转fat-1基因体细胞克隆绵羊的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
fat-1基因编码ω-3 PUFAs脱氢酶,可以将PUFAs从ω-6转化为ω-3形式。本研究目的是通过动物转基因技术将fat-1转入绵羊的基因组,再利用动物克隆技术创造能产生ω-3 PUFAs的转基因绵羊,从而培育含ω-3 PUFAs丰富的转基因肉羊新材料。以我区绵羊为对象,摸索了绵羊克隆胚的构建和胚胎移植体系;建立雄性绵羊胎儿的皮肤成纤维细胞系;克隆了秀丽隐杆线虫的fat-1基因,构建目的基因表达载体;再将其转染到绵羊成纤维细胞基因组中,经G418筛选,PCR鉴定后选择阳性细胞建立转基因细胞系;通过体细胞克隆动物技术构建并生产转基因克隆胚并移植,待移植后代出生后鉴定并检测其肌肉中ω-6和ω-3 PUFAs的相对含量及比值;以获得转基因的具有保健功能的肉羊新品种。
     1.绵羊体细胞克隆体系的优化
     本实验主要是对体细胞克隆胚移植胚龄的摸索。采用组织块种植法分离培养了三种雌性成年绵羊耳皮肤成纤维细胞系,分三个阶段进行绵羊体细胞克隆体系的优化。
     第一阶段构建了来源于1号细胞的重构胚272枚,体外发育到桑椹胚期移植入17只受体羊中,有一只妊娠,妊娠率为5.88%,产羔羊1只,经鉴定为克隆羊。
     第二阶段构建了来源于2号细胞的重构胚683枚,分别在胚胎发育的不同时期进行了胚胎移植,共移植了35只受体羊。结果显示,在3只移入的胚龄是1-细胞期胚胎的羊中,有一只妊娠并产羔1只,经鉴定为克隆羊。
     第三阶段构建了来源于3号细胞的重构胚197枚,在1-细胞期阶段全部移入了11只受体羊中,结果有两只羊妊娠,妊娠率为18.18%,生产了3只克隆羊,产羔率为27.27%。有效地的重复了第二阶段实验。待克隆羔羊性成熟和体成熟后对其进行了自然交配,成年体细胞克隆羊正常顺产2胎,均是双胞胎。表明获得的克隆羊具有正常的生殖和哺育后代的能力,进一步证明,本实验室建立了相对稳定的的体细胞克隆绵羊技术体系。
     2.转基因体细胞克隆体系的建立
     采用组织块种植法分离纯化了约40日龄绵羊胎儿成纤维细胞;克隆了秀丽隐杆线虫fat-1基因,同时对其进行了密码子的优化与合成,构建了pTFK-c和pTFK-o两个真核表达载体。pTFK-o转染绵羊胎儿成纤维细胞,经G418压力筛选后进行转基因细胞的鉴定。结果表明获得的7个细胞克隆中有5个细胞系的基因组中整合有目的基因,对获得的转基因细胞进行染色体数目分析,其核型正常率为69.77% (2n=54),符合用于转基因克隆的要求。
     以筛选到的7号转fat-1基因绵羊胎儿成纤维细胞系为核供体,绵羊去核卵母细胞胞质为核受体生产转基因克隆胚。采用抽吸法共回收卵母细胞4881枚,成熟培养18h成熟率为72.87%。实验共进行去核操作绵羊卵母细胞3557枚,用于融合的卵数是3305枚,共融合3040枚,融合率为91.39%。共分三组移植了处于1-细胞期的2909枚胚胎到230只羊体内,1组移植了146只受体羊,妊娠5只,妊娠率为3.42%,产羔5只,产羔率为3.42%;2组移植了60只受体羊,妊娠18只,妊娠率为30%,产羔19只,产羔率为31.67%;3组移植了24只羊,妊娠5只,妊娠率为20.83%,产羔6只,产羔率为25%。后2组实验结果进一步优化了体细胞克隆技术体系。3.转fat-1基因克隆绵羊的出生与鉴定
     通过实验共产羔30只,其中19只存活。对获得的30只中的29只转基因克隆羔羊进行基因组水平检测,结果显示有27只羔羊基因组中含有目的基因。克隆羊肌肉组织中ω-6和ω-3PUFAs的相对含量检测结果显示,在检测的23只羊中有18只羊都表达了有活性的脂肪酸脱氢酶,其ω-6/ω-3 PUFAs比值都有不同程度的降低,平均值为16.45,其ω-3 PUFAs的平均值为0.194,和对照公羊平均值0.147相比提高了31.97%,有效的改善了绵羊体内ω-6和ω-3 PUFAs的相对比例和含量。
Fat-1 gene encodingω-3 polyunsaturated fatty acids (PUFAs) desaturase, can convert polyunsaturated fatty acids fromω-6 toω-3 form. The aim of study present here was to obtain transgenic sheeps, which contained abundantω-3 PUFAs in their muscles, through transferring the fat-1 gene into ovine genome and then production the transgenic cloned sheep by animal cloning technology. By means of our predominant sheep species, we optimized the construction and embryo transferring system of ovine cloned embryo, established male ovine fetal fibroblast cell line, cloned the fat-1 gene from Caenorhabditis elegans and constructed the expression vector containing purpose gene. In vitro cultured ovine fetal fibroblast cells were transfected with this vector. The stable transfected cell lines were established through G418 screening, and the transgenic cells were identified by PCR. Using the nuclei from selected donor cells, ovine embryos were produced via nuclear transfer technology and the reconstructed embryos were transferred to recipients via embryo transfer technology. Transgenic generations to be identified and detected the relative amount and ratio ofω-6 andω-3 PUFAs in the muscle after the birth, so that to obtain transgenic sheep with new varieties of health functions.
     1. Optimization of sheep somatic cell cloning system
     The aim of this experiment is to optimize transferring system of somatic cell cloned embryos on developmental stages of reconstruction embryo. Three female ovine ear skin fibroblast cell lines were isolated and cultured by attachment of tissue pieces and the exploration divided into three stages.
     The first stage, we constructed 272 cloned embryo from No. 1 cell line, than transferred into 17 recipient female sheeps when the embryos developed in the morula stage in vitro. There is one pregnancy and the pregnancy rate was 5.88%. One lamb was born, and it was identified as Cloned sheep.
     The second phase we constructed 683 cloned embryo from No. 2 cell line, than transferred into 35 recipients when the embryos developed in different stages in vitro. The results showed that, there was a pregnancy in 3 recipients which were transferred the 1-cell embryos, and born one lamb which was identified as Cloned sheep.
     The third phase we constructed 197 cloned embryo from No. 3 cell line, than transferred into 11 recipients when the embryos developed in 1-cell stage in vitro. The results showed that, there were two pregnancy and the pregnancy rate was 18.18%. Three lambs were born and the lambing rate was 27.27%. This result effectively repeated the second phase of experiments. The cloned sheep was wildly paired with ram after it developed to sexual and physical maturity. The adult somatic cell cloned sheep delivered two twins. The results showed that we obtained cloned sheep with normal reproductive and feeding ability for offsprings , and further prove that the laboratory had established a relatively stable sheep somatic cell cloning technology system.
     2. Establishment of transgenic somatic cell cloning system
     The male ovine fetal fibroblast cells were isolated and cultured by attachment of tissue pieces from 40d old ovine fetal. We cloned the fat-1 gene from Caenorhabditis elegans, optimized the fat-1 gene sequence according to ovine hobby codons, and synthesis the optimized fat-1 gene sequence. Then we constructed pTFK-c and pTFK-o eukaryotic expression vectors. Sheep fetal fibroblasts were transfected by pTFK-o, screened by G418, and identified by PCR. The results showed that 5 cell lines genome had integrated the target gene in 7 clones obtained. The chromosome number analysis of the transgenic cell showed that the normal karyotype was 69.77% (2n = 54), so the transgenic ovine fetal fibroblast cells gave a good fit to transgenic cloning manipulation. The transgenic ovine fetal fibroblast cell line 7 as nuclear donor cell and enucleated oocytes served as recipient cytoplasm to produce nuclear transferred embryos. Totally 4881 oocytes were collected by aspiration, 72.87% of them were matured after 18 hours culture and 3557 oocytes were enucleated and 3305 enucleated oocytes were treated for electrofusion with donor cells. Among them, 3040(58.4%) couplets were fused and the fusion rate was 91.39%. Totally 2909 reconstructed 1-cell embryos divided into three groups were transferred into 230 recipients. Group 1 transferred into 146 recipients, and there were 5 pregnant sheeps and pregnancy rate was 3.42%, lambing 5 and lambing rate was 3.42%. Group 2 transferred into 60 recipients, 18 pregnancy and the pregnancy rate was 30%, 19 lambing and lambing rate was 31.67%. Group 3 transferred into 24 sheeps, 5 pregnancy and pregnancy rate was 20.83%, 6 lambing and lambing rate of was 25%. The results of last 2 groups further optimized the somatic cell cloning technology system.
     3. Birth and identification of fat-1 transferred cloned sheeps
     We obtained 30 lambs and 19 survived. There were 27 ovine genome contains fat-1 gene in 29 lambs. The detection results of relative amount ofω-6 andω-3PUFAs in cloned sheep muscle tissue showed that, there were 18 in the 23 sheeps expressed fatty acid desaturase, theω-6/ω-3 PUFAs ratios of them were lower, and the average was 16.45. The average of relative amount aboutω-3 PUFAs was 0.194, which increased 31.97% compared to that of control rams (0.147). This work effective improved theω-6 andω-3 PUFAs relative proportion and content.
引文
1 Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA[J].Proc Natl Acad Sci,USA,1974,Vol.71(4):1250-1254
    2 Jaenisch R.Germ line integration and mendelian transmission of the exogenous moloney leukemia virus[J].Proc Natl Acad Sci, USA,1976,Vol.73:1260-1264
    3 Gordon JW,Scangos GA,Plotkin DJ,et al.Genetic transformation of mouse embryos by microinjection of purified DNA[J].Proc Natl Acad Sci,USA,1980,Vol.77:7380-7384
    4 Palmiter RD,Brinster RL,Hammer RE,et al.Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes[J].Nature,1982,Vol.300:611-615
    5 Hammer RE,Pursel VG,Rexroad CE,et al.Production of transgenic rabbits,sheep and pigs by microinjection[J].Nature,1985,Vol.315:680-683
    6 Van Cott KE, Butler SP, Russell CG, et al. Transgenic pigs as bioreactors: acomparison of gamma-carboxylation of glutamic acid in recombinant human protein C and factorⅨby the mammary gland[J].Genet Anal,1999,Vol.15(3-5):155-160
    7 Anthony W,Homan EJ,Ballou JC,et al.Transgenic cattle produced by reverse transcribed gene transfer in oocyte[J].Proc.Natl.Acad.Sci,USA,1998,Vol.95:14028- 14033
    8 Zhang K. Lu D, Xue J, et al. Construction of mammary gland-specific expression vectors for human clotting factor IX and its secretory expression in goat milk[J].Chin J Biotechnol,1997,Vol.13(4):271-276
    9 Gordon K,Lee E,Vitale JA,et al. Production of human tissue plasminogen activator in transgenic mouse milk[J].Biotech,1992,Vol.24:425-428
    10 Pittius CW, Hennighausen L, Lee E, et al. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice[J].Proc Natl Acad Sci USA,1988,Vol.85(16):5874-5878
    11 Meade H, Gates L. Bovine alpha S1-casein gene sequences direct high level expression of active human urokinase in mouse milk[J].Biotechnology,1990,Vol.8:443-448
    12 Wright G,Carver A, Cottom D. et al. High level expression of active human Alpha-1- antitrypsin in the milk of transgenic sheep[J].Bio Technology,1991,Vol.9:830-834
    13 Velander WH,Johnson JL,Page RL,et al. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C[J].Proc Natl Acad Sci USA,1992,Vol.89(24):12003-12007
    14 Shani M, Barash I, Nathan M, et al. Expression of human serum albumin in the milk of transgenic mice[J].Transgenic Res,1992,Vol.1(5):195-208
    15 Brem G. Inheritance and tissue-specific expression of transgenes in rabbits and pigs[J].Mol Reprod Dev,1993,Vol.36(2):242-244
    16 Niemann H, Halter R, Carnwath JW, et al. Expression of human blood clotting factorⅧin the mammary gland of transgenic sheep[J].Transgenic Res,1999,Vol.8(3):237-247
    17 Swanson ME, Martin MJ, Donnell JK, et al. Production of functional human hemoglobin in transgenic swine[J].Biotechnology,1992,Vol.10(5):557-559
    18 Larrick JW, Thomas DW. Producing proteins in transgenic plants and animals[J].Curr Opin Biotechnol,2001,Vol.12(4):411-418
    19 Wilmut I, Schnieke AE, McWhir WA, et al. Viable offspring derived from fetal and adult mammalian cells[J].Nature,1997,Vol.385:810-813
    20 Schnieke AE,Kind AJ,Ritchie WA,et al.Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J].Science,1997,Vol.278: 2130-2133
    21 Cibelli JB, Stice SL, Golueke PJ, et al. Cloned transgenic calves produced from non- quiescent fetal fibroblasts[J].Science,1998,Vol.280:1256-1258
    22 Brophy B, Smolenski G,W heeler T. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein[J].Nature Biotechnology,2003,Vol.21:157 -162
    23 Hiendleder S, Prelle K, Bruggerhoff K,et al. Nuclear-cytoplasmic interactions affect in utero developmental capacity, phenotype, and cellular metabolism of bovine nuclear transfer fetuses[J].Bio Rep,2004,Vol.70:1196-1205
    24 Yang XY,Li H,Ma QW, et al. Improved efficiency of bovine cloning by autologous somatic cell nuclear transfer[J].Reproduction,2006,Vol.132(5):733-739
    25 Kuroiwa Y, Kasinathan P, Matsushita H, et al. Sequential targeting of the genes encoding immunoglobulin-μand prion protein in cattle[J]. Nat Genet,2004,36(7): 775-780
    26 Wall RJ, Powell AM, Paape MJ, et al. Genetically enhanced cows resist intramammary Staphylococcus aureus infection[J]. Nat Genet,2005,Vol.23(4):445-51
    27 Lai L, Kang JX, Li R. Generation of cloned transgenie pigs rich in omega-3 fatty acids[J].Nat Biotechnol,2006,Vol.24(4):435-436
    28 Baldassarre H, Hockley DK, Dore M, et al. Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk[J].Transqenic Res,2008,Vol.17(1):73-84
    29 McCreath KJ,Howcroft J,Campbell KH,et al.Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J].Nature,2000,Vol.405:1066-1069
    30 Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1, 3-galactosyl transferase knockout pigs by nuclear transfer cloning[J].Science,2002,Vol. 295(5557):1089-1092
    31 Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1, 3-galactosyl transferase gene in cloned pigs[J]. Nat Biotechnol,2002,Vol.20(3):251-255
    32 Phelps CJ, Koike C, Vaught TD, et al. Production of alpha1, 3-galactosyl transferase -deficient pigs[J].Science,2003,Vol.299:411-414
    33 Yutaka S,Tokihiko S.Manami U.Heterozygous disruption of theα-1,3-galactosyl transferase gene in cattle[J].Transplation,2003,Vol.76(6):900-902
    34 Wu R,Hendrix-LucasN,Kuick R, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways[J].Cancer Cell,2007,Vol.11(4):321-333
    35 Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J].Cell,2007,Vol.129(2): 303-317
    36 Selman C, Tullet JMA, W ieserD, et al. Ribosomal protein S6 kinase signaling regulates mammalian life span[J].Science,2009,Vol.326(5949):140-144
    37 Oguro H, Yuan J, Ichikawa H, et al. Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1[J].Stem Cell,2010,Vol.6(3):279-286
    38 Fire A, Xu S, Montgomery MK, et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,Vol.391(6669):806- 811
    39 Plasterk RHA.RNA silencing: The genome's immune system[J].Science,2002,Vol.296: 1263-1265
    40 Rettig GR, Rice KG. Quantitative in vivo imaging of Non-viral-Mediated gene expression and RNAi-Mediated knockdown[J].Methods Mol Biol,2009,Vol.574:155-171
    41 McAnuff MA, Rettig GR, Rice KG. Potency of siRNA versus shRNA mediated knockdown in vivo[J].Pharm Sci,2007,Vol.96(11):2922-2930
    42 Acosta J, Carpio Y, Borroto I, et al. Myostatin gene silenced by RNAi show a zebrafish giant phenotype[J].Biotechnol,2005,Vol.119(4):324-331
    43 Pfeifer A, Eigenbrod S, Al-Khadra S, et al. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice[J].Clin Inves,2006,Vol.116(12):3204-3210
    44 Dickins RA, McJunkin K, Hernando E, et al. Tissue-specific and reversible RNA interference in transgenic mice[J].Nat Genet,2007,Vol.39(7):914-921
    45 Smih F, RouetP, Romanienko PJ, et al. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells[J].Nucleic Acids Research,1995, Vol.23(24):501-502
    46 Hockemeyer D,Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J].Nat Biotechnol,2009,Vol.27:851-857
    47 Geurts AM, Cost GJ, Freyvert Y, et al. Knockout rats via embryomicro-injection of zinc-finger nucleases[J].Science,2009,Vol.325(5939):433-436
    48 Miller JC, HolmesMC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing[J].Nature Bio-technology,2007,Vol.25(7): 778-785
    49 Thomas KR,Capecchi MR.Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J].Cell,1987,Vol.51:503-512
    50 Tong C,Li P,Wu NL,et al.Production of p53 gene knockout rats by homologous recombination in embryonic stem cells[J].Nature,2010,Vol.467:211-213
    51 Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,Vol.126:663-676
    52 Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J].Cell,2007,Vol.131(5):861-872
    53 Yu J, Vodyanik MA, Smuga-Otto K, et al.Induced pluripotent stem cell lines derived from human somatic cells[J].Science,2007,Vol.318(5858):1917-1920
    54 Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J].Nature,2009,Vol.458(7239):766-770
    55 Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J].Nature,2009,Vol.458(7239):771-775
    56 Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors[J].Cell,2009, Vol.136(5): 964-977
    57 Ivics Z,Hackett PB,Plasterk RH,et al.Molecular reconstruction of Sleeping beauty,a Tc1-like transposon from fish,and its transposition in human cells[J].Cell,1997,Vol.91:501-510
    58 Ding S,Wu X,Li G,et al.Efficient transposition of the piggyBac(PB) transposon in mammalian cells and mice[J].Cell,2005,Vol.122(3):473-483
    59 Graham FL and van der Eb AJ. Transformation of rat cells by DNA of human adenovirus 5[J].Virology,1973,Vol.54:536-539
    60 Neumann E, Schaefer-Ridder M, Wang Y, et al. Gene transfer into mouse lyoma cells by electroporation in high electric fields[J].EMBO J,1982,Vol.1:841-845
    61 Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells[J].Cell,1980,Vol.22:479-488
    62 Brinster RL, Chen HY, Trumbauer ME, et al. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs[J].Proc. Natl. Acad. Sci. USA,1985,Vol.82:4438-4442
    63 Hofmann A, Kessler B, Ewerling S, et al. Effcicent transgenesis in farm animals by lentiviral vectors[J].EMBO Rep,2003,Vol.4(11):1054-1060
    64 Krimpenfort P, Rademakers A, Eyestone W, et al. Generation of transgenic dairy cattle using in vitro embryo production[J].Biotechnology (NY),1991,Vol.9: 844-847
    65 Kupriyanov S, Zeh K, Baribault H, et al. Double pronuclei injection of DNA into zygotes increases yields of transgenic mouse lines[J].Transgenic Research,1997, Vol.7:223-226
    66 Chan A, KukoljG, Skalka A. et al. Timing of DNA microinjection, transgenic mosaicism, and pronuclear microinjection[J].Molecular Reproduction and Development,1999, Vol.52:406-413
    67 Bowen RA,Reed ML, Schnieke A, et al.Transgenic cattle resulting from biopsied embryos: expression of c-ski in a transgenic calf[J].Biol Reprod,1994,Vol.50(3):664-668
    68 Takada T, Awaji T, Itoh K, et al. Selective production of transgenic mice using green fluorescent protein as a marker[J].Nature Biotechnology,1997,Vol.15:453-461
    69 Ohtsuka M, Ogiwara S, Miura H, et al. Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression[J].Nucleic Acids Research,2010,Vol.38(22):e198-e201
    70 Hofmann A, Kessler B, Ewerling S, et al. Epigenetic regulation of lentiviral transgene vectors in a large animal mode[J].Molecular Therapy,2006,Vol.13:59-66
    71 Roe TY, Reynolds TC, Yu G,et al. Integration of murine leukemia virus DNA depends on mitosis[J].EMBO J,1993,Vol.12, 2099-2108
    72 Chan A, Homan EJ, Ballou LU, et al. Transgenic cattle produced by reverse- transcribed gene transfer in oocytes[J].Proc.Natl.Aca.Sci. USA,1998,Vol.95(24):14028-14033
    73 Chapman SC, Lawson A, Macarthur WC, et al. Ubiquitous GFP expression in chicken using a lentivial vector[J].Development,2005,Vol.132(5):935-940
    74 Ryu BY, Orwig KE, Oatley JM, et al. Efficient generation of transgenic rats through the male germ line using lentiviral transduction and transplantation of spermatogonial stem cells[J].Andrology,2007,Vol.28(2):353-363
    75 Michalkiewicz M, Michalkiewicz T, Geurts AM, et al. Efficient transgenic rat production by a lentiviral vector[J].Am J Physiol Heart Circ Physiol,2007,Vol.293: H881-H894
    76 Adams DJ, van der Weyden L. Contemporary approaches for modifying the mouse genome[J]. Physiol Genomics,2008,Vol.34:225-238
    77 Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgenic cattle by lentiviral gene transfer into oocytes[J].Biol Reprod,2004,Vol.71:405-409
    78 Huss D, Poynter G, Lansford R. Japanese quail (Coturnix japonica) as a laboratory animal model[J].Lab Anim (NY),2008,Vol.37:513-519
    79 Sasaki E, Suemizu H, Shimada A, et al. Generation of transgenic non-human primates with germ line transmission[J].Nature,2009,Vol.459:523-527
    80 Yang SH, Cheng PH, Banta H, et al.Towards a transgenic model of Huntington’s disease in a nonhuman primate[J].Nature,2008,Vol.453:921-924
    81 Agca C,Fritz JJ,Walker LC,et al.Development of transgenic rats producing humanβ-amyloid precursor protein as a model for Alzheimer’s disease: transgene and endogenous APP genes are regulated tissues pecifically[J].BMC Neuro Sci,2008,Vol.9: 28-33
    82 Hamra FK, Gatlin J, Chapman KM, et al. Production of transgenic rats by lentiviral transduction of male germ-line stem cells[J].Proc NatlAcad Sci USA,2002,Vol.99: 14931-14936
    83 Nagano M, Brinster CJ, Orwig KE, et al. Transgenic mice produced by retroviral transduction of male germ-line stem cells[J].Proc Natl Acad Sci USA,2001,Vol. 98:13090-13095
    84 Nagano M, Watson DJ, Ryu BY, et al. Lentiviral vector transduction of male germ line stem cells in mice[J].FEBS Lett,2002,Vol.524:111-115
    85 Reichenbach M,Lim T, Reichenbach HD, et al. Germ-line transmission of lentivial PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology[J].Transgenic Res,2010,Vol.19(4):549-556
    86 Brackett B G, Baranska W, Sawicki W, et al. Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization[J].Proc Natl Acad Sci USA,1971,Vol.68:353-357
    87 Lavitrano M, Camaioni A, Fazio V M, et al. Sperm cells as vectors for introducing foreign DNA into eggs-genetic transformation of mice[J].Cell,1989, Vol.57:717-723
    88 Lavitrano M, Forni M, Bacci M L, et al. Sperm mediated gene transfer in pig: Selection of donor boars and optimization of DNA uptake[J].Mol Reprod Dev,2003,Vol.64(3):284 -291
    89 Zani M, Lavitrano M, French D, et al. The mechanism of binding of exogenous DNA to sperm cells: factors controlling the DNA uptake[J].Exp Cell Res,1995, Vol.217(1): 57-64
    90 Perry AC, Wakayama T, Kishikawa H, et al. Mammalian transgenesis by intracytoplasmic sperm injection[J].Science,1999,Vol.284:1180-1183
    91 Moreira PN, Pozueta J, Giraldo P, et al. Generation of yeast artificial chromosome transgenic mice by intracytoplasmic sperm injection[J].Methods Mol Biol,2006, Vol.349:151-161
    92 Moreira PN, Pozueta J, Perez-Crespo M, et al. Improving the generation of genomic-type transgenic mice by ICSI[J].Transgenic Res,2007,Vol.16:163-168
    93 Lavitrano M, Marialaurabacci, Monicaforni, et al. Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation[J].Proc Natl Acad Sci,2002,Vol.99:14230-14235
    94 Kaneko T, Moisyadi S, Suganuma R, et al. Recombinase-mediated mouse transgenesis by intracytoplasmic sperm injection[J].Theriogenology,2005,Vol.64:1704-1715
    95 Suganuma R, Pelczar P, Spetz JF, et al. Tn5 transposase-mediated mouse transgenesis[J].Biol Reprod,2005,Vol.73:1157-1163
    96 Chang K, Qian J, Jiang M, et al. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer[J].BMC Biotechnol,2002,Vol.2:5-10
    97 Gandolfi F. Spermatozoa, DNA binding and transgenic animals[J].Transgenic Res,1998, Vol.7:147-155
    98 Gandolfi F. Sperm-mediated transgenesis[J].Theriogenology,2000,Vol.53:127-137
    99 Sin FY, Walker SP, Symonds JE, et al. Electroporation of salmon sperm for gene transfer: efficiency, reliability, and fate of transgene[J].Mol Reprod Dev,2000, Vol.56:285-288
    100 Bachiller D, Schellander K, Peli J, et al. Liposomemediated DNA uptake by sperm cells[J].Mol Reprod Dev,1991,Vol.30:194-200
    101 Khoo H W, Ang L H, et al. Sperm cells as vectors for introducing foreign DNA into zebrafish[J].Aquaculture,1992,Vol.109: 1-19
    102 Macha J, Stursova D, Takac M, et al. Uptake of plasmid RSV DNA by frog and mouse permatozoa[J].Folia Biol (Praha),1997,Vol.43:123-127
    103 Ishibashi S, Kroll KL, Amaya E. A method for generating transgenic frog embryos[J]. Methods Mol Biol,2008,Vol.461:447-466
    104 Maione B, Lavitrano M, Spadafora C, et al. Sperm mediated gene transfer in mice[J]. Mol Reprod Dev,1998,Vol.50:406-409
    105 Kato M, Ishikawa A, Kaneko R, et al. Production of transgenic rats by ooplasmic injection of spermatogenic cells exposed to exogenous DNA: a preliminary study[J]. Mol Reprod Dev,2004,Vol.69:153-158
    106 Hirabayashi M, Kato M, Ishikawa A, et al. Factors affecting production of transgenic rats by ICSImediated DNA transfer: effects of sonication and freeze-thawing of spermatozoa, rat strains for sperm and oocyte donors, and different constructs of exogenous DNA[J].Mol Reprod Dev,2005,Vol.70:422-428
    107 Gruenbaum Y, Revel E, et al. Sperm cells as vectors for the generation of transgenic chickens[J].Cell Biochem,1991,Vol.15(S):194-200
    108 Lavitrano M, Forni M, Varzi V, et al. Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation[J].Transpl Proc,1997, Vol.29:3508-3509
    109李峰.精子介导的人凝血因子Ⅸ转基因绵羊技术研究[D].上海:复旦大学, 2005,55-70
    110 Collares T, Campos VF, Seixas FK,et al. Transgene transmission in South American catfi sh (Rhamdia quelen) larvae by sperm-mediated gene transfer[J].Biosci,2010, Vol.35(1): 39-47
    111 Kim T S, Lee S H, Gang G T, et al. Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system[J].Reprod Domest Anim,2009,Vol.45(5):755-942
    112 Brinster RL,Zimmermann JW. Spermatogenesis following male germ-cell transplantation [J].Proc Natl Acad Sci USA,1994,Vol.91(24):11298-11302
    113 Orwig KE, Avarbock MR, Brinster RL. Retrovirus-mediated modification of male germline stem cells in rats[J].Biol Reprod,2002,Vol.67(3):874-9
    114 Ryu BY, Orwig KE, Oatley JM,et al. Efficient generation of transgenic rats through the male germline using lentiviral transduction and transplantation of spermatogonial stem cells[J].J Androl,2007,Vol.28(2):353-60
    115 Shinohara T, Kato M, Takehashi M,et al. Rats produced by interspecies spermatogonial transplantation in mice and in vitro microinsemination[J].Proc Natl Acad Sci USA, 2006,Vol.12;103(37):13624-13628
    116 Kanatsu-Shinohara M, Kato M, Takehashi M, et al. Production of transgenic rats via lentiviral transduction and xenogeneic transplantation of spermatogonial stem cells [J].Biol Reprod,2008,Vol.79(6):1121-1128
    117 Izsvák Z, Frohlich J, Grabundzija I, et al. Generating knockout rats by transposon mutagenesis in spermatogonial stem cells[J].Nat Methods,2010,Vol.7:443-445
    118 Kanatsu-Shinohara M, Toyokuni S, Shinohara T. Transgenic mice produced by retroviral transduction of male germ line stem cells in vivo[J].Biol Reprod,2004, Vol.71(4): 1202-1207
    119 Honaramooz A, Megee S, Zeng W, et al. Adeno-associated virus(AAV)- mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation[J].FASEB,2008,Vol.22(2):374-382
    120 Brinster RL, Avarbock MR.Germline transmission of donor haplotype following spermatogonial transplantation[J].Proc Natl Acad Sci USA,1994,Vol.91(24):11303-7
    121 Piedrahita JA, Moore K, Lee C, et al. Advances in the generation of transgenic pigs via embryo-derived and primordial germ cell-derived cells[J].J Reprod Fertil Suppl, 1997,Vol.52:245-254
    122 Piedrahita JA, Moore K, Oetama B, et al. Generation of Transgenic Porcine Chimeras Using Primordial Germ Cell-Derived Colonies[J].Biol Reprod,1998,Vol.58(5):1321- 1329
    123 Mueller S, Prelle K, Rieger N, et al. Chimeric pigs following blastocyst injection of transgenic porcine primordial germ cells[J].Mol Reprod Dev,1999,Vol.54(3): 244-254
    124 Naito M,Matsubara Y,Harumi T,et al.Foreign gene expression in the gonads of chi-maeric chicken embryos by transfer of primordial germ cells transfected in vitro by lipofection for 24 hours[J].Anim Sci,2002,Vol.71(3):308-311
    125 Chrenek P, Makarevich AV. Production of rabbit chimeric embryos by aggregation of zona-free nuclear transfer blastome[J].Zygote,2005,Vol.13(1):39-44
    126 Van de Lavoir MC,Diamond JH,Leighton PA,et al. Germline transmission of genetically modified primordial germ cells[J].Nature,2006,Vol.441(7094):766-769
    127 Ahn KS, Won JY, Heo SY,et al. Transgenesis and nuclear transfer using porcine embryonic germ cells[J].Cloning Stem Cells,2007,Vol.9(4):461-468
    128 Ahn KS, Won JY, Park JK, et al. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer[J].Biochem Biophys Res Commun,2010,Vol.400(4):667-672
    129 Leighton PA,van de Lavoir MC,Diamond JH,et al.Genetic modification of primordial germ cells by gene trapping,gene targeting,and phiC31 integrase[J].Mol Reprod Dev,2008,Vol.75(7):1163-1175
    130 Evans M J, Kaufmann M H. Establishment in culture of pluripotential cells from mouse embryos[J].Nature,1981,Vol.292:154-156
    131 Bradley A,Evans M,Kaufman MH,Robertson E.Formation of germ-line chimaeras from embryo-derived teratocarcinom a cell lines[J].Nature,1984, Vol.309(5965):255-256
    132 Misra RP, Bronson SK, Xiao Q,et al.Generation of single-copy transgenic mouse embryos directly from ES cells by tetraploid embryo complementation[J].BMC Biotechnol,2001, Vol.1:12-18
    133 Schwenk F, Zevnik B, Bruning J, et al. Hybrid embryonic stem cell-derived tetraploid mice show apparently normalmorphological, physiological, and neurological characteristics[J].Molecular and Cellular Biology,2003,Vol.23:3982-3989
    134 Schenke-Layland K, Rhodes KE, Angelis E, et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages[J].Stem Cells,2008,Vol.26(6):1537-1546
    135 Zhang JH, Wilson GF, Soerens AG, et al. Functional cardio-myocytes derived from human induced pluripotent stem cells[J].Circ Res,2009,Vol.104(4):e30-e41
    136 Kraus P, Leong G, Tan V,et al.A more cost effective and rapid high percentage germ-line transmitting chimeric mouse generation procedure via microinjection of 2-cell, 4-cell, and 8-cell embryos with ES and iPS cells[J].Genesis,2010,Vol.48(6): 394-399
    137 Zhao XY,Li W,Lv Z,et al.iPS cells produce viable mice through tetraploid complementation[J].Nature,2009,Vol.461(7260):86-90
    138 Kang L,Wang JL,Zhang Y,et al.iPS cells can support full-term development of tetraploid blastocyst-complemented embryos[J].Cell Stem Cell,2009,Vol.5(2):135- 138
    139 FujitaniY, Yamamoto K, Kobayashi I. Dependence of frequency of homologous recombination on the homology length[J].Genetics,1995,Vol.140:797-809
    140 Liskay RM,LetsouA, Stachelek J.Homology requirement for efficient gene conversion between duplicated chromonosal sequences in mammalian cells[J].Genetics, 1987, Vol.115:161-167
    141 Gama Sosa MA. Elder GA. Animal transgenesis: an overview[J].Brain Struct Funct, 2010, Vol. 214:91-109
    142 Nagy A. Cre recombinase: the universal reagent for genome tailoring[J].Genesis, 2000,Vol.26:99-109
    143 Castrop H.Genetically modified mice—successes and failures of a widely used technology[J]. Pflugers Arch-Eur J Physiol,2010,Vol.459:557-567
    144 Hamilton DL, Abremski K. Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites[J].J Mol Biol,1984,Vol.178:481-486
    145 Gu H,Marth JD,Orban PC,et al.Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting[J].Science,1994,Vol.265(5168):103-6
    146 Dubois NC, Hofmann D, Kaloulis K,et al. Nestin-Cre transgenic mouse line Nes-Cre1 mediates highly efficient Cre/loxP mediated recombination in the nervous system, kidney, and somite-derived tissues[J].Genesis,2006,Vol.44:355-360
    147 Tsien JZ, Chen DF, Gerber D, et al. Subregion- and cell type-restricted gene knockout in mouse brain[J].Cell,1996,Vol.87:1317-1326
    148 De Gasperi R, Rocher AB, Sosa MA, et al. The IRG mouse:a two-color fluorescent reporter for assessing Cre-mediated recombination and imaging complex cellular relationships in situ[J].Genesis,2008,Vol.46:308-317
    149 Nagy A, Mar L, Watts G. Creation and use of a cre recombinase transgenic database[J]. Methods Mol Biol,2009,Vol.530:365-378
    150 Metzger D, Clifford J, Chiba H,et al. Conditional sitespecific recombination in mammalian cells using a liganddependent chimeric Cre recombinase[J]. Proc Natl Acad Sci USA,1995,Vol.92:6991-6995
    151 Zhang Y, Riesterer C, Ayrall AM,et al. Inducible site-directed recombination in mouse embryonic stem cells[J]. Nucleic Acids Res,1996,Vol.24:543-548
    152 Hayashi S, McMahon AP.Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse[J].Dev Biol,2002,Vol.244:305-318
    153 Li M, Indra AK, Warot X, et al.Skin abnormalities generated by temporally controlled RXRa mutations in mouse epidermis[J].Nature,2000,Vol.407:633-636
    154 Dragatsis I,Levine MS,Zeitlin S.Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice[J].Nat Genet,2000,Vol.26:300 -306
    155 Kellendonk C, Tronche F, Casanova E, et al. Inducible site-specific recombination in the brain[J].J Mol Biol,1999,Vol.285:175-182
    156 Zhu XD, Pan G, Luetke K, et al. Homology requirements for ligation and strand exchange by the FLP recombinase[J].J Biol Chem,1995,Vol.270:11646-11653
    157 Zhu XD, Sadowski PD. Selection of novel, specific singlestranded DNA sequences by Flp, a duplex-specific DNA binding protein[J].Nucleic Acids Res,1998,Vol.26:1329-36
    158 Dymecki SM. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice[J].Proc Natl Acad Sci USA,1996,Vol.93:6191-6196
    159 Meyers EN, Lewandoski M, Martin GR. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination[J].Nat Genet,1998,Vol.18:136-141
    160 Takeuchi T, Nomura T, Tsujita M,et al. Flp recombinase transgenic mice of C57BL/6 strain for conditional gene targeting[J].Biochem Biophys Res Commun,2002,Vol.293: 953-957
    161 Hunter NL, Awatramani RB, Farley FW, et al. Ligand-activated Flpe for temporally regulated gene modifications[J].Genesis,2005,Vol.41:99-109
    162 Kim JC, Dymecki SM . Genetic fate-mapping approaches: new means to explore the embryonic origins of the cochlear nucleus[J].Methods Mol Biol,2009,Vol.493:65-85
    163 Moon AM, Capecchi MR. Fgf8 is required for outgrowth and patterning of the limbs[J]. Nat Genet,2000,Vol.26:455-459
    164 Ryding AD, Sharp MG, Mullins JJ. Conditional transgenic technologies[J].J Endocrinol, 2001,Vol.171:1-14
    165 Jullien N, Goddard I, Selmi-Ruby S,et al. Conditional transgenesis using Dimerizable Cre (DiCre)[J].PLoS One,2007,Vol.2:e1355- e1361
    166 Schmidt EE, Taylor DS, Prigge JR, et al. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids[J].Proc Natl Acad Sci USA,2000,Vol.97: 13702-13707
    167 Semprini S, Troup TJ, Kotelevtseva N, et al. Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques[J].Nucleic Acids Res,2007,Vol.35:1402-1410
    168 Yamamoto A, Hen R, Dauer WT. The ons and offs of inducible transgenic technology: a review[J].Neurobiol Dis,2001,Vol.8:923-932
    169 Sun Y, Chen X, Xiao D. Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling[J].Acta Biochim Biophys Sin (Shanghai),2007,Vol.39:235-246
    170 Stieger K, Belbellaa B, Le Guiner C,et al. In vivo gene regulation using tetracycline-regulatable systems[J].Adv Drug Deliv Rev,2009,Vol.61:527-541
    171 Gossen M, Freundlieb S, Bender G,et al. Transcriptional activation by tetracyclines in mammalian cells[J].Science,1995,Vol.268:1766-1769
    172 Kistner A, Gossen M, Zimmermann F,et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice[J].Proc Natl Acad Sci USA,1996,Vol.93:10933-10938
    173 Cronin CA, Gluba W, Scrable H. The lac operator-repressor system is functional in the mouse[J].Genes Dev,2001,Vol.15:1506-1517
    174 Hitotsumachi S, Carpenter DA, Russell WL. Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia[J].Proc Natl Acad Sci USA,1985,Vol.82:6619-6621
    175 RussellWL,Kelly EM,Hunsicker PR,et al.Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse[J].Proc Natl Acad Sci USA,1979,Vol.76: 5818-9
    176 Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse[J].Science,1990,Vol.247:322-324
    177 King DP, Zhao Y, Sangoram AM, et al. Positional cloning of the mouse circadian clock gene[J].Cell,1997,Vol.89:641-653
    178 Aigner B, Rathkolb B, Herbach N. Diabetes models by screen for hyperglycemia in phenotype-drvine EUN mouse mutagenesis projects[J].Amer. Jour. Phys,2008,Vol.294 (2p1):232-240
    179 Gondo Y.Trends in large-scale mouse mutagenesis: from genetics to functional genomics[J].Nat Rev Genet,2008,Vol.9:803-810
    180 Bagasra O, Prilliman KR. RNA interference: the molecular immune system[J].J Mol Histol,2004,Vol.35:545-553
    181 Bernstein E, Allis CD. RNA meets chromatin[J]. Genes Dev,2005,Vol.19:1635-1655
    182 Rao M, Sockanathan S. Molecular mechanisms of RNAi: implications for development and disease[J].Birth Defects Res C Embryo Today,2005,Vol.75:28-42
    183 Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J].Nature,2001,Vol.411:494-498
    184 Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs[J].Genes Dev,2001,Vol.15:188-200
    185 Elbashir SM, Martinez J, Patkaniowska A,et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate[J].EMBO J,2001, Vol.20:6877-6888
    186 Tavernarakis N, Wang SL, Dorovkov M, et al. Heritable and inducible genetic interference by doublestranded RNA encoded by transgenes[J].Nat Genet,2000, Vol. 24:180-183
    187 Hitz C, Wurst W, Kuhn R. Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference[J].Nucleic Acids Res,2007,Vol.35:e90-e95
    188 Hitz C, Steuber-Buchberger P, Delic S, et al. Generation of shRNA transgenic mice[J]. Methods Mol Biol,2009,Vol.530:101-129
    189 Xia XG, Zhou H, Ding H, et al. An enhanced U6 promoter for synthesis of short hairpin RNA[J].Nucleic Acids Res,2003,Vol.31:e100-e108
    190 Hasuwa H, Kaseda K, Einarsdottir T,et al. Small interfering RNA and gene silencing in transgenic mice and rats[J].FEBS Lett,2002,Vol.532:227-230
    191 Coumoul X, Li W, Wang RH,et al. Inducible suppression of Fgfr2 and Survivin in ES cells using a combination of the RNA interference (RNAi) and the Cre-LoxP system[J]. Nucleic Acids Res,2004,Vol.32:e85-e91
    192 Coumoul X, Shukla V, Li C,et al. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference[J].Nucleic Acids Res,2005,Vol.33:e102-e109
    193 Lakso M, Pichel JG, Gorman JR, et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage[J].Proc Natl Acad Sci USA,1996,Vol.93:5860-5865
    194 Xu X, Li C, Garrett-Beal L,et al. Direct removal in the mouse of a floxed neo gene from a three-loxP conditional knockout allele by two novel approaches[J].Genesis, 2001,Vol.30:1-6
    195 Xu X, Weinstein M, Li C, et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction[J]. Development,1998,Vol.125:753-765
    196 Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference[J].Nat Genet,2003,Vol.33:401-406
    197 Oberdoerffer P, Kanellopoulou C, Heissmeyer V, et al. Efficiency of RNA interference in the mouse hematopoietic system varies between cell types and developmental stages[J].Mol Cell Biol,2005,Vol.25:3896-3905
    198 Chang HS, Lin CH, Chen YC,et al. Using siRNA technique to generate transgenic animals with spatiotemporal and conditional gene knockdown[J].Am J Pathol,2004,Vol.165: 1535-1541
    199 Kotnik K, Popova E, Todiras M, et al. Inducible transgenic rat model for diabetes mellitus based on shRNA-mediated gene knockdown[J].PLoS One,2009,Vol.4:e5124-e5131
    200 Huang WT, Hsieh JC, Chiou MJ, et al. Application of RNAi technology to the inhibition of zebrafish GtHalpha, FSHbeta, and LHbeta expression and to functional analyses[J]. Zool Sci,2008,Vol.25:614-621
    201 Haley B, Hendrix D, Trang V, et al. A simplified miRNA based gene silencing method for Drosophila melanogaster[J].Dev Biol,2008,Vol.321:482-490
    202 Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA[J].Gene Ther,1999,Vol.6:1258-1266
    203 Wolff JA, Budker V. The mechanism of naked DNA uptake and expression[J].Adv Genet, 2005,Vol.54:3-20
    204 Zhang G, Budker V, Wolff JA.High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA[J].Hum Gene Ther,1999,Vol.10: 1735-1737
    205 Lewis DL, Hagstrom JE, Loomis AG, et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice[J].Nat Genet,2002,Vol.32:107-108
    206 McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice[J].Nature, 2002,Vol.418:38-39
    207 McCaffrey AP, Nakai H, Pandey K,et al. Inhibition of hepatitis B virus in mice by RNA interference[J].Nat Biotechnol,2003,Vol.21:639-644
    208 Sledz CA, Holko M, de Veer MJ, et al. Activation of the interferon system by short-interfering RNAs[J].Nat Cell Biol,2003,Vol.5:834-839
    209 Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J].Proc Natl Acad Sci USA,1996,Vol.93:1156-1160
    210 Smith J, Berg JM, Chandrasegaran S. A detailed study of the substrate specificity of a chimeric restriction enzyme[J].Nucleic Acids Res,1999,Vol.27:674-681
    211 Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair[J].Oncogene,2003,Vol.22:5792-5812
    212 Gupta A, Meng X, Zhu LJ,et al. Zinc finger protein-dependent and–independent contributions to the in vivo off-target activity of zinc finger nucleases[J].Nucleic Acids Research,2011,Vol.39(1):381-392
    213 Bibikova M, Golic M, Golic KG,et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zincfinger nucleases[J].Genetics,2002,Vol.161:1169-1175
    214 Morton J, Davis MW, Jorgensen EM,et al. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells[J]. Proc Natl Acad Sci USA,2006,Vol.103:16370-16375
    215 Doyon Y, McCammon JM, Miller JC, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases[J].Nat Biotechnol,2008,Vol.26:702-8
    216 Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zincfinger nucleases[J].Nat Biotechnol,2008,Vol.26:695-701
    217 Kandavelou K, Ramalingam S, London V, et al. Targeted manipulation of mammalian genomes using designed zinc finger nucleases[J]. Biochem Biophys Res Commun,2009, Vol.388:56-61
    218 Santiago Y, Chan E, Liu PQ, et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases[J].Proc Natl Acad Sci USA,2008,Vol.105:5809-5814
    219 Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J].Nature,2005,Vol.435:646-651
    220 Szczepek M, Brondani V, Buchel J, et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases[J].Nat Biotechnol,2007,Vol. 25:786-793
    221 Mashimo T, Takizawa A, Voigt B, et al. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases[J].PLoS One, 2010,Vol.25;5(1):e8870-e8875
    222 Miskey C, Izsvak Z, Kawakami K, et al. DNA transposons in vertebrate functional genomics[J].Cell Mol Life Sci,2005,Vol.62:629-641
    223 Largaespada DA. Transposon mutagenesis in mice[J].Methods Mol Biol,2009,Vol.530: 379-390
    224 Bushman F. Gene regulation: selfish elements make a mark[J].Nature,2004,Vol. 429: 253-255
    225 Ivics Z, Izsvak Z. A whole lotta jumpin’goin’on: new ransposon tools for vertebrate functional genomics[J].Trends Genet,2005,Vol.21:8-11
    226 Ostertag EM, Madison BB, Kano H. Mutagenesis in rodents using the L1 retrotransposon [J].Genome Biol,2007,Vol.8(Suppl 1):S16- S21
    227 An W, Han JS, Wheelan SJ,et al. Active retrotransposition by a synthetic L1 element in mice[J].Proc Natl Acad Sci USA,2006, Vol.103:18662-18667
    228 Morse B, Rotherg PG, South VJ, et al. Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma[J].Nature,1988,Vol.333:87-90
    229 Miki Y, Nishisho I, Horii A, et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer[J].Cancer Res,1992,Vol.52:643-645
    230 Seto M, Jaeger U, Hockett RD, et al. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma[J].EMBO J,1988, Vol.7:123-131
    231 Xin HB, Deng KY, Shui B, et al. Gene trap and gene inversion methods for conditional gene inactivation in the mouse[J].Nucleic Acids Res,2005,Vol.33:e14-e19
    232 Davidson AE, Balciunas D, Mohn D, et al. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon[J].Dev Biol,2003,Vol.263:191-202
    233 Izsvak Z, Ivics Z. Sleeping Beauty hits them all: transposonmediated saturation mutagenesis in the mouse germline[J].Nat Methods,2005,Vol.2:735-736
    234 Keng VW, Yae K, Hayakawa T, et al. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system[J].Nat Methods,2005,Vol.2:763-9
    235 Sinzelle L, Vallin J, Coen L, et al. Generation of transgenic Xenopus laevis using the Sleeping Beauty transposon system[J].Transgenic Res,2006,Vol.15:751-760
    236 Awazu S, Matsuoka T, Inaba K, et al. Highthroughput enhancer trap by remobilization of transposon Minos in Ciona intestinalis[J].Genesis,2007,Vol.45:307-317
    237 Ivics Z, Izsvák Z.The expanding universe of transposon technologies for gene and cell engineering[J].Mobile DNA,2010,Vol.1:25-39
    238 Hansen GM, Markesich DC, Burnett MB, et al. Large-scale gene trapping in C57BL/6N mouse embryonic stem cells[J].Genome Res,2008,Vol.18:1670-1679
    239 Ivics Z, Li MA, Mates L, et al. Transposonmediated genome manipulation in vertebrates [J].Nat Methods,2009,Vol.6:415-422
    240 Dupuy AJ: Transposon-based screens for cancer gene discovery in mouse models[J]. Semin Cancer Biol,2010,Vol.20:361-8
    241 Copeland NG, Jenkins NA: Harnessing transposons for cancer gene discovery[J].Nat Rev Cancer,2010,Vol.10:696-706
    242 Schieke AS, Kind AJ, Ritchie WA, et al., Human factor Ix transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts[J].Science,1997,Vol.278: 2130-2133
    243 Baquisi A, Behboodi E, Melican DT, et al. Production of goats by somatic cell nuclear transfer[J].Nat Biotechnol,1999,Vol.17:456-461
    244 Richt JA, Kasinathan P, Hamir AN, et al. Production of cattle lacking prion protein[J]. Nat Biotechnol,2007,Vol.25:132-138
    245 Gmez M C,Pope C E,Kutner R H, et al.Generation of domes-tic transgenic cloned kittens using lentivirus vectors[J].Cloning and Stem Cells,2009,Vol.11(1):167-175
    246 Ramsoondar J, Vaught T, Ball S, et al. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs[J].Xenotransplantation,2009, Vol.16(3):164-180
    247 Santos J, Fernandez-Navarro P, Villa-Morales M, et al. Genetically modified mouse models in cancer studies[J].Clin. Transl. Oncol,2008,Vol.10:794-803
    248 Moon A. Mouse models of congenital cardiovascular disease[J].Curr. Top. Dev. Biol, 2008,Vol.84:171-248
    249 Zadelaar S, Kleemann R, Verschuren L,et al. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler[J].Thromb. Vasc. Biol,2007,Vol.27:1706-21
    250 Leroith D and Gavrilova O. Mouse models created to study the pathophysiology of type
    2 diabetes[J].Int. J. Biochem. Cell Biol,2006,Vol.38:904-912
    251 Blüher M. Transgenic animal models for the study of adipose tissue biology. Best Pract. Res[J].Clin. Endocrinol. Metab, 2005, Vol.19:605-623
    252 Klein RF. Genetics of osteoporosis - utility of mouse models. J. Musculoskelet[J]. Neuronal Interact,2008,Vol.8:287-290
    253 Zhou Y, Grinchuk O and Tomarev SI. Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma[J]. Invest. Ophthalmol. Vis. Sci,2008, Vol.49:1932-1939
    254 Moussaif M, Rubin WW, Kerov V, et al. Phototransduction in a transgenic mouse model of Nougaret night blindness[J]. Neurosci,2006,Vol.26:6863-6872
    255 Leibovici M, Safieddine S and Petit C. Mouse models for human hereditary deafness[J]. Curr. Top. Dev. Biol,2008 Vol.84:385-429
    256 Heng MY, Detloff PJ and Albin RL. Rodent genetic models of Huntington disease[J]. Neurobiol. Dis,2008,Vol.32:1-9
    257 Patterson D. Molecular genetic analysis of Down syndrome[J].Hum. Genet,2009, Vol.126: 195-214
    258 Harvey BK, Wang Y and Hoffer BJ. Transgenic rodent models of Parkinson’s disease[J]. Acta Neurochir. Suppl,2008,Vol.101:89-92
    259 Gotz J, Schonrock N, Vissel B,et al. Alzheimer’s disease selective vulnerability and modeling in transgenic mice[J]. Alzheimers Dis,2009,Vol.18:243-251
    260 Kalueff AV, Wheaton M and Murphy DL. What’s wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression[J]. Behav. Brain Res, 2007,Vol.179:1-18
    261 Rogers C S . Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer [J].J Clin Invest,2008,Vol.118:1571-1577
    262 Kragh P M.Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease causing dominant mutation APPsw[J].Transgenic Res,2009,Vol.18:545-558
    263 Zinovieva N, Lassnig C, Schams D, et al. Stable production of human insulin-like growth factor 1 (IGF-1) in the milk of hemi- and homozygous transgenic rabbits over several generations[J]. Transgenic Res,1998,Vol.7:437-447
    264 Devinoy E, Thepot D, Stinnakre MG, et al. High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland[J]. Transgenic Res,1994,Vol.3:79-89
    265 Lee WK, Kim SJ, Lee T, et al. Expression of a bovine beta-casein/human lysozyme fusion gene in the mammary gland of transgenic mice[J].Biochem. Mol. Biol,1998,Vol.31:413-7
    266 Platenburg GJ, Kootwijk EP, Kooiman PM, et al. Expression of human lactoferrin in milk of transgenic mice[J].Transgenic Res,1994,Vol.3:99-108
    267 Sohn BH, Kim SJ, Park H, et al. Expression and characterization of bioactive human thrombopoietin in the milk of transgenic mice[J].DNA Cell Biol.1999,Vol.18: 845-852
    268 Chrenek P, Ryban L, Vetr H, et al. Expression of recombinant human factor VIII in milk of several generations of transgenic rabbits[J]. Transgenic Res,2007,Vol.16: 353-361
    269 Rokkones E, Fromm SH, Kareem BN, et al. Human parathyroid hormone as a secretory peptide in milk of transgenic mice[J]. J. Cell Biochem,1995,Vol.59:168-176
    270 Harvey AJ,Gorden S,Baugh LR,et al. Expression of exogenous protein in the egg white of transgenic chickens[J]. Nature Biotechnology,2002,Vol.20:396-399
    271 Lillico SG.Oviduct-specific expression of two therapeutic proteins in transgenic hens[J].Proc Natl Acad Sci USA,2007,Vol.104:1771-1776
    272 Lazaris A,Arcidiacono S,Huang Y,et al.Spider silk fibers spun from soluble recombinant silk produced in mammalian cells[J].Science,2002,Vol.295:472-476
    273 Pursel VG,Pinkert CA,Miller KF,et al.Genetic engineering of livestock[J].Science,1989,Vol.244:1281-1288
    274 Du SJ,Gong ZY,Fletcher GL,et al.Growth Enhancement in Transgenic Atlantic Salmon by the Use of an All Fish Chimeric Growth-Hormone Gene Construct[J].Bio-Technology,1992,Vol.10:176-181
    275 Adams NR,Briegel JR.Multiple effects of an additionalgrowth hormone gene in adult sheep[J].J Anim Sci,2005, Vol.83(8):1868-1874
    276 Draghia-Akli R,Fiorotto ML,Hill LA,et al.Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs[J].Nat Biotechnol,1999,Vol.17(12):1179-1183
    277 Murray JD,Anderson GB,McGloughlin MM,et al.Transgenic Animals in Agriculture[M]. CAB International,Wallingford,UK,1999,59-72
    278 McPherron AC,Lee SJ.Double muscling in cattle due to mutations in the myostatin gene[J].Proc Natl Acad Sci USA,1997,Vol.94(23):12457-12461
    279 McPherron AC,Lawler A M,Lee S J.Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J].Nature,1997,Vol.387:83-90
    280 Staeheli P.Intracellular immunization:a new strategy for producing disease-resistant transgenic livestock[J].Trends Biotechnol,1991, Vol.9(3):71-72
    281 Baise E,Pire G,Leroy M,et al.Conditional expression of type I interferon- induced bovine Mx1 GTPase in a stable transgenic vero cell line interferes with replication of vesicular stomatitis virus[J].Interferon Cytokine Res,2004,Vol.24(9):513-521
    282 Garber E A,Chute H T,Condra J H,et al.Avian cells expressing the murine Mx1 protein are resistant to influenza virus infection[J].Virology,1991,Vol.180:754-762
    283 Müller M,Brenig B,Winnacker EL,et al.Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection[J]. Gene,1992, Vol.121(2):263-270
    284 Kerr D E,Plaut K,Bramley A J,et al.Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice[J].Nat Biotechnol,2001,Vol.19:66-70
    285 Donovan DM,Kerr DE,Wall RJ.Engineering disease resistant cattle[J].Transgenic Res,2005, Vol.14(5):563-567
    286 Maga E A,Cullor J S,Smith W,et al.Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk[J].Foodborne Pathog Dis,2006,Vol.3:384-392
    287 Reed WA,Elzer PH,Enright FM,et al.Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus[J].Transgenic Res,1997, Vol.6(5):337-347
    288 Bueler H,Aguzzi A,Sailer A,et al.Mice devoid of PrP are resistant to scrapie[J].Cell,1993,Vol.73:1339-1347
    289 Denning C.Deletion of the alpha(1,3)galactosyl transferase(GGTA1)gene and the prion protein(PrP)gene in sheep[J].Nat Biotechnol,2001,Vol.19:559-562
    290 Golding M C,Long C R,Carmell M A,et al.Suppression of prion protein in livestock by RNA interference[J].Proc Natl Acad Sci USA,2006,Vol.103:5285-5290
    291 Yu GH,Chen JQ,Yu HQ,et al.Functional disruption of the prion protein gene in cloned goats[J].J Gen Virol,2006,Vol.87:1019–1027
    292王少华.利用无启动子打靶载体研制朊蛋白基因敲除奶牛[D].北京:中国农业大学,2009,23-55
    293 Clements JE,Wall RJ,Narayan O,et al.Development of transgenic sheep that express the visna virus envelope gene[J].Virology,1994,Vol.200(2):370-380
    294 Weidle UH,Lenz H,Brem G.Genes encoding a mouse monoclonal antibody are expressed in transgenic mice,rabbits and pigs[J].Gene,1991,Vol.98(2):185-191
    295 Krummenacher C,Baribaud I,Sanzo JF,et al.Effects of herpes simplex virus on structure and function of nectin-1/HveC[J].J Virol,2002,Vol.76(5):2424-2433
    296 Ono E,Amagai K,Taharaguchi S,et al.Transgenic mice expressing a soluble form of porcine nectin-1/herpesvirus entry mediator C as a model for pseudorabies-resistant livestock[J]. Proc Natl Acad Sci USA,2004,Vol.101(46):16150-16155
    297 Laible G.Enhancing livestock through genetic engineering--recent advances and future prospects[J].Comp Immunol Microbiol Infect Dis,2009,Vol.32(2):123-137
    298 Kang J X,Wang J,Wu L,et al.Transgenic mice:fat-1 mice convert n-6 to n-3 fatty acids[J].Nature,2004,Vol.427:504-510
    299 Saeki K,Matsumoto K,Kinoshita M,et al.Functional expression of aΔ12 fatty acid desaturase gene from spinach in transgenic pigs[J].Proc Natl Acad Sci USA,2004, Vol.101(17):6361-6366
    300 Rahman M,Halade GV,Bhattacharya A,et al.The fat-1 transgene in mice increases antioxidant potential,reduces pro-inflammatory cytokine levels,and enhances PPAR-γand SIRT-1 expression on a calorie restricted diet[J].Oxid Med Cell Longev, 2009,Vol.2(5):307-316
    301 Nancarrow CD, Marshall JT, Clarkson JL, et al. Expression and physiology of performance regulating genes in transgenic sheep.[J].Jour.Repro.Fert.Suppl.1991, Vol.43:277-291
    302 Powell BC,Walker SK, Bawden CS, et al. Transgenic sheep and wool growth:possibilities and current status[J]. Repro.Fert.Devel,1994,Vol.6(5):615-623
    303 Bawden CS,Powell BC,Walker SK,et al.Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure[J].Transgenic Res,1998, Vol.7(4):273-287
    304 Damak S,Su H Y,Jay N P,et al.Improved wool production in transgenic sheep expressing insulin-like growth factor 1[J].Bio-Technology,1996,Vol.14:185-188
    305 Adams N R,Briegel J R.Multiple effects of an additional growth hormone gene in adult sheep[J].Journal of Animal Science,2005,Vol.83:1868-1874
    306 Stinnakre MG,Vilotte JL,Soulier S,et al.Creation and phenotypic analysis of alpha-lactalbumin-deficient mice[J].Proc Natl Acad Sci USA,1994,Vol.91(14):6544-8
    307 Jost B,Vilotte JL,Duluc I,et al.Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland[J].Nat Biotechnol,1999,Vol.17(2): 160-164
    308 Bleck GT,White BR,Miller DJ,et al.Production of bovine alpha-lactalbumin in the milk of transgenic pigs[J].J Anim Sci,1998,Vol.76(12):3072-3078
    309 van Berkel PHC,Welling MM,Geerts M,et al.Large scale production of recombinant human lactoferrin in the milk of transgenic cows[J].Nat Biotechnol,2002,Vol.20(5):484-7
    310 Reh WA,Maga EA,Collette NM,et al.Hot topic:using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition[J].J Dairy Sci,2004,Vol.87(10):3510-3514
    311 Baranyi M,Hiripi L,SzabóL,et al.Isolation and some effects of functional, low- phenylalanineκ-casein expressed in the milk of transgenic rabbits [J].J Biotechnol, 2007,Vol.128(2):383-392
    312 Golovan SP,Meidinger RG,Ajakaiye A,et al.Pigs expressing salivary phytase produce low-phosphorus manure[J].Nat Biotechnol,2001,Vol.19(8):741-745
    313 Yin HF,Fan BL,Yang B,et al.Cloning of pig parotid secretory protein gene upstream promoter and the establishment of a transgenic mouse model expressing bacterial phytase for agricultural phosphorus pollution control[J].J Anim Sci,2006, Vol.84(3):513-519
    314 Clandinin MT,Field CJ,Hargreaves K,et al. Role of diet fat in subcellular structure and function[J].Can J Physiol Pharmaeol,1985,Vol.63:546-556
    315 Tocher DR,leaver MJ,Hodgsen PA. Recent advances in the biochemistry and molecular biology of fatty acyl desaturase[J]. Progress in Lipid Research,1998,Vol.37:73-117
    316 Nicola Gaibazzi,Vigilio Ziacchi. Reversibility of stress-echo induced ST-segment depression by long-term oral n-3PUFAs supplementation in subjects with chest pain syndrome,normal wall motion at stress-echo and normal coronary anagram [J]. BMC Cardiovascular disorders,2004,Vol.4:514-526
    317 Napier JA , Beandoin F , Miehaelsen LV , et al. The production of long chain polyunsaturated fatty acids in transgenic plants by reverse-engineering[J]. Biochimie,2004,Vol.11:785-792
    318 Pereira SL,Leonard AE,Huang YS,et al. Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid,eicosapentaenoic acid,into deeosahexaenoic acid[J]. Biochemical Journal,2004,Vol.384:357-366
    319 Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell oil production[J].Biochimie,2004,Vol.86(11):807-815
    320 Suzette LP,Yung SH,Emil GB, et al. A novel n-3 fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid[J].Biochemical Journal,2004,Vol.378:665 -671
    321 Takahiro O, Susurmu K. Saceharomyees K. FAD3 encodes anon-3 fatty acid desaturase[J]. Microbiology,2004,Vol.150:1983-1990
    322 Satouchi K,Hirano K,Sakaguchi M,et al. Phospholipids from the free-living nematode Caenorhabditis elegans[J],Lipids,1993,Vol.28(9):837-40
    323 Spychalla JP, Kinney AJ, Browse J. Identification of an animal omega-3 fatty acid desaturase by heterologous expression in Arabidopsis[J].Proc Natl Acad Sci USA.1997, Vol.94(4):1142-1147
    324 Shanklin J,Whitle E,Fox BG. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme,stearoyl-CoA desaturase,and are conserved in alkane hydroxylase and xylene monooxygenase[J]. Biochemistry,1994,Vol.33(43): 12787-94
    325 Stukey JE,McDonough VM,Martin CE. The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rats tearoyl-CoA desaturase gene[J]. Journal of Biological Chemistry,1990,Vol.265(33): 20144-9
    326 Kang ZB,Ge YL,Chen ZH,et al. Adenoviral gene transfer of Cacnorhabditis elegans n-3 fatty acid desaturase optimizes fatty acid composition in mammalian cells[J]. Proceedings of the National Academy of sciences of the United States of America,2001,Vol.98:4050-4054
    327 Simopoulos AP. Human requirement for n-3 Polyunsaturated fatty acid[J]. Poultry Science,2000,Vol.79(7):961-970
    328 Simopoulos AR. Importance of the ration of omega-6/omega-3 essential fatty acids; evolutionary aspects[J]. World Review Nutrition Dietetics,2003,Vol.92:l-22
    329周爱儒,查锡良.生物化学[M],第六版.北京:人民卫生出版社,2004,106-122
    330 James G, Wallis, Jennifer L,et al. Polyunsaturated fatty acid synthesis: what will they think of next[J]. TRENDS in Biochemical Sciences,2002,Vol.27(9):467-473
    331 Bartsch H,Nair J,Owen RW. Dietary Polyunsaturated fatty acids and caneers of the breast and colorectum: emerging evidence for their role as risk modifiers[J]. Carcinogenesis,1999,Vol.20(12):2209-2218
    332 Siddiqui RA,Shaikh SR,Sech LA,et al. Omega 3 fatty acids: health benefits and cellular mechanisms of action [J]. Mini Review in Medicine Chemistry,2004,Vol.4(8): 859-871
    333 Kang JX. From fat to fat-1: a tale of omega-3 fatty acids [J]. Journal of Membrane Biology,2005,Vol.206:165-172
    334 Hawthorne AB,Daneshmend TK,Hawkey CJ. Treatment of ulcerative colitis with fish oil supplementation: a prospective 12-month randomized controlled trial[J]. Gut 1992,Vol.33:922-928
    335 Kromhout D,Bossehieter EB,Coulander CDL, et al. The inverse relationship between fish consumption and 20-year mortality from coronary heart disease[J]. N Engl J Med,1985,Vol.312:1205-1209
    336 Haglund O. Effects of fish oil alone and combined with 1ong chain(n-6) fatty acid on some coronary risk factors in male subjects[J].The journal of Nutritional Biochemistry,1998,Vol.9(11):629-635
    337 Terry PD,Rohan TE,Wolk A. Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence[J]. The American Journal of Clinical Nutrition,2003,Vol.77(3):532-43
    338 Yam D,Peled A,Shinitzky M. Suppression of tumor growth and metastasis by dietary fish oil combined with vitamins E and C and cisplatin [J]. Cancer Chemother Pharmacol,2001,Vol.47(1):34-40
    339 Liu QY,Tan BK. Effects of cis-unsaturated fatty acids on doxorubicin sensitivity in P388lDOX resistant and P388 parental cell lines[J].Life Science,2000,Vol.67(10): 1207-1218
    340 Barber MD,Ross JA,Voss AC,et al. The effect of an oralnutritional supplement enriched with fish oil on weighi-loss in patients with pancreatic cancer[J]. British Journal of Cancer.1999,Vol.81(l):8-86
    341 Cave W T. Omega-3 polyunsaturated fatty acids in rodent models of breast cancer[J]. Breast Cancer Res Treat,1997,Vol.46:239-246
    342 Rose DP. Dietary fatty acids and cancer Am[J]. The American Journal of Clinical Nutrition,1997,Vol.66(suppl):998S-1003S
    343 Hubbard N E, Lim D, Erickson K L. Alteration ofmurine mammary tumorigenesis by dietary enrichment with n-3 fatty acids in fish oil[J] CancerLett,1998,Vol.124:1-7
    344 Bougnoux P. n-3 polyunsaturated fatty acids and cancer[J]. Curr Opin Clin NutrMetab Care,1999,Vol.2:121-126
    345 Rose DP. Effect of dietary fatty acids on breast and prostate cancer: evidence from in vivtro experiments and animal studies[J]. The American Journal of Clinical Nutrition,1997,Vol.66:1513S-1522S
    346 Minoura T, Takatat T, Sakaguchi M, et al. Effect of dietary eicosapentaenoic acid on azoxymethane-induced colon carcino-genesis in rat [J]. Cancer Research,1988,Vol.48:4790-4794
    347 Tsai W S, Nagawa H, Muto T. Differential effects of polyunsaturated fatty acids on chemosensitivity ofNIH3T3 cells and its transformants[J]. Int JCancer,1997,Vol.70: 357-361
    348 Ge Y,Chen Z,Kang ZB,et al. Effects of adenoviral gene transfer of C.elegans n-3 fatty acid desaturase on the lipid profile and growth of human breast cancer cells[J]. Anticancer Research,2002,Vol.22:537-543
    349 Havas S,Anliker J,Greenberg D,et al. Final results of the Maryland WIC Food for Life Program[J]. Preventive Medicine,2003,Vol.37:406-16
    350 Xia SH,Wang J,Kang JX. Decreased n-6/n-3fatty acid ratio reduces the invasive protential of human lung cancer cells by down regulation of cell adhesion/invasion-related genes[J]. Carcinogenesis,2005,Vol.26:779-784
    351 Xia S,Lu Y,Wang J,et al. Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids[J]. Proceedings of the National Academy of sciences of the United States of America,2006,Vol.103:12499-12504
    352 Nowak J,Weylandt KH,Habbel P,et al. Colitis-associated colon tumorigenesis is suppressed in transgenic mice rich in endogenous n-3 fatty acids[J]. Carcinogenesis,2007,Vol.28(9):1991-1995
    353 Bang HO, Dyerberg J, Hjoorne N. The composition of food consumed byGreenland Eskimos[J]. ActaMed Scand,1976,Vol.200:69-73
    354 Hirai A, Hamazaki T, Terano T, et al. Eicosapentaenoic acid and platelet function in Japanese[J]. Lancet,1980,Vol.2:1132-1133
    355 Kang JX, Leaf A. Antiarrhythmic effects of polyunsaturated fatty acids[J]. Recent studies. Circulation,1996,Vol.94:1774-1780
    356 Agren JJ, Vaisanen S, Hanninen O, et al. Hemostatic factors and platelet aggregation after a fish-enriched diet or fish oil or docosahexenoic acid supplementation[J]. Prostaglandins Leukot EssentFattyAcids,1997,Vol.57:419-421
    357 Mori TA, Beilin LJ, Burke V, et al. Interactions between dietary fat, fish, and fish oils and their effects on platelet function in men at risk of cardiovascular disease[J]. Arterioscler Thromb Vasc Biol,1997,Vol.17:279-286
    358 Abe Y, El-Masri B, Kimball KT, et al. Soluble cell adhesion molecules in hypertriglyceridemia and potential significance on monocyte adhesion[J]. Arterioscler Thromb Vasc Biol,1998,Vol.18:723-731
    359 Seljeflot I, Arnesen H, Brude IR, et al. Effects of omega-3 fatty acids and/or antioxidants on endothelial cellmarkers[J]. Eur J Clin Invest,1998,Vol.28:629-635
    360 Endres S, von Schacky C. n-3 polyunsaturated fatty acids and human cytokine synthesis [J].CurrOpin Lipido,1996,Vol.7:48-52
    361 Kris-Etherton PM, HarrisW S, Appel LJ. Fish consumption, fish oil omega-3 fatty acids, and cardiovascular disease[J].Circulation,2002,Vol.106:2747-2757
    362 Howe PR. Dietary fats and hypertension: Focus on fish oil[J].Proc NatlAcad Sci USA,1997, Vol.827:339-352
    363 Grimsgaard S, Bonaa KH, Hansen JB, et al. Highly purified eicosapentaenoic acid and docosahexenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids[J]. Am J Clin Nutr,1997,Vol.66:649-659
    364 Noaghiul S,Hibbeln JR. Crossnational comparisons of sea food consumption and rates of bipolar disorder[J]. The American journal of Psychiatry,2003,Vol.160:2222-2227
    365 Silvers KM,Scott KM. Fish consumption and self-reported physical and mental health status[J]. Public Health Nurition,2002,Vol.5:427-431
    366 Tanskanen A,Hibbeln JR,Hiniikka J,et al. Fish consumption,depression,and suicidality in a general population[J].Archives General Psychiatry,2001,Vol.58: 512-513
    367 De Mar JCJr,Ma K,Bell JM,et al. Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by15weeks of nutritional deprivation of n-3 polyunsaturated fatty acids[J]. Journal of Neurochemistry,2004,Vol.91(5):1125-37
    368 Polit L, Rotstein N, Carri N. Effects of docosahexenoic acid on retinal development: cellular and molecular aspects[J]. Lipids,2001,Vol.36:927-935
    369 Ruxton CH,Reed SC,Simpson MJ, et al. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence[J].Journal of Human Nutrition and Dietetics,2004,Vol.17(5):449-59
    370 Gamoh S, Hashimoto M, Sugioka K, et al. Chronic administration of docosahexenoic acid improves reference memory-related learning ability in young rats[J]. Neuroscience,1999,Vol.93:237-241
    371 Yoshida S, Yasuda A, Kawazato H, et al. Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of alpha-linolenate deficiency and a learning task[J].J Neurochem,1997,Vol.68:1261-1268
    372 Neuringer M. Infant vision and retinal function in studies of dietary long-chain polyunsaturated fatty acids: methods, results, and implications[J]. Am J Clin Nutr, 2000,Vol.71:256S-267S
    373 Rotstein N P, PolitiL E, GermanO L, eta.l Protective effect ofdocosahexenoic acid on oxidative stress-induced apoptosis of retina photoreceptors[J]. Invest Ophthalmol Vis Sci,2003,Vol.44:2252-2259
    374 Lauritzen I, Blondeau N, HeurteauxC, et al. Polyunsaturated fatty acids are potent neuroprotectors[J].EMBO J,2000,Vol.19:1784-1793
    375 Akbar M, Calderon F, Wen Z, et al. Docosahexenoic acid: a positivemodulator of Akt signaling in neuronal survival[J]. Proc NatlAcad Sci USA, 2005,Vol.102:10858-10863
    376 Kawakita E, Hashimoto M, Shido O. Docosahexenoic acid promotes neurogenesisin vitro and in vivo[J]. Neuroscience,2006,Vol.139:991-997
    377 Hashimoto M, Hossain S, Shimada T, et al. Docosahexenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats[J]. J Neurochem,2002,Vol.81:1084-1091
    378 King VR, Huang WL, Dyall SC, et al. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acidsworsen outcome, after spinal cord injury in the adult rat[J]. J Neuroscience,2006,Vol.26:4672-4680
    379 Taha AY,Huot PS,Lopez S,et al. Seizure resistance in fat-1 transgenic mice endogenously synthesizing high levels of omega-3 polyunsaturated fatty acids[J]. Journal of Neurochemistry,2008,Vol.105(2):380-388
    380 Bhattacharya A,Chandrasekar B,Rahman M,et al. Inhibition of inflammatory response in transgenic fat-1 mice on a calorie-restricted diet[J].Biochemical and Biophysical Research Communication,2006,Vol.349:925-930
    381 Hudert CA,Weylandt KH,Lu Y,et al. Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis[J].Proceedings of the National Academy of sciences of the United States of America,2006,Vol.103:11276-11281
    382 Schmocker C,Weylandt KH,Kahlke L,et al. Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines[J].Hepatology,2007,Vol.45:864 -869
    383 Morimoto KC,Van Eenennaam AL,DePeters EJ,et al. Endogenous production of n-3 and n-6 fatty acids in mammalian cells[J].Journal of Dairy Science,2005,Vol.88:1142-6
    384 Kao BT,Lewis KA,DePeters EJ,et al. Endogenous production and elevated levels of long-chain n-3 fatty acids in the milk of transgenic mice[J].Journal of Dairy Science,2006,Vol.89:3195-3201
    385 Brigg and King. Transplantation of living cell nuclei from blastula cell into enucleated frog's eggs[J]. Proc Natl Acad Sci USA,1952,Vol.38:455-463
    386 Illmense, Hoppe. Nuclear transplantation in mus musculus: Developmental potential of nuclei from preimplantation embryoso[J].Cell,1981,Vol.23:9-18
    387 McGrath, Solter. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion[J].Science,1983,Vol.220:1300-1302
    388 Willadsen. Nuclear transplantation in sheep embryos[J].Nature,1986,Vol.220:63-65
    389 Prather RS, Barnes FL. Sims MM, et al. Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte[J].Biol. Reprod,1987,Vol.37: 859- 866
    390 Stice SL, Robl J M. Nuclear reprogramming in nuclear transplant rabbit embryos[J]. Biol. Reprod,1988,Vol.39:657-664
    391 Prather et al. Nuclear transplantation in early pig embryos[J].Biol Reprod,1989, Vol.41: 414-418
    392 Yong Z, Jianchen W, Jufen Q,et al. Nuclear transplantation in goats[J]. Theriogenology,1991,Vol.35: 299
    393 Meng L, Ely JJ, Stouffer RL, et al. Rhesus, monkeys produced by nuclear transfer[J]. Biol. Reprod,1997,Vol.57(2):454-459
    394 Tsunoda Y, Kato Y. Full term development after transfer of nuclear from 4-cell and compacted morula stage embryos to enucleated oocytes in the mouse[J].J. Exp. Zool, 1997,Vol.278:250-254
    395 Kato Y, Tani T, Sotomaru Y, et al. Eight calves cloned from somatic cells of a single adult[J].Science,1998,Vol.282:2095-2089
    396 Keefer C L, Baldassarre H, Keyston R, et al. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro2 matured oocytes[J]. Biol Reprod,2001,Vol.64:849-856
    397 Polejaeva IA, Chen SH, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells[J].Nature,2000,Vol.407:86-90
    398 Gomez MC, Jenkins JA, Giraldo A, et al. Nuclear transfer of synchronized african wild cat somatic cells into enucleated domestic cat oocytes[J].Biol Reprod.2003, Vol.69(3):1032-41
    399 Galli C, Lagutina I, Crotti G, et al. Pregnancy: a cloned horse born to its dam twin[J]. Nature.2003,Vol.424(6949):635-639
    400 Chesne P, Adenot PG, Viglietta, et al. Cloned rabbits produced by nuclear transfer from adult somatic cells[J].Nat Biotechnol,2002,Vol.20(4):366-369
    401 Woods GL, White KL, Vanderwall DK,et al. A mule cloned from fetal cells by nuclear transfer[J].Science.2003,Vol.301(5636):1063-1068
    402 Wakayama T, Perry A C F, Zuccotti M, et al. Full term development of mice from enucleated oocytes injected with cumulus cell nuclei[J].Nature,1998,Vol.394:369-74
    403 Zhou Q, Renard JP, Le Friec G, et al. Generation of fertile cloned rats by regulating oocyte activation[J].Science,2003,Vol.302(5648):1179-1183
    404 Yang NS, Lu KH, Gordon I. In vitro fertilization (IVF) and culture (IVC) of bovine oocytes from stored ovaries[J].Theriogenology,1990,Vol.33:352-359
    405 Barnes FL, Collas P, Powell R, et al. Influence of recipient oocyte cell cycle stage on DNA synthesis, nuclear envelope breakdown, chromosome constitution, and development in nuclear transplant bovine embryos[J].Mol.Reprod.Dev,1993,Vol.36: 33-41
    406 Campbell KHS, Ritchic W, Wilmut I. Disappearance of maturation promoting factor activity and the formation of pronuclei in electrically activated in vitro matured bovine oocytes[J].Theriogenology,1993,Vol.39:199-204
    407 Collas P, Balise JJ, Robl JM. Influence of cell cycle stage of donor nucleus on development of nuclear transplant rabbit embryos[J].Biol.Reprod,1992,Vol.46:492- 500
    408 Cheong H, Takahashi Y, Kanagawa H. Relationship between nuclear remodelling and subsequent development of mouse embryonic nuclei transferred to enucleated oocytes[J].Mol. Reprod. Dev,1994,Vol.37:138-145
    409 Szollosi D, Czolowska R, Szollosi MS, et al. Remodelling of mouse thymocyte nuclei depends on the time of their transfer into activated, homologous oocytes[J].J. Cell Sci,1998,Vol.91:603-613
    410 Tani T, Kato Y, Tsunoda Y. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming[J].Biol. Reprod,2001,Vol.64:324-330
    411 Dominko T, Chan A, Simerly C, et al. Dynamic imaging of the metaphase II spindle and maternal chromosomes in bovine oocytes:implications for enucleation efficiency verification, avoidance of parthenogenesis, and successful embryogenesis[J].Biol. Reprod,2001,Vol.62:150-154
    412 Greising T, Jonas L. The influence of enucleation on the ultrastructure of in vitro matured and enucleated cattle oocytes[J].Theriogenology,1999,Vol.52:303-312
    413 Cheong H, Takahashi Y, Kanagawa H. Birth of mice after transplantation of early cell cycle stage embryonic nuclei into enucleated oocytes[J].Biol. Reprod,1993,Vol.48: 958-963
    414 Smith L.C Membrane and intracellular effects of ultraviolet irradiation with Hoechst 33342 on bovine aecondary oocytes matured in vitro[J].J.Reprod.Fertil,1993, Vol.99: 39-44
    415 Kikuchi K, Naito K, Noguchi J. et al. Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes[J].Biol Reprod,2000,Vol.63(3):715-722
    416 Tanaka H, Kanagawa H. Influence of combined activation treatments on the success of bovine nuclear transfer using young or aged oocytes[J].Anim Reprod Sci,1997, Vol.49(2-3):113-123
    417 Van Stekelenburg-Hamers AE, Van Inzen WG, Van Achterberg TA, et al. Nuclear transfer and electrofusion in bovine in vitro-matured/in vitro-fertilized embryos: effect of media and electrical fusion parameters[J].Mol Reprod Dev,1993,Vol.36(3):307-312
    418 Zhu J, Telfer EE, Fletcher J, et al. Improvement of an electrical activation protocol for porcine oocytes[J].Biol Reprod,2002,Vol.66(3):635-641
    419 Morgan A, Jacob R. Ionomycin enhances Ca2+ influx by stimulating store regulated cation entry and not by a direct action at the plasma membrane[J].Biochem J,1994, Vol.300:665-672
    420 Machaty Z, Prather RS. Strategies fo ractivating nuclear transfer oocytes[J].Reprod Fertil Dev,1998,Vol.10:599-613
    421 Ledda S, Loi P, Kulka J, et al. The effect of 6-dimethylaminopurine on DNA synthesis in activated mammalian oocytes[J].Zygote,1996,Vol.4:7-9
    422 Booth PJ, Holm P, Vaita G. Comparison between 6-dimethylaminopurine and cycloheximide activation treatments for bovine nuclear transfer[J].Theriogenology, 1999,Vol.51:197-203
    423 Campbell KHS, Wilmut I. Totipotency or multipotentiality of cultured cells: applications and progress[J].Theriogenology,1997,Vol.47:63-72
    424 Kubota C,Yamakuchi H,Todoroki J,et al.Six cloned calves produced from adult fibroblast cells after long-term cultured [J].Proc Natl Acad Sci USA,2000, Vol.97:990-995
    425 Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei[J].Biol Reprod,2000, Vol.63(4):1034-1040
    426 Bourc'his D, Le Bourhis D, Patin D. et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos[J].Curr Biol,2001, Vol.11(19):1542-1546
    427司徒镇强,吴军正.细胞培养[M].西安:世界图书出版公司,2001,68(7051):641-650
    428 Kues WA, Carnwath JW, Niemann H, et al. Serum deprivation induced DNA fragmentation of porine fetal fibronblasts[J].Theirogenology,2000,Vol.53:228-239
    429 Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient lipid-mediated DNA transfection procedure[J].Proc Natl Acad Sci USA,1987,Vol.84(21):7413-7417
    430 Baum C, Folster P, Hegewisch-Becker S, et al .An optimized electroporation protocol applicable to a wide range of cell lines[J].Bio Techniques,1994,Vol.(6):1058-1062
    431 Hofland H, Huang L. Inhibition of human ovarian carcinoma cell proliferation by liposome-plasmid DNA complex[J].Biochem Biophys Res Commun,1995,Vol.207(2):492-7
    432 Ogura A, Inoue K, Ogonuki N, et al., Production of male cloned mice from fresh, cultured and cryopreserved immature Sertoli cells[J].Biol Reprod,2000,Vol.62: 1579-1584
    433 Zakhartchenko V, Mueller S, Alberio R. Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts[J].Mol Reprod Dev,2001,Vol.60:362-369
    434 Shu-Hung Chen, Todd D. Vaught, Jeff A. Monahan et al. Efficient Production of Transgenic Cloned Calves Using Preimplantation Screening[J].Biology of Reproduction, 2002,Vol.67:1488-1492
    435 Wan PC, Hao ZD, Zhou P, et al. Effects of SOF and CR1 media on developmental competence and cell apoptosis of ovine in vitro fertilization embryos[J].Anim Reprod Sci.2009, Vol.114(1-3):279-88
    436 Maxfield EK, Sinclair KD, Dunne LD, et al. Temporary exposure of ovine embryos to an advanced uterine environment does not affect fetal weight but alters fetal muscle development[J].Bio. Repr.1998,Vol.59:321-325
    437 Sinclair KD, McEvoy TG, Maxfield EK, et al. Aberrant fetal growth and development after in vitro culture of sheep zygotes[J].Journal of Repr. Fert,1999,Vol.116: 177-186
    438 Leighton PA, Saam JR, Ingram RS,et al. Genomic imprinting in mice: its function and mechanism[J].Biology of Reproduction,1996,Vol.54:273-278
    439 Young LE, Sinclair KD and Wilmut I. Large off spring syndrome in cattle and sheep [J].Reviews of Reproduction,1998,Vol.3:155-163
    440 Wilson JM, Williams JD, Bondioli KR,et al. Comparison of birth weight and growth characteristics of bovine calves produced by nuclear transfer (cloning), embryo transfer and natural mating[J].Animal Reproduction Science,1995,Vol.38:73-83
    441 Walker SK, Hartwich KM and Seamark RF. The production of unusually large offspring following embryo manipulation: concepts and challenges[J].Theriogenology,1996, Vol.45:111-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700