Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Barreiro ML, Casanueva FF, Aguilar E, Dieguez C and et al. Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology. 2005b, 146: 1689-1697.
    105. Navarro VM, Tena-Sempere M. The KiSS-1/GPR54 system: putative target for endocrine disruption of reproduction at hypothalamic-pituitary unit? Int J Androl. 2008, 31(2): 224-232.
    106. Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processiong. RNA. 2008, 14: 1539-1549.
    107. Nishi Y, Tezuka T. Mild adrenal 3-beta-hydroxysteroid dehydrogenase deficiency in children with accelerated growth, premature pubarche and/or hirsutism. Europ J Pediat. 1992, 151: 19-23.
    108. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y and et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001, 411(6837): 613-617.
    109. Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, Bingham SA, Brage S, Smith GD, Ekelund U and et al. Genetic variation in LIN28B is associated with the timing of puberty. Nature Genetics. 2009, 41(6): 729-733.
    110. Payne AH, Abbaszade IG, Clarke TR, Bain PA, Park CHJ. The murine 3 ?-hyroxysteroid dehydrogenase isoforms: structure, function and tissue-and developmentally specific expression. Steroids. 1997, 62: 169-175.
    111. Parhar IS, Ogawa S, Sakuma Y. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology. 2004, 145(8): 3613-3618.
    112. Perry JRB, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, Smith AV, Aspelund T, Bandinelli S, Boerwinkle E and et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nature Genetics. 2009, 41(6): 648-650.
    113. Phocas F, Sapa J. Genetic parameters for growth, reproductive performance, calving ease and suckling performance in beef cattle heifers. Animal Science. 2004, 79: 41-48.
    114. Phocas F, Vinet A, Renand G. Genetic variability of reproductive traits in harolais cows. Proceedings of the seventh world congress on genetics applied to livestock production. Montpellier, France, session 2. 2002, pp.0-4
    115. Plant TM, Ramaswamy S, DiPietro MJ. Repetitive administration of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology. 2006, 147: 1007-1013.
    116. Plant TM, Gay VL, Marshall GR, Arslan M. Puberty in monkeys is triggered by chemicalstimulation of the hypothalamus. Proc Natl Acad Sci USA. 1989, 86: 2506-2510.
    117. Quaynor S, Hu L, Leung PK, Feng H, Mores N, Krsmanovic LZ, Catt KJ. Expression of a functional G protein-coupled receptor 54-kisspeptin autoregulatory system in hypothalamic gonadotropin releasing hormone neurons. Mol Endocrinol. 2007, 21: 3062-3070.
    118. Rahpeymai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson AK, Zwirner J, Wetsel RA, Gerard C, Pekny M, Pekna M. Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J. 2006, 25: 1364-1374.
    119. Ramaswamy S, Guerriero KA, Gibbs RB, Plant TM. Structural interactions between kisspeptin and GnRH neurons in the mediobasal hypothalamus of the male rhesus monkey (Macaca mulatta) as revealed by double immunofluorescence and confocal microscopy. Endocrinology. 2008, 149: 4387-4395.
    120. Revel FG, Ansel L, Klosen P, Saboureau M, Pevet P, Mikkelsen JD, Simonneaux V. Kisspeptin: a key link to seasonal breeding. Rev Endocr Metab Disord. 2007, 8(1): 57-65.
    121. Revel FG, Saboureau M, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V. Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr Biol. 2006, 16(17): 1730-1735.
    122. Riminucci M, Fisher LW, Majolagbe A, Corsi A, Lala R, de Sanctis C, Robey PG, Bianco P. A novel GNAS1 mutation, R201G, in McCune–Albright Syndrome. Journal of Bone and Mineral Research. 1999, 14(11): 1987-1989.
    123. Rogers SW, Andrews P I, Gahring LC, Whisenand T, Cauley K, Crain B, Hughes TE, Heinemann SF, McNamara JO. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science. 1994, 265: 648-651.
    124. Rometo AM, Krajewski SJ, Voytko ML, Rance NE. Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endocrinol Metab. 2007, 92: 2744-2750.
    125. Roth CL, McCormackb AL, Lomniczi A, Mungenast AE, Ojeda SR. Quantitative proteomics identifies a change in glial glutamate metabolism at the time of female puberty. Molecular and Cellular Endocrinology. 2006, 254-255: 51-59.
    126. Rothenbuhler A, Fradin D, Heath S, Lefevre H, Bouvattier C, Lathrop M, Bougneres P. Weight-adjusted genome scan analysis for mapping quan titative trait Loci for menarchal age. J Clin Endocrinol Metab. 2006, 91: 3534-3537.
    127. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R, Wulczyn FG. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biology. 2008, 10: 987-993.
    128. Sedlmeyer IL, Pearce CL, Trueman JA, Butler JL, Bersaglieri T, Read AP, Clayton PE, Kolonel LN, Henderson BE, Hirschhorn JN and et al. Determination of sequence variation and haplotype structure for the gonadotropin-releasing hormone (GnRH) and GnRH receptor genes: investigation of role in pubertal timing. J Clin Endocrinol Metab. 2005, 90: 1091-1099.
    129. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG and et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003, 349(17): 1614-1627.
    130. Semple RK, Achermann JC, Ellery J, Farooqi IS, Karet FE, Stanhope RG, O'Rahilly S, Aparicio SA. Two novel missense mutations in G protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2005, 90(3): 1849-1855.
    131. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA. 2005, 102(6): 2129-2134.
    132. Shahed A, Young KA. Differential ovarian expression of KiSS-1 and GPR-54 during the estrous cycle and photoperiod induced recrudescence in Siberian Hamsters (Phodopus sungorus). Mol Reprod Dev. 2009, 76: 444-452.
    133. Simerly RB. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci. 2002, 25: 507-536.
    134. Smith JT, Acohido BV, Clifton DK and Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol. 2006, 18: 298-303.
    135. Smith JT. Sex steroid control of hypothalamic Kiss1 expression in sheep and rodents: comparative aspects. Peptides. 2009, 30: 94-102.
    136. Stafford LJ, Xia CZ, Ma WB, Cai Y, Liu MY. Identification and characterization of mouse metastasis-suppressor KiSS1 and its G-protein-coupled receptor. Cancer Res. 2002, 62: 5399-5404
    137. Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Alexandersen P, Feenstra B, Boyd HA and et al. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nature Genetics. 2009, 41(6): 734-738.
    138. Suzuki S, Kadokawa H, Hashizume T. Direct Kisspeptin-10 stimulation on luteinizing hormone secretion from bovine and porcine anterior pituitary cells. Anim Reprod Sci. 2008, 103: 360-365.
    139. Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med. 2008, 358(7): 709-715.
    140. Tena-Sempere M. GPR54 and kisspeptin in reproduction. Hum Reprod Update. 2006, 12(5): 631-639.
    141. Tenenbaum-Rakover Y, Commenges-Ducos M, Iovane A, Aumas C, Admoni O, de Roux N. Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54. J Clin Endocrinol Metab. 2007, 92(3): 1137-1144.
    142. Terao Y, Kumano S, Takatsu Y, Hattori M, Nishimura A, Ohtaki T, Shintani Y. Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochim Biophys Acta. 2004, 1678: 102-110.
    143. Terasawa E, Fernandez D. Neurobiological mechanisms of the onset of puberty in primates. Endocrine Reviews. 2001, 22(1): 111-151.
    144. Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR Central and peripheral administration of kisspeptin-10 stimulates the hypothalamo-pituitary-gonadal axis. J Neuroendocrinol. 2004, 16: 850-858.
    145. Thrailkill KM, Moreau CS, Cockrell G, Simpson P, Goel R, North P, Fowlkes JL, Bunn RC. Physiological matrix metalloproteinase concentrations in serum during childhood and adolescence, using Luminex? Multiplex technology. Clin Chem Lab Med. 2005, 43(12): 1392-1399.
    146. Urbanski HF, Ojeda SR. Activation of luteinizing hormonereleasing hormone release advances the onset of female puberty. Neuroendocrinology. 1987, 46: 273-276.
    147. van den Berg SM, Setiawan A, Bartels M, Polderman TJC, van der Vaart AW, Boomsma1 DI. Individual differences in puberty onset in girls: bayesian estimation of heritabilities and genetic correlations. Behavior Genetics. 2006, 36(2): 261-270.
    148. Viswanathan SR, Daley GQ. Lin28: A MicroRNA Regulator with a Macro Role. Cell. 2010, 140: 445-449.
    149. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S,óSullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP and et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genet. 2009, 41: 843-848.
    150. Wagoner HA, Steinmetz R, Bethin KE, Eugster EA, Pescovitz OH, Hannon TS. GNAS mutation detection is related to disease severity in girls with McCune-Albright syndrome and precocious puberty. Pediatr Endocrinol Rev. 2007, 4(Suppl 4): 395-400.
    151. West A, Vojta PJ, Welch DR, Weissman BE. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1) genomics. 1998, 54: 145-148.
    152. West JA, Viswanathan SR, Yabuuchi A, Cunniff K, Takeuchi A, Park IH, Sero JE, Zhu H, Perez-Atayde A, Frazier AL and et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature. 2009, 460: 909-914.
    153. Whitlock BK, Daniel JA, Wilborn RR, Rodning SP, Maxwell HS, Steele BP, Sartin JL. Interaction of estrogen and progesterone on kisspeptin-10-stimulated luteinizing hormone and growth hormone in ovariectomized cows. Neuroendocrinology. 2008, 88: 212-215.
    154. Widén E, Ripatti S, Cousminer DL, Surakka I, Lappalainen T, J?rvelin MR, Eriksson JG, Raitakari O, Salomaa V, Sovio U and et al. Distinct variants at LIN28B influence growth in height from birth to adulthood. The American Journal of Human Genetics. 2010, 86: 773-782.
    155. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, Soloway P, Itohara S, Werb Z. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis.The Journal of Cell Biology. 2003, 162(6): 1123-1133.
    156. Woo TU, Whitehead RE, Melchitzky DS, Lewis DA. A subclass of prefrontalγ-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA. 1998, 95:5341-5346.
    157. Wu SM, Leschek EW, Brain C, Chan WY. Familial male-limited precocious puberty: effect of the size of a critical amino acid on receptor activity. Molecular Genetics and Metabolism. 1999, 66:68-73.
    158. Xin X, Luan X, Xiao J, Wei D, Wang J, Lub D, Yang S. Association study of four activity SNPs of CYP3A4 with the precocious puberty in Chinese girls. Neuroscience Letters. 2005, 381: 284-288.
    159. Yano K, Kohn LD, Saji M, Kataoka N, Okuno A, Cutler Jr GB. A case of male-limited precocious puberty caused by a point mutation in the second transmembrane domain of the luteinizing hormone choriogonadotropin receptor gene. Biochemical and Biophysical Research Communications. 1996,
    220: 1036-1042.
    160. Yonemasu K, Kitajima H, Tanabe S, Ochit T, Shinkai H. Effect of age on Clq and C3 levels in human serum and their presence in colostrums. Immunology. 1978, 35: 523-530.
    161. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R and et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318: 1917-1920.
    162. Zhang W, Saji S, M?kinen S, Cheng G, Jensen EV, Warner M, Gustafsson J?. Estrogen receptor (ER)β, a modulator of ERalpha in the uterus. Proc Natl Acad Sci USA. 2000, 97(11): 5936-5941.
    163. Zhu H, Shah S, Shyh-Chang N, Shinoda G, Einhorn WS, Viswanathan SR, Takeuchi A, GrasemannC, Rinn JL, Lopez MF and et al. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nature Genetics. 2010, 42: 626-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700