精神疾病相关基因的连锁不平衡分析及应用模式动物研究Chd7基因功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂疾病是指由基因组中多个基因,往往还伴有环境因素以及其它未知因素的影响共同作用而导致的一类疾病的总和。常见的复杂疾病有:精神分裂症、重度抑郁症、双向情感障碍、糖尿病视网膜病变、心血管疾病等。由于目前对这类疾病的发病机制缺乏了解,因而也日益成为广大科研工作者日益关注的焦点。在本论文中,我们进行了YWHAE基因和中国汉族人群中精神分裂症、重度抑郁症及双向情感障碍的连锁不平衡分析,CTLA-4基因和中国汉族人群中精神分裂症、重度抑郁症及双向情感障碍的连锁不平衡分析。
     YWHAE基因定位于染色体17p13.3上,编码14-3-3ε蛋白,该蛋白属于14-3-3蛋白家族。因为14-3-3ε可能参与神经系统疾病的发生,且DISC1蛋白可以与14-3-3ε相互作用并调节其亚细胞定位,而DISC1基因已经被证实与精神疾病的发病高度相关,那么我们也有理由怀疑编码14-3-3ε的YWHAE基因与精神疾病相关联。Ikeda等的研究表明,YWHAE基因与日本人群中精神分裂症的发病高度相关。为了检验YWHAE是否和中国人群中的精神疾病相关联,我们进行了病例-对照的关联分析。我们选择了Ikeda等报道的在日本人群中与精神分裂症呈阳性关联的7个位点: rs34041110、rs7224258、rs3752826、rs11655548、rs2131431、rs1873827和rs28365859,此外还选择了4个中国人群的tagSNP:rs12452627、rs1532976、rs8064578和rs7225165。对于11个SNP的分型采用了Taqman技术,直接向ABI公司订购Taqman探针。我们对1140个精神分裂症患者、1140个重度抑郁症患者、1140个双向情感障碍患者及1140个正常对照人群进行了关联分析。病例对照分析中,我们没有重复Ikeda等报道的阳性结果,我们发现:在1140对1140的病例-对照分析中,未经过permutation校正之前有4个位点与精神分裂症的发生存在弱相关,经过10000次permutation之后,11个遗传多态性位点的数据均未显示出阳性结果。在1140对1140的病例-对照分析中,未经过permutation校正之前有3个位点与抑郁症的发生存在弱相关,经过10000次permutation之后,11个遗传多态性位点的数据均未显示出阳性结果。在1140对1140的病例-对照分析中,未经过permutation校正之前有3个位点与双向情感障碍的发生存在弱相关,经过10000次permutation之后,11个遗传多态性位点的数据均未显示出阳性结果。关联分析的重复性差是普遍存在的问题,究其原因可能是不同人群中的LD block不同造成的,而且从数据统计效力上来讲,我们的样本量已经足够检测出与精神分裂症相关联的风险位点。所以我们觉得在中国人群中,我们所得到的YWHAE并非是一个精神疾病致病的风险基因这一结论是可靠的。尽管我们未能在中国人群中重复出YWHAE与精神分裂症之间存在关联这一结论,但也给后续研究工作提供了一定的参考。关于YWHAE与精神疾病之间的关系还有待于在其他人群以及更大规模的样本中得到进一步的论证。
     CTLA4 (cytotoxic T lymphocyte associated antigen 4 )基因,定位于染色体2q33,包含4个外显子和3个内含子。根据现有资料,CTLA-4基因多态性具有重要的生物学意义, CTLA-4基因内或者基因附近的多态性与许多自身免疫性疾病相关。目前研究较多的主要有3个多态性位点,即启动子-318位点C/T碱基互换(-318C/T)、外显子1+49位点A/G二态性(+49G/A)和外显子4的3’未翻译区(AT)n重复序列。近年来有关精神疾病患者中枢神经系统(CNS)免疫功能的异常,已越来越引起人们的关注。在精神分裂症和其他重性精神障碍患者中,存在着感染或自身免疫活动,具体表现在细胞免疫系统(T淋巴细胞)处于激活状态;结合细胞因子和自身抗体的研究,提示某些精神分裂症患者存在自身免疫应答。鉴于CTLA-4在T细胞激活及自身免疫疾病发生中的重要作用,该基因与精神疾病的关联研究也受到关注。Jun等在韩国人群中发现CTLA-4基因+49G/A位点与精神分裂症的发病相关,但与抑郁症的发病并无显著性关联;而Amanda等的研究则表明,在高加索人群中女性精神分裂症的发病与-318 C/T位点相关,但与+49G/A位点并不相关。为了检验CTLA-4是否和中国人群中的精神疾病相关联,我们进行了病例-对照的关联分析。我们在1140个精神分裂症患者、1140个重度抑郁症患者、1140个双向情感障碍患者及1140个正常对照人群进行了关联分析。我们选择了6个SNP位点,除了目前研究较多的三个位点rs231775(A49G), rs3087243 (3’UTR A/G), rs5742909(-318C/T)外,还有3个中国人群中的tagSNP rs231777, rs231779, rs16840252。对于6个SNP的分型采用了Taqman技术,直接向ABI公司订购Taqman探针。1140对1140的病例-对照分析中,未经过permutation校正之前有3个位点与精神分裂症的发生存在相关:rs231777 (P allele = 0.0201) rs231779 (P allele = 0.0003) and rs16840252 (P allele = 0.0081, Pgenotype = 0.0117),在10000次permutation之后,仅rs231779 (P allele = 0.0010, Pgenotype = 0.0145)与精神分裂症的发生存在相关性。根据我们的结果,CTLA-4 rs231779位点多态性与中国汉族人群精神分裂症发病相关。1140对1140的病例-对照分析中,仅rs231779在10000次permutation前(P allele = 0.0006, Pgenotype = 0.0026) ,后(P allele =0.0010, Pgenotype = 0.0201),均与抑郁症的发生存在相关性。根据我们的结果,CTLA-4 rs231779位点多态性与中国汉族人抑郁症发病相关。1140对1140的病例-对照分析中,rs231777 (P allele = 0.0199), rs231779 (P allele = 0.0004, Pgenotype = 0.0018)与双向情感障碍的发生存在相关性,而在10000次permutation之后,rs231779 (P allele = 0.0008, Pgenotype = 0.0125)与双向情感障碍依然相关。根据我们的结果,CTLA-4 rs231779位点多态性与中国汉族人群双向情感障碍发病相关。综上所述,CTLA-4基因的rs231779位点多态性与中国汉族人中精神分裂症、抑郁症及双向情感障碍的发生密切相关,病例组中该位点等位基因C的频率明显高于对照组中,基因型CC的频率在病例组中也明显增高,该结果提示rs231779位点基因型CC可能在精神疾病的发生中起重要作用。我们的结果与Green等关于CACNA1C的rs1006737位点与精神分裂症、抑郁症和双向情感障碍的发生相关联的报道非常相似。而Becker于2004年提出常见变异/多个疾病(common variant/multiple diseases, CV/MD)假说认为,表型相关的一些复杂疾病,在遗传学上共享一些风险等位基因,常见变异在不同的遗传和环境因素背景下将会导致不同但相关的临床表型。比如,精神分裂症,可能与双向情感障碍以及抑郁症,有着相关的临床症状,也共享有一些致病基因。我们的研究为这一理论提供了进一步的实验证据,也为精神疾病的诊断及病因学分析提供了参考。
     人类Chd7基因位于染色体8q12.1,一共有38个外显子,编码了2997个氨基酸。Chd7是一种染色质重构蛋白质,属于CHD家族。CHD蛋白家族是目前已知的染色质重构复合物之一。而染色质重构是DNA修复、基因表达调控过程中的一个重要环节。近年来的研究表明,Chd7基因多个位置的突变与人类CHARGE综合症及卡尔曼氏综合征(Kallmann's syndrome )相关。CHARGE综合症的发病率为1/8500-12000的活产儿。它的死亡率在新生儿和幼年早期很高。小鼠Chd7基因定位于4号染色体,其序列高度保守,小鼠与人之间同源性非常高。ENU是公认的强有力的化学诱变剂,能够随机地诱导出各种表型。我们实验室在前期工作中,在ENU诱变的小鼠模型中发现了有一个系的小鼠有转圈的表型,而该表型在Chd7基因突变的小鼠中也可见,经过进一步的基因定位和测序在Chd7基因exon13中出现了一个A/G杂合子的突变,该突变将会引起exon13内密码子CGA到TGA的转变(3503C-T),即精氨酸(Arg,R)到终止子的变化,会导致翻译的提前终止,Chd7基因SNF2结构域的一部分缺失和整个的C端消失。Chd7基因曾被发现是常染色体显性遗传病CHARGE综合症的致病基因,基于它的临床表型和Chd7突变小鼠之间存在太多的表型相似,我们相信这个ENU诱变鼠系能够成为研究CHARGE综合症发病机制的一个非常宝贵的工具。本论文的另一部分工作是对突变小鼠做初步的表型分析,并利用这一模型对Chd7基因的功能做进一步的研究。基本状况分析结果发现,Chd7突变小鼠体重明显减轻,而心脏与体重的比例则明显增加,其他脏器在重量上无明显变化。X光片检查未发现突变小鼠有脊柱侧弯现象。Chd7基因表达谱分析,RT-PCR的方法检测了Chd7在不同组织中的表达情况,结果显示RNA水平有多个组织均有表达,而以肌肉、睾丸、骨髓表达最高。流式分析结果发现,在外周血中,粒细胞比例明显增加,B细胞比例明显减少而T细胞比例略有下降;而在脾脏中,B细胞比例明显下降、粒细胞比例略有升高、T细胞比例略有下降而其中CD4+T细胞无变化CD8+T细胞比例下降。本结果提示Chd7可能在T细胞、B细胞及粒细胞的增殖分化过程中发挥一定作用。
Complex diseases are conditions that are influenced by the actions of multiple genes, their interactions with each other and with the environment. The prevalence of complex diseases is higher than 1% in general population, hence also called common diseases, such as schizophrenia, major depresive disorder, bipolar disorder, cardiovascular disease, et al. With the increase of social pressure and the speedup of social life, people are paying more and more attention to psychiatric disorders. The first and second parts of my thesis is about linkage disequilibrium study on YWHAE and CTLA-4 genes of schizophrenia, major depresive disorder, and bipolar disorder in Chinese Han population. YWHAE is a gene encoding 14-3-3epsilon, which is highly conserved across species, from bacteria to humans, and binds to phosphoserine/phosphothreonine motifs in a sequence-specific manner.
     YWHAE has been reported to be associated with schizophrenia in a study based on the Japanese population. Here, we conducted a genetic association analysis between common SNPs in the YWHAE gene and psychiatric diseases including schizophrenia, major depressive disorder and bipolar disorder in Han Chinese samples (1140 schizophrenia cases, 1140 major depressive disorder cases, 1140 bipolar disorder cases and 1140 normal controls). We studied 11 SNPs, 7 of which had previously been reported as significant, in YWHAE. No association was found with schizophrenia, major depressive disorder or bipolar disorder. Considering the size of our sample sets (power>90%), our results suggest that the YWHAE does not play a major role in schizophrenia, major depressive disorder or bipolar disorder in the Han Chinese population. Ikeda M et al. identified YWHAE, as a possible susceptibility gene for schizophrenia in the Japanese population. YWHAE encodes 14-3-3epsilon, which is an interacting partner of DISC1. DISC1 has been identified as a potential susceptibility gene for major psychiatric disorders including schizophrenia, depressive disorder and bipolar disorder. Several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major psychiatric illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention. As an interacting partner of DISC1, 14-3-3epsilon may also play an important role in the development of these psychiatric disorders. In 2005, Yanagi et al.’s study showed that YWHAE is associated with suicide in the Japanese population, but to date, no other studies about the relationship of YWHAE and major depressive disorder or bipolar disorder have been reported. To investigate whether the YWHAE gene plays a significant role in psychiatric diseases, we focused on the YWHAE gene in schizophrenia, major depressive disorder and bipolar disorder in Han Chinese samples involving 1140 schizophrenia patients, 1140 major depressive disorder cases, 1140 bipolar disorder patients and 1140 normal controls. We genotyped 11 SNPs in YWHAE, including all the seven positive SNPs in Ikeda M et al.’s study (rs34041110, rs7224258, rs3752826, rs11655548, rs2131431, rs1873827 and rs28365859), and also selected additional four Tag SNPs (rs12452627, rs1532976, rs8064578, rs7225165) from the HapMap database to provide a good coverage of the gene. In schizophrenia group, only rs1873827, rs3752826, rs12452627 and rs7225165 are marginally associated with schizophrenia, but after 10,000 permutations, there was no association. In major depressive disorder group, only rs34041110, rs12452627 and rs7225165 show some marginal relationship with major depressive disorder, but no association after 10,000 permutations. In bipolar disorder group, rs1873827, rs1532976 and rs7225165 show some marginal association with bipolar disorder, but this was not remained after 10,000 permutations. In all we found that YWHAE has no association with these major mental disorders in the Han Chinese population, although several loci have marginal association with one or all of these disorders before permutations. It is a general problem that the association of one gene with complex diseases in one population cannot be replicated in another population. It may depend on the different LD blocks between different populations or on the different frequency of alleles between populations. Another reason that leads to the inconsistency may be the different endophenotypes that exist. In summary, this first case-control study based on samples in the Chinese population failed to prove the 11 SNPs of YWHAE with susceptibility to schizophrenia,
     major depressive disorder or bipolar disorder in general. Though we found no association, considering the current sample size and the effect size (OR=0.67) from the previous study, the power > 90% (we used the tool of GPower 3.1), our results can provide a reference for further studies of YWHAE gene in other populations. Further work with large sample size or from different populations and corresponding functional analysis is still required to fully elucidate the exact role of YWHAE in the pathogenesis of schizophrenia and other psychiatric disorders.
     Previous studies have reported that the cytotoxic T lymphocyte antigen-4 (CTLA-4) gene, which is related to immunological function such as T-cell regulation, is associated with psychiatric disorders. It is involved in establishing and maintaining peripheral T-cell tolerance, which controls T-cell activation and reactivity. The CTLA-4 gene is located on the long arm of chromosome 2q33. It consists of 4 exons and encodes a costimulatory molecule that is expressed on the surface of activated T cells. Based on function and experimental data, it has been suggested as a candidate gene for conferring susceptibility to autoimmune disease. Moreover, several researchers have reported the association of common SNPs in CTLA-4 with schizophrenia or major depressive disorder. 3 SNPs (rs231775, rs3087243, rs5742909) have been analyzed in previous studies. Jun et al. reported significant association of rs231775 (A49G) in exon 1 with schizophrenia but not with major depressive disorder in the Korean population. However, Jones et al. found that in males, both the promoter region rs5742909 (-318C/T) and the 3’UTR SNP rs3087243 demonstrated nominally significant association with schizophrenia in Caucasian populations. In this study, we studied the relationship between CTLA-4 and three major psychiatric disorders, schizophrenia, major depressive disorder and bipolar disorder in the Chinese Han population. We recruited 1140 schizophrenia patients, 1140 major depressive disorder patients, 1140 bipolar disorder patients, and 1140 normal controls to examine the risk conferred by 6 tag SNPs (rs231777, rs231775, rs231779, rs3087243, rs5742909, rs16840252) in the CTLA-4 gene. For schizophrenia, rs231777 (Pallele = 0.0201), rs231779 (Pallele = 0.0003, Pgenotype = 0.0016) and rs16840252 (Pallele = 0.0081, Pgenotype = 0.0117) showed nominal significance in the tests and after 10,000 permutations, rs231779 remained significant (Pallele = 0.0010, Pgenotype = 0.0145). For major depressive disorder, only rs231779 (P allele= 0.0006, Pgenotype = 0.0026) showed nominal significance in the tests and after 10,000 permutations it remained significant (Pallele = 0.0010, Pgenotype = 0.0201). For bipolar disorder, rs231777 (Pallele=0.0199), rs231779 (Pallele = 0.0004, Pgenotype = 0.0018) showed nominal significance in the tests. After 10,000 permutations, only rs231779 remained significant (Pallele = 0.0008, Pgenotype = 0.0125). This result is very interesting, as it has been hypothesized that some genes will influence the risk for relatively specific domains of psychopathology, whereas others will have a more general influence on the risk. In conclusion, our case-control study provides the evidence that CTLA-4 may play a role in the susceptibility to major psychiatric disorders in Han chinese population. Although the significant associated SNP rs231779 in this study located in the intron, we can’t exclude its possible role in the expression of CTLA-4. Our result is a clear demonstration that there is an overlap in the biological underpinnings of susceptibility to mental illness across the clinical spectrum of mood and psychotic disorders. At least some psychiatric patients with immune alterations may partially share the aetiology, development and pathogenic mechanism of the disease. However, furthermore studies for the functional role that CTLA-4 may play in the psychiatric disorders are needed, and it will give some new information which is useful for the diagnosis and therapy of these diseases. And all of this will be useful in influencing psychiatric research to move from reliance on a diagnostic and classification system that is based only on clinical description and towards a scheme that better reflects the underlying biology of the psychiatric entities encountered in our clinics. This will be of great benefit to patients. Our data, based on Han Chinese population in this study, have given some cues about this.
     Another part of our work is about the ENU (ethylnitrosourea) mutagenesis mouse model. ENU is a synthetic compound described as the most potent mutagen in mice. Large-scale ENU mutagenesis program has provided us with a large number of new mouse mutants applied for the analysis of gene function and further for good models of some human diseases. We screened circling phenotype mice by ENU mutagenesis, mapping the related gene in chromosome 4 and sequenced a novel mutant in exon13 of mouse CHD7 gene. This novel mutant resulted in functional change from arginine to premature stop codon. It has been reported that human CHD7 gene was linked to autosome dominant disease CHARGE syndrome. CHARGE syndrome follows an autosomal dominant mode of inheritance. Its incidence of 1:8500 was evaluated in a Canadian study and is suggested to range between 0.1and1.2/10,000 live births. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene in 8q12.1 were identified as causative for CHARGE syndrome. The gene has 37 coding exons and encodes a 2997-amino acid protein that belongs to the family of chromodomain helicase DNA-binding (CHD) proteins. In humans at least nine CHD genes are known. Functional domains such as chromo (chromatin organization modifier), SNF2- related helicase/ATPase and BRK were identified in the CHD7 protein. The majority of CHD7 gene mutations is unique and occurs de novo. On the basis of the overlap in clinical features between CHD7 mutant mice and CHARGE, we believe that these mice will be a valuable tool in further analysis of the pathology underlying the abnormalities in CHARGE syndrome.
引文
1.郝伟主编.精神病学(第5版)[M].北京:人民卫生出版社,2004:2.
    2. Mueser KT,McGurk SR.Sehizophrenia.Lancet 2004;363:2063—2072
    3.季建林.《精神医学》.上海:复旦大学出版社,2003:
    4. ERIC J. MASH, DAVID A.WOLFE; MENG XIANZHANG et al (translated). Abnormal child psychology [M]. 2nd edition. Guangzhou: Jinan University Press, 2004, 427-435
    5. JOSEPHINEL.WILSON.Biological foundationsofhumanbehavior [M].Canada: Wadsworth, a division of Thompson Learning, Inc. 2003,446-461, 475
    6. STEPHEN M. KOSSLYN, ROBIN S, ROSENBERG. Psychology: the brain, the person, the world [M]. 2nd edition. Beijing: Peking Univer- sity Press, 2004, 599-606
    7. GODFREY D. PEARLSON. Neurobiology of schizophrenia[J]. Annalsof neurology, 2000, 48(4), 556-566
    8. MATTHEWM. KURTZ, PAUL J. MOBERG, RUBENC. GUR, et al.Approaches to cognitive remediation of neuropsychological deficits in schizophrenia: a review and meta-analysis [J]. Neuropsychology Review, 2001, 11(4), 197-210
    9. Diagnostic and statistical manual,,DSM-Ⅲ一R.Washington,Dc:American Psychiatric Press,1987:
    10. 12地区精神疾病流行学调查协作组;各类精神病、药物依赖、酒依赖及人格障碍的调查资料分析,中华神经精神科杂志, 1986,19;70-72
    11.陈昌惠,沈渔村,张维熙等。中国七个地区精神分裂症流行病学调查,中华精神科杂志,1998,31,72-74
    12. 1ngraham , L . J . ; Kety , S . S . , Adoption studies ofschizophrenia.Am.J.Med.Genet.97:1 8-22;2000.
    13. Gottesman?l I;Shields,J.,A critical review ofrecent adoption,twin,and family studies of schizophrenia:behavioral genetics perspectives.Schizophr.Bull.2:360-401;1976.
    14. Gotlesman II.Schizophrenia genesis:the origins ofmadness W.H.Freeman;1991.
    15. Moises HW.Genetic models of schizophrenia./n Advances抽the Neurobiology of Schizophrenia(eds den Boer,JA。Westenberg,H.QM.-vnH Praag,H.M3.John Wiley&Sons,New York;1995.
    16. Sham PC,O’Calla曲an E,Takei N,et aL Schizophrenia following pre-natalexposure to influenza epidemics between 1939 and 1960.Br J Psychiatry 1992.160:461-466.
    17. Gottesman:Schizophrenia Genesis:The Origins of Madness.1991
    18. Watson,cG,et a1.,Schizophrenic birth seasonality in relation to the incidence ofinfectious diseases and temperature exlremes.Arch Gen Psychiatry,1984.4l(1):P.85—90.
    19. Stlsser,E.S.and S.PI IAn.Schizophrenia after prenatal exposure to the Dutch Hunger winter of 1944-1945.Arch Gen Psychiatry,1992.49(12):P.983-8.
    20. McCreadie,ILG,The Nithsdale Schizophrenia Surveys.16.Breast-feeding and schizophrenia:preliminary results and hypotheses.Br J Psychiatry,1997.170:P.334-7.
    21. Torrey,E.E,ct a1.,Seasonality of birthsin schizophrenia and bipolardisorder:a reviewofthe literature.Schizophr Res,1997.28(1):P.1-38.
    22. Torrey,E . E andR。H . Yolken , Atissue : ishouseholdcrowdinga riskfactorforschizophrenia and bipolar disorder?Schizophr Bull,1998.24(3):P.321-4.
    23.北京医学院基础部针麻原理研究组生理组.《中枢神经介质概论》.科学出版社,1977:149—160
    24. Henn FA.Dopamine and schizophrenia.A therapy revisited and revised.Lancet 1978:2:293—295
    25. King OJ.The effect of neuroleptics on cognitive and psychomotor function.Br J Psychiatry 1990:157:799—811
    26. Snyder SH,The dopamine hypothesis of schizoDhrenia:focus on the dopamine receptor,Am J Psychiatry 1976:133:197—202
    27. Stevens JR.An anatomy of schizophrenia?Arch Gen Psychiatry 1973:29:177—189
    28. Farde L,Wiesel FA,Stone—Elander S,et a1.D2 dopamine receptors inneuroleptic—naive schizophrenic patients . A positron emission tomography study with[1lC]raclopride.Arch Gen Psychiatry 1990:47:213—219
    29. Carlsson M.Carlsson A:Interactions between glutamatergic and monoaminergic systems within the basal ganOia--implications for schizophrenia and Parkinson’S disease.Trends Neurosci 1990,13(7):272-276.
    30. Luby ED,Cohen BD,Rosenbaum G GoBheb JS,Kelley R:Study of a new schizophrenomimetic drug;sernyl.AMA Arch Neurol Psychiatry 1959,81(3):363-369.
    31.刘欢,王莉,李晓驷:精神分裂症与五羟色胺研究进展.国外医学精神病学分册2003,30(3):143.147.
    32. Garbutt JC.van Kammen DP:The interaction between GABA and dopamine:implications for schizophrenia.Schizophr Bull 1983,9(3):336-353.
    33. Simpson MD。Slater E Deakin JF,Royston MC,Skan WJ:Reduced GABA uptake sites in the temporal lobe in schizophrenia.Neurosci Lett 1989,107(1-3):211-215.
    34. Simpson MD,Slater P, Deakin JF, Gottfries CG Karlsson L Grenfeldt B,Crow TJ:Absence of basal ganglia amino acid neuron deficits in schizophrenia in threecoHectiom of brains.Schizophr Res 1998,31(2-3):167—175.
    35. Heckers S,Konradi C:Hippocampal neurons in schizophrenia.J Neural Transm 2002,109(5—6):891-905.
    36. Akbarian S,Huntsman MM,Kim耵,Tafazzoli A,Potldn SG Bunney WE,Jr.,Jones EG:GABA A receptor subunit gene expression in human prefrontal cortex:comparison of schizophrenics and controls.Cereb Cortex 1995,5(6):55m560.
    37. Heckers S,Stone D,Walsh J,Shick J,Koul E Benes FM:Differential hippocampal expression of giutamic acid deearboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia.Arch GenPsychiatry 2002,59(6):521-529.
    38. Dracheva S,EⅡlal(em SL’McGurk SR,Davis KL'Haroutunian v.GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia.J Neurosci Res 2004.76(4):581-592.
    39. Adler LE,Freedman R,Ross RG Olincy A,Waldo MC:Elementary phenotypes in the neurobiological and genetic study of schizophrenia.Biol Psychiatry 1999,46(1):8—18.
    40. Johnstone EC,Crow TJ,Frith CD,Husband J,Kreel L.Cerebral ventricular size and cognitive impairment in chronic schizophrenia.Lancet 1976:2:924-926
    41. Weinberger DR,Torrey EF,Neophytides AN。Wyatt RJ.Lateral cerebral ventricular enlargement in chronic schizophrenim Arch Gen Psychiatry 1979:36:735—739
    42. Arnold SE,Franz BR,Gur RC,et a1.Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical—hippocampal interactions . Am J Psychiatry 1995:152:738—748
    43. Harrison PJ.The neuropathology of schizophrenim A critical review of the data and their interpretatiom Brain 1999;122(Pt 4):593—624
    44. Rajkowska G,Selemon LD,Goldman-Rakic PS.Neuronal and glial somal size in the prefrontal cortex:a postmortem morphometric study of schizophrenia and Huntington disease.Arch Gen Psychiatry 1998:55:215-224
    45. Gattaz WF,Brunner J.Phospholipase A2 and the hypofrontality hypothesis of schizophrenia。Prostaglandins Leukot Essent Fatty Acids, 1 996,55(1—2):109-113.
    46. Kessler RC,Berglund P,Demler O,Jin R,Koretz D,Merikangas KR,Rush AJ,Waiters EE,Wang PS:The epidemiology of major depressive disorder:results from the National Comorbidity Survey Replication(NCS·R).Jama 2003,289(23):3095-3 105.
    47.岳文洁.现代临床心理学手册〔M].济南:山东科技出版社,19 96 . 1 8 3 -1 84
    48. Sarbadhikari SN , Saha AK . Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes:a hypothesis.Theor Biol Med Model.2006,23(3):33.
    49.文隽,朱国庆.5-羟色胺与睡眠和抑郁症的关系[J].国外医学精神病学分册,2000,27(3):148-152.
    50.刘静,孙剑,马爱芹.抑郁症的研究进展[J].中华现代内科学杂志,2005,2(4):323-325.
    51.沈鱼屯.精神病学[M].北京:人民卫生出版社,1998.429.
    52.代英杰,范骏,孟昭义.抑郁症的神经生化特征及进展[J].中国临床康复,2003,7(30):4126·4127.
    53.阚红卫,明亮.5-HTR在抑郁症发病及治疗中的作用〔J].山东医药,2005;45(l):66-68.
    54.陈芳萍,李运曼,刘国卿.5- HTIA受体激动剂类抗抑郁药的研究与开发[J].药学进展,2003;27(4):213一216.
    55.许晶,马丽珍,王俊平.抑郁症的神经生物学研究〔J].临床精神医学杂志,2003;13(3);129一130
    56.秦晓松,一氧化碳与抑郁症的脑损害C77.国外医学精神病学分册,2002;29(3):150一15
    57.屈娅,冯正直.下丘脑唾体一肾上腺轴在抑郁症发病中的作用[J].局解手术学杂志,2004;13(l):58-6
    58.祖蓓蓓,抑郁症与免疫抑制口〕.国外医学精神病学3)fl*,2004;31(2):97-99.
    59.林巧爱.抑郁障碍与神经免疫系统相关研究〔J].健康心理学杂志,2001;9(3):227一228.
    60.汤艳清,谢光荣,李艳荃等。抑郁症患者血中T细胞亚群数量及相关因素的研究[J].中国临床心理学杂志,2004;12(3):279-280.
    61. Angst,F.,Stassen,H.H.,Clayton,P.J.,et a1.(2002)Mortality of patients with mood disorders:follow-up over 34—38 years.Journal of Affective Disorders,68,167—181.
    62.中华医学会精神科分会编CCMD-3(M)济南:山东科学出版社,2001.86
    63.沈其杰,刘铁榜1加强对双相情感障碍的临床研究〔J〕中华精神科杂志,2003,36(4)193-194
    64. Weissman MM,Leaf PJ,Tischier GL, et al。Affective disorders in five united states communities。Psychol Med,1988.18(1):141-153
    65.王金荣,王德平,沈渔村等。中国七个地区情感性精神障碍流行病学调查。中华神经科杂志,1998,31(2):75-77
    66. Hirschhorn JN,Daly MJ:Genome—wide association studies for common diseases and complex traits.Nat Rev Genet 2005;6(2):95—108
    67. Carlson CS,Eberle MR,Rieder MJ,et a1.:Selecting a maximally informative set of single—nucleotide polymorphisms for association analyses using linkage disequilibrium.Am J Hum Genet 2004:74(1):106-20
    68. Jorde LB:Linkage disequilibrium and the search for complex disease genes.Genome Res 2000;10(10):1435—44
    69. Ardlie KG, Kruglyak L, Seielstad M:Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002:3(4):299—309
    70. Pritchard JK,Przeworski M:Linkage disequilibrium in humans:models and data.Am J Hum Genet 2001:69(1):1-14
    71. Devl in B,Ri sch N:A comparison of l inkage di sequi l ibrium measuresfor fine—scale mapping.Genomics 1995:29(2):311-22
    72. Ardlie,K.G,L Kruglyak,and M.Seielstad,Patterns oflinkage disequilibrium in the human genome.Nat Rev Genet,2002.3(4):P.299-309.
    73. McRae,A.E,et a1.,Linkage disequilibrium in domestic sheep.Genetics,2002.160(3):P.1113-22.
    74. Kruglyak,L,Prospects for whole-genome linkage disequilibrium mapping ofcommon disease genes.Nat Genet,1999.22(2):P.139-44.
    75. Ardlie, K. G., L. Kruglyak & M. Seielstad. Patterns of linkage disequilibrium in the human genome. 2002. Nat Rev Genet. 3: 299-309.
    76. Jorgensen TH,Degn B,Wang AG,et a1.:Linkage disequilibrium and demographic history of the isolated population of the Faroe Islands. Eur J Hum Genet 2002:10(6):381-7
    77. Terwilliger JD,Zollner S,Laan M,et a1.:Mapping genes through the use of linkage disequilibrium generated by genetic drift:’drift mapping’in small populations with no demographic expansion.Hum Hered 1998:48(3):138-54
    78. Stephens jc,Briscoe D,0’Brien SJ:Mapping by admixture linkage disequilibrium in human populations:limits and guidelines.Am J Hum Genet 1994:55(4):809-24
    79. Chakraborty R,Weiss KM:Admixture as a tool for finding linked genes and detecting that difference from a11elic association between loci.Proc Natl Acad Sci U S A 1988;85(23):91 19-23
    80. Pfaff CL,Parra EJ,Bonilla C,et a1.:Population structure in admixed populat ions:effect of admixture dynamics on the pattern of linkage disequilibrium.Am J Hum Genet 2001:68(1):198-207
    81. Verrelli BC, Eanes WF: Elinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster.Genetics 2001:157(4):1649-63
    82. Parsch J,Meiklejohn CD,Hartl DL:Patterns of DNA sequence variation suggest the recent action of positive selection in thejanus-ocnus region of Drosophila simulans.Genetics 2001:159(2):647—57
    83. Botstein, D., et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. 1980. Am J Hum Genet. 32: 314-31.
    84. Carlson, C. S., et al. Mapping complex disease loci in whole-genome association studies. 2004. Nature. 429: 446-52.
    85. Itsara, A., et al. Population analysis of large copy number variants and hotspots of human genetic disease. 2009. Am J Hum Genet. 84: 148-61.
    86. Daly,MJ.,et a1.,High·resolution haplotype structure in the human genome.Nat Genet’2001.29(2): P.229-32.
    87. Cardon, L. R. & J. I. Bell. Association study designs for complex diseases. 2001. Nat Rev Genet. 2: 91-9.
    88. Zondervan, K. T. & L. R. Cardon. The complex interplay among factors that influence allelic association. 2004. Nat Rev Genet. 5: 89-100.
    89. Wang, W. Y., et al. Genome-wide association studies: theoretical and practical concerns. 2005. Nat Rev Genet. 6: 109-18.
    90. Devlin, B., K. Roeder & L. Wasserman. Genomic control, a new approach to genetic-based association studies. 2001. Theor Popul Biol. 60: 155-66.
    91. Spielmnn,R?S R.E.McGinnis,and WJ.EwelflB,Transmission testfor linkage disequilibrium : the insulin gene region and insulin-dependent diabetes meIntus(IDDM).Am J Hum Genet,1993.52(3):P.506-16.
    92. Faul, F., et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. 2007. Behav Res Methods. 39: 175-91.
    93. Hamilton, S. P. Schizophrenia candidate genes: are we really coming up blank? 2008. Am J Psychiatry. 165: 420-3.
    94. Neale, B. M. & P. C. Sham. The future of association studies: gene-based analysis and replication. 2004. Am J Hum Genet. 75: 353-62.
    95. The International HapMap Project. 2003. Nature. 426: 789-96.
    96. A haplotype map of the human genome. 2005. Nature. 437: 1299-320.
    97. Frazer, K. A., et al. A second generation human haplotype map of over 3.1 million SNPs. 2007. Nature. 449: 851-61.
    98. Owen, M. J., N. Craddock & M. C. O'Donovan. Schizophrenia: genes at last? 2005. Trends Genet. 21: 518-25
    99. St Clair, D., et al. Association within a family of a balanced autosomal translocation with major mental illness. 1990. Lancet. 336: 13-6.
    100. Millar, J. K., et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. 2000. Hum Mol Genet. 9: 1415-23.
    101. Thomson, P. A., et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. 2005. Mol Psychiatry. 10: 657-68, 616.
    102. Hodgkinson, C. A., et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. 2004. Am J Hum Genet. 75: 862-72.
    103. Callicott, J. H., et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. 2005. Proc Natl Acad Sci U S A. 102: 8627-32.
    104. Millar,J.K.,Pickard,B.S.,et a1.,DISCl and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling, Science.2005;310:1187-91.
    105. Kamiya,A.,Kubo,K.,et a1.,A schizophrenia-associated mutation of DISCl perturbs cerebral cortex development, Nat Cell Biol,2005:7:】167-78.
    106. Straub, R. E., et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. 2002. Am J Hum Genet. 71: 337-48.
    107. Schwab, S. G., et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. 2003. Am J Hum Genet. 72: 185-90.
    108. Williams, N. M., et al. Identification in 2 independent samples of a novelschizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). 2004. Arch Gen Psychiatry. 61: 336-44.
    109. Tang, J. X., et al. Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. 2003. Mol Psychiatry. 8: 717-8.
    110. Li,w.,Zhang,Q.,at a1.,Herraansky-Pudlak syndrome type 7(riPS-7)results from mutant dysbindin, a member ofthe biogenesis of lysosome-related organdies complex』WLOC-O,Nat Genet.2003;35:84-9.
    111. Benson,M.A.,Newey,S.E.,et a1.,Dysbindin, a novel coiled-coil-cantoining protein that interacts with the dystrobrevins in muscle and brain,J Biol Chem.2001;276:24232-41.
    112. Talbot,K.,Eidem,w.L.,et a1.,Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia.J Clin Invest.2004;113:1353-63.
    113. Weickert,C.S.,Straub,R.E.,et a1.,Human dysbindin (DTNBPl)gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain.Arch Gen Psychiatry.2004;61:544—55.
    114. Stefansson, H., et al. Neuregulin 1 and susceptibility to schizophrenia. 2002. Am J Hum Genet. 71: 877-92.
    115. Stefansson, H., et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. 2003. Am J Hum Genet. 72: 83-7.
    116. Tang, J. X., et al. Polymorphisms within 5' end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. 2004. Mol Psychiatry. 9: 11-2.
    117. Williams, N. M., et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. 2003. Mol Psychiatry. 8: 485-7.
    118. Fukui, N., et al. Supportive evidence for neuregulin 1 as a susceptibility gene for schizophrenia in a Japanese population. 2006. Neurosci Lett. 396: 117-20.
    119. Norton, N., et al. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. 2006. Am J Med Genet B Neuropsychiatr Genet. 141B: 96-101.
    120. Coffas,G,Roy,K.,et a1.,Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosei.2004;7:575—80.
    121. Chumakov, I., et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. 2002. Proc Natl Acad Sci U S A. 99: 13675-80.
    122. Mulle, J. G., et al. No evidence for association to the G72/G30 locus in an independent sample of schizophrenia families. 2005. Mol Psychiatry. 10: 431-3.
    123. Zou, F., et al. A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population. 2005. Schizophr Res. 73: 257-61.
    124. Karayiorgou, M., et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. 1995. Proc Natl Acad Sci U S A. 92: 7612-6.
    125. BadneL J.A.and Gershon,E.S.,Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia.Mol Psychiatry.2002;7:405一11.
    126. Lewis,C-M.,Levinson,D.F_,et a1.,Genome scan meta-analysis of schizophrenia and bipolar disorder, partⅡSchizophrenia, Am J Hum Genet.2003;73:34.48.
    127. Liu, H., et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. 2002. Proc Natl Acad Sci U S A. 99: 3717-22.
    128. Li, T., et al. Evidence for association between novel polymorphisms in the PRODH gene and schizophrenia in a Chinese population. 2004. Am J Med Genet B Neuropsychiatr Genet. 129B: 13-5.
    129. Fallin, M. D., et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios.2005. Am J Hum Genet. 77: 918-36.
    130. Williams, H. J., et al. Association between PRODH and schizophrenia is not confirmed. 2003. Mol Psychiatry. 8: 644-5
    131. Jacquet, H., et al. PRODH mutations and hyperprolinemia in a subset of schizophrenic patients. 2002. Hum Mol Genet. 11: 2243-9.
    132. Jacquet, H., et al. Hyperprolinemia is a risk factor for schizoaffective disorder. 2005. Mol Psychiatry. 10: 479-85.
    133. Bender, H. U., et al. Functional consequences of PRODH missense mutations. 2005. Am J Hum Genet. 76: 409-20.
    134. Paterlini, M., et al. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. 2005. Nat Neurosci. 8: 1586-94.
    135. Lachman, H. M., et al. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. 1996. Am J Med Genet. 67: 468-72.
    136. Shifman, S., et al. A highly significant association between a COMT haplotype and schizophrenia. 2002. Am J Hum Genet. 71: 1296-302.
    137. Liu,H.,Abecasis,G R.,et a1.。Genetic variation at the 22q11 locus and susceptibility to schizophrenia,Proc Natl Acad Sci U S A.2002;99:16859-64.
    138. Mukai,J.,Liu,H.,et al,,Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia, Nat Genet.2004;36:725—31.
    139. Sklar,P,Pato,M.T.,et a1.,Genome-wide scan of Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis,Mol Psychiatry.2004;9:213—8.
    140. Petryshen。T L.,Middleton,E A.,et a1.,Genetic investigation of chromosome 5q GABA(a) receptor subunit tgenes in schizophrenia,Mol Psychiatry.2005.
    141. Roberts,E.,Prospects for research on schizophrenia.An hypotheses suggesting thatthere is a defect in the GABA system in schizophrenis, Neurosei Res Program Bull.1972;10:468-82.
    142. Lewis,D.A.,Hashimoto,T.,et a1.,Cortical inhibitory neurons and schizophrenia,Nat Rev Neurosei.2005;6:312-24.
    143. Mimics,K.,Middleton,E A.,et a1.,Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex, Neuron.2000;28:53-67.
    144. Ross,E.M.and Wilkie,T.M.,GTPase-activating proteins for heterotrimeric G proteins:regulators of G protein signaling(RGS)and RGS-like proteins,Annu Rev Biochem.2000;69:795—827.
    145. Chowdari,K.V.,Mimics,K.,et a1.,Association and linkage analysis of RGS4 polymorphisms in schizophrenia,Hum Mol Genet.2002;11:1373—80.
    146. Fallin,M.D.,Lasseter,vrK.,et a1.,Bipolar I disorder and schizophrenia:a
    440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios,Am J Hum Genet.2005;77:91 8-36.
    147. Clan,X.,Dunham,C.,et a1.,Regulator of G-protein signaling 4(RGS4)gene is associated with schizophrenia in 1fish high density families , Am J Med Genet.2004;129B:23-6.
    148. Zhang,F.,St Clair,D.,et al,.Association analysis of the RGS4 gene in Han Chinese and Scottish populations with schizophrenia,Genes Brain Behav,2005;4:
    444·8.
    149. Sobell,J.L.,Richard,C.,et a1.,Failure to confirm association between RGS4 haplotypes and schizophrenia in Caucasians,Am J Med Genet B Neurosychiatr Genet.2005;139:23-7.
    150. Mah S,Nelson M,DeLisi L,el al. Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia[J].Mol Psychiatry,2006,1l(5):471-478.
    151. Lenez T , Morgan T , Athanasiou M , el a1 . Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry,2007,12(6):572—580.
    152. Christoforou A,Hellard S。Thomson P,el a1.Association analysis of the chromosome 4p15一p16 candidate region for bipolar disorder and schizophrenialj。Mol Psychiatry,2007,12(11):1011—1025.
    153. Stefansson H,Rujescu D。Cichon S,et a1.Large recurrent micro-deletions associated with schizophrenia. Nature,2008,455(7210):232—236.
    154. O’Donovan MC,Craddock N,Norton N,et a1.Identification of loci associated with schizophrenia by genomewide association and follow—up.Nat Genet,2008 40, 1053 - 1055
    155. Shifman S,Johannesson M,Bronstein M,el al。Genome—wide association identifies a common variant in the Reelin gene that increases the risk of schizophrenia only in women PLoS Genetics,2008,4(2):e28。
    156. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. 2008. Nature. 455: 237-41.
    157. Shi, Y. Y., et al. A study of rare structural variants in schizophrenia patients and normal controls from Chinese Han population. 2008. Mol Psychiatry. 13: 911-3
    158. Need, A. C., et al. A genome-wide investigation of SNPs and CNVs in schizophrenia. 2009. PLoS Genet. 5: e1000373.
    159. Vrijenhoek, T., et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. 2008. Am J Hum Genet. 83: 504-10.
    160. Rujescu, D., et al. Disruption of the neurexin 1 gene is associated with schizophrenia. 2008. Hum Mol Genet.
    161. Kirov, G., et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. 2008. Hum Mol Genet. 17: 458-65.
    162. Shinkai T,Ohmofi 0,Hori H,et a1.Allelic association of the neuronal nitric oxidesynthase(NOSI)gene with schizophrenia [J].Mol Psychiatry,2002,7(6):560-563.
    163. Burmistrova,O.A,,A.Y,Goltsov,L.I.Abramova,V.G,Kaleda,V.A.Orlova,and E。I,Rogaev,MicroRNA in Schizophrenia:Genetic and Expression Analysis of miR一1 30b(22ql 1)。Biochemistry(Moscow),2007,72(5),578—582.
    164. Perkins, D. O., et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. 2007. Genome Biol. 8: R27.
    165. Beveridge, N. J., et al. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. 2008. Hum Mol Genet. 17: 1156-68.
    166. awter, M. P., et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. 2002. Schizophr Res. 58: 11-20.
    167. Bernstein, H. G., et al. Hippocampal expression of the calcium sensor protein visinin-like protein-1 in schizophrenia. 2002. Neuroreport. 13: 393-6.
    168. Hansen, T., et al. Brain expressed microRNAs implicated in schizophrenia etiology. 2007. PLoS ONE. 2: e873.
    169. Tordjman, S., et al. Animal models relevant to schizophrenia and autism: validity and limitations. 2007. Behav Genet. 37: 61-78.
    170. Zubenko GS,Hughes HB3rd,Maher BS,et al. Genetic linkage of region con taining the CREBl gene to depressive disorders in women from families with rec urrent,ealry一onset,major depression[J」.Am J Med Genet.2002;114(8): 98 0一98 7
    171. Zubenko GS,Hughes HB3rd,Stifier JS,et al. Sequence variations in CREBl cosegregate with depressive disorders in women[J」.MolPsychiatry.2003;8(6): 61 1一61 8-
    172. Zubenko GS,Maher B,Hugbes HB 3rd,et al. Genome一wide linkage survey for genetic loci that infiuence the development of depressive disorders in families wiht re curent,ealry一onset,major depression, Am J Med Genet B Neuropsychiart Genet.2003;123(1):1一18.
    173. Balclun ieneJ,Ytlan QP,EngstromC,etal. Linkage analysis of candidate loci in families with recurrent major depression。Mol Psychiatry 1998;3(2)162一168.
    174. Abkevich V,Camp NJ,Hensel CH, et al。Prediposition locus for major depression at chromosome 12q22-12q23.2. Am J Hum Genet。2003;73(6):1271-1281
    175. Holmans P,Zubenko GS,Crowe RR,et al. Genomewide significant linkage to recurent,early一onset major depressive disorder on chromosome l5q.Am J Hum Genet.2004;74(6):1154一1167
    176. Camp NJ,Lowry MR,Richards RL,et al,Genome一wide linkage analyses of extended Uath Pedigrees identifies loci that influence recurent,ealry一onset major depression and anxiety disodrers. Am J Med Genet B NeuroPsychiart Genet-20 05 ;1 35(1):85一93
    177. Levinson DF:The genetics ofdepression:a review.Biol Psychiatry 2006,60(2):84—92.
    178. Hoefgen B,Schulze TG,Ohlraun S, et al. The power of sample size and homogeneous sampling: association between the 5-HTTLPR serotonin transporter
    179. Yu YW,Tsai SJ,Hong CJ. et al. Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology ,2005,30:1719-1723.
    180. Zill P,Baghai TG,Zwanzger P,et al. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2)gene provide evidence for Association with major depression. Mol psychiatry,2004,9:1030-1036.
    181. Zhang X, Gainetdinov RR,Beaulieu JM,et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression。Neuron,2005,45:11-16
    182. Jahnes E,Muller DJ,Schulze TG,et al. Association study between two variants in the DOPA decarboxylase gene in bipolar and unipolar affective disorder. Am J Med Gent,2002,114:519-522.
    183. Wood JG,Joyce PR,Miller AL,et al. A polymorphism in the dopamine beta-hydroxylase gene is associated with“paranoid Ideation”in patients with major depression. Biol Psychiatry,2002, 51:365-369.
    184. Lopez Leon S, Croes EA, Sayed-Tabatabaei FA, et al,The dopamine D4 receptor gene 48-based-repeat polymorphism and mood disorders :a meta-analysis. Biol Psychiatry,2005, 57: 999-1003
    185. Blinder EB,Salyakina D,Lichtner P,et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet, 2004,36: 1319-1325.
    186. Villafuerte SM, Del-Favero J, Adolfsson R, et al. Gene-based SNP genetic association study of the corticotrophin-releasing hormone receptor-2(CRHR2) in major depression. Am J Med Genet,2002,114:222-226
    187. Van West D., Del-Favero J, Aulchenko Y, et al. A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression. Mol Psychiatry, 2004, 9: 287-292
    188. Zubenko Gs, Hughes III HB, Stiffler JS, et al. D2S2944 identifies a likely susceptibility locus for recurrent, early-onset major depression in women. Mol Psychiatry, 2002, 7:460-467.
    189. Philibert R,Caspers K,Langbehn D,et al. The association of the D2S2944 124bp allele with recurrent early onset major depressive disorder in women. Am J Med Genet B Neuropsychirtr Genet., 2003, 121: 39-43.
    190. Burcescu I, Wigg K, King N, et al. Association study of CREB1 and childhood-onset mood disorders. Am J Med Genet B Neuropsychiatr Genet, 2005,137:45-50.
    191. Hong CJ, Huo SJ, Yen FC, et al. Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicide behavior. Neuropsychology. 2003, 48:186-189.
    192. Tsai SJ, Cheng CY, Yu YW, et al. Association study of a brain-derived neurotrophic-factor genetic polymorphism and depressive disorders, symptomatology and antidepressant response. Am J Med Genet B Neuropsychiatr Genet, 2003,123: 19-22.
    193. Schumacher J, Jamra RA, Becker T, et al. Evidence for a relationship between genetic variants at the brain-derived neurotrophic-factor(BDNF) locus and major depression. Biol Psychiatry.2005, 58: 307-314.
    194. Hwang JP, Tsai SJ, Hong CJ, et al. The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression Neurobiol Aging, 2005
    195. Srtauss J, Barr CL George CJ, et al. brain-derived neurotrophic-factor variants are associated with childhood-onset mood disorder: confirmation in\ Hungarian sample. Mol Psychiatry, 2005, 10: 861-867.
    196. Sullivan PF, Lin D,Tzeng JY, van den Oord E,Perkins D,Stroup TS,Wagner M,Lee S, Wright FA,Zou F et al:Genomewide association for schizophrenia in the CATIE study:results of stage 1.Mol Psychiatry 2008,1 3(6):570-84.
    197. Muglia P,Tozzi F'Galwey NW Francks C,UpmanyuR Kong XQ,Antoniades A,Domenici E,Perry J,Rothen S et al:Genome—wide association study of recurrent major depressive disorder in two European case—control cohorts.Mol Psychiatry 2008.
    198. Laifenfeld D,Karry R,Klein E,et al. Alterations in cell adhesion molecule Ll and functionally related genes in major depression: a postmortem study[J」.Biol Psychiatry. 2005;57(7):716一725.
    199. Chen B,Wang JF,Sun X,et al. Regulation of GAP一43 expression by chronic desipramine treatment in rat cultured hippocampal cells[J」.Biolpsychlatry.2003:53 (6) :5 30一537.
    200. Lai IC,Hong CJ,Tsai SJ. Expression of cAMP response element一binding Proteinin major depression before and after antideperssant treamtent [Jl-Neuorps ychobiology。2003;48(4):182一185
    201.夏薇,赵华,任爱华,等.实验性抑郁症大鼠僵核和海马BDNF基因表达[J].中国免疫学杂志,2005,21(4):277一278
    202. Molteni R,Calabrese F,Bedogni F, et al, Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Int J Neuropsychophamacol, 2006, 9:307-317.
    203. Aston C,Jiang L,Sokolov BP. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnomralities in the temporal cortex from patients with major depressive disorder[J].MolPsychiatry.2005;10(3):309一32
    204. Iga J, Ueno S, Yamauchi K, et al. Serotonin transporter mRNA expression in periferal leukocytes of patients with major depression before and after treatment with paroxetine. Neurosci Lett,2005,389:12-16
    205. Steru L,Chermat R ,Tbierry B,et al. The tail suspeeion test: A method for screening antidepressants in mice. Psychopharmacology1 985;85 (3):36 7一70
    206. Willner P. Validation criteria for animal models of human mental disorders:Learned helplessness as a paradigm case. Psychopharmacology 1985; 8 5(4):387一404
    207. Roth KA, Katz RJ. Futher studies on a novel animal model of depression: Therapeutic efects of a tricyclic antidepressant. Neurusci Biobehav Rev 1981; 5(2):253一8
    208. Bertmar G, Toft R. Sensory mechanisms of homing in Salmonid fish.I.In troductory experiments on the olfactory sense in grilse of Baltic salmon(Sabno salar). Behaviour1969;35(3):235一41
    209. Burkard WP, Bonetri EP, Prada MD,et al. Pharmacolofical profile of moclobemide, a short cting and reversible inhibitor of monamine oxidase type A. Phannacol Exp Ther 1989;248(1):391一9
    210. Viven-mels B, Petut A. Spectrofluorometric determination of epiphyseal serotonin(5-hydroxytrptamin equals 5-HT) in repyiles.Variations of the level of 5-HT as a function of season cycles in Testudo hermanni. C R Acad Sci Hebd Seances Acad Sci D 1975;280(4):467一70
    211. Chamey DS, Heninger GR, Redmondde JR.Yohimbine induced anxiety and increased noradrenergic functionin humans: effects of diazepam and clonidine. Life Sci 1983;33(1):19一29
    212. Pawlowski L, Mazela H. Effects of antidepressant drugs, selecrive noradernalineor
    5-hydroxytryptamine uptake inhibitors, on anpomorphine-induced hypothermia in mice. Psychopharmacology 1986;88(2):240一6
    213. Gomez F, Grauges P, Lopez-Calderon A, et al. Abnormalities of hypothalamicpituitary-adrenal and hypothalamic-somatotrophic axes in Fawn-Hooded rats. Eur Endocrinal 1999; 141(3):290一6
    214. Solberg LC, Olson SL,Turek FW, et al. Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. AM Physiol Reful Ikgr Comp Physiol, 2001;28 1(3): 78 6一94
    215. Jimenez-Vasquez PA,Overstreet DH, Mathe AA. Neuropeptide Y in male and female brains of Flinders Sensitive Line, a rat model of deperssion, Effects of electroconvulsive stimuli. J Psychiatr Res 2000; 34 (6):40 5一12
    216. Korte SM, Buwalda B , Meijer O , et al.Socialy defeated male rats display a blunted adrenocortical response to a low dose of 8-OH-DPAT. Eur Pharmacol 1995;272(1):45一50
    217. Serretti, A. & L. Mandelli. The genetics of bipolar disorder: genome 'hot regions,' genes, new potential candidates and future directions. 2008. Mol Psychiatry. 13: 742-71.
    218. Kato, T. Molecular genetics of bipolar disorder and depression. 2007. Psychiatry Clin Neurosci. 61: 3-19.
    219. Hattori, E., et al. Polymorphisms at the G72/G30 gene locus, on 13q33, areassociated with bipolar disorder in two independent pedigree series. 2003. Am J Hum Genet. 72: 1131-40.
    220. Chen, Y. S., et al. Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. 2004. Mol Psychiatry. 9: 87-92; image 5.
    221. Schumacher, J., et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. 2004. Mol Psychiatry. 9: 203-7.
    222. Williams, N. M., et al. Variation at the DAOA/G30 locus influences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder. 2006. Arch Gen Psychiatry. 63: 366-73.
    223. Schulze, T. G., et al. Genotype-phenotype studies in bipolar disorder showing association between the DAOA/G30 locus and persecutory delusions: a first step toward a molecular genetic classification of psychiatric phenotypes. 2005. Am J Psychiatry. 162: 2101-8.
    224. Addington, A. M., et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. 2004. Biol Psychiatry. 55: 976-80.
    225. Muller DJ, de luca V , Sward T , et al . Brain-derived neuortorphic f actor(BDN ) gene and rapid-cycling bipolar disorder: family-based associailon study. Br J Psychiatry,2006, 189:317-323.
    226. Okada T , Hashimoto R , Numakawa T ,et al .A complex polymorphic region in the Brain-derived neuortorphic f actor ( B DNF) gene confers ususcepitbility to bipolar disorder and affects transcriptional activity. Mol Psychiat try, 2006,11:695-703.
    227. Leondro Michelon, Homero Vallada. Genetic of bipolar disorder. Rev Bras Psiquiarr,2004,26;21-23.
    228. Skibinska M, Rauser J, Czerski PM, et al. Association analysis of Brain-derivedneuortorphic factor( BDNF) gene Va166Met polymorphism in schismohrenia and bipolar affective disorder. World J Biol Psychiatry, 20 04 ,5 ;215一20.
    229. Burnett, B. B., A. Gardner & R. G. Boles. Mitochondrial inheritance in depression, dysmotility and migraine? 2005. J Affect Disord. 88: 109-16.
    230. Boles, R. G., et al. A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. 2005. Am J Med Genet B Neuropsychiatr Genet. 137B: 20-4.
    231. Munakata, K., et al. Mitochondrial DNA 3644T-->C mutation associated with bipolar disorder. 2004. Genomics. 84: 1041-50
    232. Mansour, H. A., T. H. Monk & V. L. Nimgaonkar. Circadian genes and bipolar disorder. 2005. Ann Med. 37: 196-205.
    233. McClung, C. A. Role for the Clock gene in bipolar disorder. 2007. Cold Spring Harb Symp Quant Biol. 72: 637-44.
    234. Mansour, H. A., et al. Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. 2006. Genes Brain Behav. 5: 150-7.
    235. Nievergelt, C. M., et al. Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. 2006. Am J Med Genet B Neuropsychiatr Genet. 141B: 234-41.
    236. Genome-wide association study of 14,000 cases of seven common diseases and
    3,000 shared controls. 2007. Nature. 447: 661-78.
    237. Roybal, K., et al. Mania-like behavior induced by disruption of CLOCK. 2007. Proc Natl Acad Sci U S A. 104: 6406-11
    238. Kasahara, T., et al. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. 2006. Mol Psychiatry. 11: 577-93, 523.
    239. Moore BW , Perez VJ . Physiological and biochemical aspects of nervousintegration[M].Prentice Hall,1967:343—359.
    240. Robert J Fed,Michael S Manak,Matthew F Reyes.The 14-3.3s [J].Genome Biol,2002,3(7):3010—3017.
    241. Wilker E W, Grunt R A, Artim SC, et al. Structural basis for14 -3- 3 sigma f unctional specificity〔J). J Biol Chem. 2005, 2 80 (1 9):18891-18898
    242. Berg D, Holzmann C,Riess O.14-3-3 proteins in the nervous system. Rev Neurosci, 2003,4 (9):752-762
    243. Brunet A, Kanai F, Stehn J, et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport (J) .J Cell Biol, 2002, 156(5):817-828
    244. Aitken A. Functional specificity in 14-3-3 isoform interactions through diner formation and phosphorylation. Chormosome location of mammalian isoforms and variants( J ). Plant Mol Biol, 2 0 02,5 0(6):993-1010
    245. Jun-ichi Satoh,* Takashi Yamamura,* and Kunimasa Arima。The 14-3-3 Protein _ Isoform Expressed in Reactive Astrocytes in Demyelinating Lesions of Multiple Sclerosis Binds to Vimentin and Glial Fibrillary Acidic Protein in Cultured Human Astrocytes。American Journal of Pathology, Vol. 165, No. 2,577-592
    246. Mhawech P,14-3-3 ProteillS—-an Update【J】.Cell Res.2005;1 5(4):228—236.
    247. Toyo-Oka K,Shionoya A, Gambello MJ,et a1.14-3-3 Epilion is Important for Neuronal Migrationby Binding to NUDEL : a Molecular Explanation for Miller-Diekersyndrome【J】.Nat Genet.2003;34(3):274-85.
    248. Layfield R,Fergusson J,Aitken A. et a1.Neurofibrillary Tangles of Alzheimer’s Disease Brains Contain 14-3-3 Proteins[J].Neurosci.Lett.1996;209(1):57·60.
    249. Autieri MV,Haines DS,Romanic AM,et a1.Expression of 14—3-3 Gamma in Injured Arteries and Growth Factor-and Cytokine-Stimulated Human Vascular Smootll Muscle Cells. Cell Growth Differ.1 996;7:1453.
    250. Zhang S,Ren J,Zhang CE,et a1.Role of 14-3-3 Mediated P38 Mitogen—Activated Protein Kinase Inhibition in Cardiac Myocyte Survival.Circ Res.2003;93:1026.
    251. Bae S,Xiao Y,Li G,et a1.Effect of Maternal Chromc Hypoxic Exposure During Gestation on Apoptosis in FetaJ Rat Heart.Am J Physiol Heart Circ Physiol.2003;85:H983.
    252. Gaetje R,Kotzian S,Hemnann G, et a1.Invasiveness of Endometliotic Cells in Vitro[J1.Lancet.1995;346(8988):1463-1464.
    253. Wilker E,Yaffe MB.14—3—3 proteins—a focus on cancer and human disease[J].J Mol Cell Cardiol,2004,7(3):633—642.
    254. Wilker E,Yaffe MB.14—3—3 proteins—a focus on cancer and human disease[J].J Mol Cell Cardiol,2004,7(3):633—642.
    255. Taya, S., Shinoda, T., Tsuboi, D., Asaki, J., Nagai, K., Hikita, T., Kuroda, S., Kuroda, K., Shimizu, M., Hirotsune, S. et al. (2007) DISC1 regulates the transport of the NUDEL/LIS1/14-3-3 complex through Kinesin-1. J. Neurosci, 27, 15–26.
    256. Ikeda M, Hikita T, Taya S, Uraguchi-Asaki J, Toyo-oka K et al. Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Hum Mol Genet. 2008; 17: 3212-3222.
    257. Dariavaeh P,Matteei MG Golstein P,et a1.Human Ig superfamily CTLA-4 gene:chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains.Eur J Immunol,1988;18:1901-1905.
    258. Metzler WJ,Bajorath J,Fenderson W,et al. Solution structure of human CTIA一
    4 and delineation of a CD80/CD86 binding site conserved in CD28 . Nat Struct Biol,1997,4(7):527
    259. Linsley PS,Nsdler SG,Bajorath J,et al. Binding stoichiometry of the cytotoxic T lymphocyte一associated molecule一4(CTLA-4). A disulfilde一linked homodimer binds two CD86 molecules[J]. J Biol Chem,1995,270(25):15417
    260. Waterhouse P,Marengere LE,Mittrucker HW,et al. CTLA一4,a negative regulator of T一lymphocyte activation[J」. lmmunol Rev,199 6 ,15 3:183
    261. Lee KM,Chuang E,Griffin M,et al. Molecular basis of T cell inactivation by CTAL一4. Science,1998,282(5397):2263
    262. Yanagawa T,Hidaka Y, Guimaraes V,Soliman M,DeGroot LJ.CTLA-4 genepolymorphism associated with Graves’disease in a Caucasian population.J Clin Endocrinol Metab.1995;80:4 1-5.
    263. Chistiakov DA,Turakulov RI. CTLA-4 and its role in autoimmune thyroid disease[J]. J Mol Endocrinol,2003,31(1):21 -36.
    264. Nakkash-Chmaisse H , Makki RF , Abdelhamid E , et al. CTLA-4 gene polymorphism and its association with Graves' disease in the Lebanese population[ J]. Eur J Immunogenet,2004,31( 3 ):141 - 143.
    265. Maurer M,Ponath A Kl'uge N,Rieckmann E CTLA4 exon 1 dimorphism is associated with primary progressive multiple sclerosis.J Neuroimmunol. 2002;131:213-5.
    266. Barreto M,Santos E,Ferreira R et a1.Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus.Eur J Hum Genet.2004;12:620—6.
    267. Lee CS,Lee YJ, Liu HF, et a1.Association of CTLA4 gene A—G polymorphism with rheumatoid arthritis in Chinese.Clin RheumatoL 2003;22:22 1—4.
    268. Wi?niewski A, Kusztal M, Magott-Procelewska M, et al. Possible association of cytotoxic T-lymphocyte antigen 4 gene promoter single nucleotide polymorphism with acute rejection of allogeneic kidney transplant. Transplant Proc. 2006;38(1):56-8
    269. Jun TY, Pae CU, Chae JH, Bahk WM, Kim KS, Han H. Polymorphism of CTLA-4 gene at position 49 of exon 1 may be associated with schizophrenia in the Korean population. Psychiatry Res 2002; 15: 19-25.
    270. Jun TY, Pae CU, Chae JH, Bahk WM, Kim KS Polymorphism of CTLA-4 gene for major depression in the Korean population. Psychiatry and Clinical Neurosciences2001; 55: 533–537.
    271. Amanda L. J, Elizabeth G. H, Bryan J. M, Duncan E. M, John J. M, Michael P. P et al. CTLA-4 single-nucleotide polymorphisms in a Caucasian population with schizophrenia. Brain Behav. Immun 2009; 23:347-50
    272. Shi, Y. Y. & L. He. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. 2005. Cell Res. 15: 97-8.
    273. Toyooka K, Muratake T, Tanaka T, Igarashi S, Watanabe H, Takeuchi H, Hayashi S, Maeda M, Takahashi M, Tsuji S, Kumanishi T, Takahashi Y.14-3-3Protein eta chain gene (YWHAH) polymorphism and its genetic association with schizophrenia. Am J Med Genet,1999,88(2):164~167.
    274. Bell R, Munro J, Russ C, Powell JF, Bruinvels A, Kerwin RW,Collier DA. Systematic screening of the14-3-3 eta chain gene for polymorphic variants and case-control analysis in schizophrenia. Am J Med Genet,2000,96(6):736~743.
    275. Wong A H, Macciardi F, Klempan T, Kawczynski W, Barr CL, Lakatoo S, Wong M, Buckle C, Trakalo J, Boffa E, Oak J, Azevedo M H, Dourado A, Coelho I, Maccdo A, Vicente A, Valente J, Ferreira CP, Pato MT, Pato CN, Kennedy JL, Van Tol H H. Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the14-3-3 eta gene.Mol Psychiatry,2003,8(2):156~166.
    276. Jia Y, Yu X, Zhang B, Yuan Y, Xu Q, Shen Y. An association study between polymorphisms in three genes of 14-3-3(tyrosine3- monooxygenase/tryptophan5-monooxygenase activation protein) family and paranoid schizophrenia in northern Chines population. EurPsychiatry,2004,19(6):377~379。
    277. Delisi LE。Weinberger DR.Potkin S.et a1.Quantitative determination of immunoglclbulins in CSF and plasma of chronic schizophrenic patients J-J].Br J Psychiatry.1981.139:513
    278. Hart DJ.Heath RG.Sautter FJ Jr。et a1.Antiretroviral antibodies:implicationsfor scizophrenia.Schizophrenia spectrum disorders.and bipolar disorder[J].Biol Psychiatry.1999.45:704—714
    279. Li XM.Chlan FJ.Juorio AV.Differential effects of Superoxide dismutase and the low affinity nerve growth factor. J Neurosci Res.1999.56:72
    280. Schwarz MJ.RiedeI M,Gruber R.et a1.Antibodies to heat shock proteins in schizophrenic patients:implications for the mechanism of the disease[J].Am J Psychiatry.1999.156:1103
    281.张向阳.周东丰.向义安.等.孤独症与精神分裂症患者异常淋巴细胞的对照研究[J].中华精神科杂志.1998.31:26—29
    282. Jones, A.L., Mowry, B.J., et al., 2005. Immune dysregulation and self-reactivity in schizophrenia: do some cases of schizophrenia have an autoimmune basis? Immunol. Cell Biol. 83 (1), 9–17.
    283. Rothermundt, M., Arolt, V., et al., 2001. Review of immunological and immunopathological findings in schizophrenia. Brain Behav. Immun. 15 (4),319–339.
    284. Herbert TB,Cohen S. Depression and immunity :a meta-analytic review. Psychol Bull 1993:113:472-86
    285.石智勇,刘彩玉,周丽萍。癌症病人抑郁和T细胞等与NK活性关系的研究;健康心理学杂志,1998,6:(4)363
    286. Anisman H, Merali Z, Poulter MO, Hayley S.Cytokines as a precipitant of depressive illness: animal and human studies. Curr Pharm Des. 2005;11(8):963-72.
    287. Khattir R,Auger JA, Grifin MD, et al. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses.J Immunol 1999,162:5784-5791
    288. Green EK, Grozeva D, Jones I, et al. The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry. 2009 Jul 21. [Epub ahead of print]
    289. Becker, K. G. The common variants/multiple disease hypothesis of common complex genetic disorders. 2004. Medical Hypotheses. 62: 309-317.
    290. Bearden, C. E., V. I. Reus & N. B. Freimer. Why genetic investigation of psychiatric disorders is so difficult. 2004. Curr Opin Genet Dev. 14: 280-6.
    291. Allen MD, Religa TL, Freund SM, Bycroft M: Solution structure of the BRK domains from CHD7. J Mol Biol 2007, 371:1135-1140.
    292. Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS: Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A 1997, 94:11472-11477.
    293. Dirscherl SS, Krebs JE: Functional diversity of ISWI complexes. Biochem Cell Biol 2004, 82:482-489.
    294. Brehm A, Tufteland KR, Aasland R, Becker PB: The many colours of chromodomains. Bioessays 2004, 26:133-140.
    295. Vissers, L.E., van Ravenswaaij, C.M., Admiraal, R., Hurst, J.A., de Vries, B.B., Janssen, I.M., van der Vliet,W.A., Huys, E.H., de Jong, P.J., Hamel, B.C., et al. 2004. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 36: 955–957
    296. Bosman, E.A., Penn, A.C., Ambrose, J.C., Kettleborough, R., Stemple, D.L.,and Steel, K.P. 2005. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum. Mol. Genet. 14: 3463–3476.
    297. Lalani, S.R., Safiullah, A.M., Fernbach, S.D., Harutyunyan, K.G., Thaller, C., Peterson, L.E., McPherson, J.D., Gibbs, R.A., White, L.D., Hefner, M., et al. 2006. Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype–phenotype correlation. Am. J. Hum. Genet. 78: 303–314
    298. Sanlaville, D., Etchevers, H.C., Gonzales, M., Martinovic, J., Clement-Ziza, M., Delezoide, A.L., Aubry, M.C., Pelet, A., Chemouny, S., Cruaud, C., et al. 2006. Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J. Med. Genet. 43:211–317、
    299. Kim JW, Honge HS, Lee YK Ki CS. Clinical and genetic analysis of the CHD7 gene in Korean patients with CHARGE syndrome Clin Genet 2009: 75: 290–293
    300. Jongmans MCJ, van Ravenswaaij-Arts CMA, Pitteloud N, Ogata T, et al. CHD7 mutations in patients initially diagnosed with Kallmann syndrome– the clinical overlap with CHARGE syndrome Clin Genet 2009: 75: 65–71
    301. Hyung-Goo Kim, Ingo Kurth, Fei Lan, Irene Meliciani, et al. Mutations in CHD7, Encoding a Chromatin-Remodeling Protein, Cause Idiopathic Hypogonadotropic Hypogonadism and Kallmann Syndrome The American Journal of Human Genetics 2008 83, 511–519,
    302. Charu Chopra1, Richard Baretto, Michael Duddridge, Michael J. Browning T-Cell Immunodeficiency in CHARGE syndrome Acta P?diatrica 2009 98, pp. 408–412
    303. Karin Writzl , Catherine M. Cale , Christine M. Pierce ,Louise C. Wilson , Raoul C.M. Hennekam Immunological abnormalities in CHARGE syndrome European Journal of Medical Genetics 50 (2007) 338e345
    304. Wright CG, Brown OE, Meyerhoff WL, Rutledge JC: Auditory and temporal bone abnormalities in CHARGE association. Ann Otol Rhinol Laryngol 1986, 95:480-486.
    305. Morgan D, Bailey M, Phelps P, Bellman S, Grace A, Wyse R: Ear-nose-throat abnormalities in the CHARGE association. Arch Otolaryngol Head Neck Surg 1993, 119:49-54.
    306. Aramaki M, Udaka T, Kosaki R, Makita Y, Okamoto N, Yoshihashi H, Oki H, Nanao K, Moriyama N, Oku S, et al: Phenotypic spectrum of CHARGE syndrome with CHD7 mutations. J Pediatr 2006, 148:410-414.
    307. Aramaki M, Udaka T, Torii C, Samejima H, Kosaki R, Takahashi T, Kosaki K: Screening for CHARGE syndrome mutations in the CHD7 gene using denaturing high-performance liquid chromatography. Genet Test 2006, 10:244-251.
    308. Jongmans MC, Admiraal RJ, van der Donk KP, Vissers LE, Baas AF, Kapusta L,van Hagen JM, Donnai D, de Ravel TJ, Veltman JA, et al: CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet 2006, 43:306-314.
    309. Hardelin J.-P. DodéC. The Complex Genetics of KallmannSyndrome: KAL1, FGFR1, FGF8, PROKR2,PROK2 , et al. Sex Dev 2008;2:181–193
    310. Bosman, E.A., Penn, A.C., Ambrose, J.C., Kettleborough, R., Stemple, D.L., and Steel, K.P. 2005. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum. Mol. Genet. 14: 3463–3476.
    311. Hurd, E.A., Capers, P.L., Blauwkamp, M.N., Adams, M.E., Raphael, Y., Poucher, H.K., and Martin, D.M. 2007. Loss of Chd7 function in genetrapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm. Genome 18: 94–104.
    312. Michael P. Schnetz, Cynthia F. Bartels, Kuntal Shastri, Dheepa Balasubramanian Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns Genome Research 2009 19:590–601
    313. Lalani SR, Safiullah AM, Molinari LM, Fernbach SD, Martin DM, Belmont JW: SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 2004, 41:e94.
    314. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC, et al: Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004, 36:955-957.
    315. Lalani SR, Safiullah AM, Fernbach SD, Harutyunyan KG, Thaller C, Peterson LE, McPherson JD, Gibbs RA, White LD, Hefner M, et al: Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet 2006, 78:303-314.
    316. Gennery A. R., Slatter M. A.,J. Rice, L. H. Hoefsloot, D. Barge Mutations in CHD7 in patients with CHARGE syndrome cause T–B + natural killer cell + severe combined immune deficiency and may cause Omenn-like syndrome Clinical andExperimental Immunology 2008 153: 75–80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700