FGFR3调节小鼠骨形成的机制研究及ACH病人突变分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FGFR3是受体酪氨酸激酶家族成员(RTK)之一,通过与22种FGF(FGF1-14,16-23)结合传递信号。FGFR3是软骨内成骨过程的负性调节因子。FGFR3功能增强型突变导致软骨发育缺陷包括软骨发育不全(ACH)、软骨发育不良(HCH)、致死性发育不全(TD)。FGFR3的部分缺失突变产生僵直小指、高身材、脊柱侧凸和听力丧失综合征。
     ACH表现为短肢侏儒、椎管狭窄、面部异形,是最常见遗传性侏儒。ACH的新生儿的发病率为1/40000-1/15000。尽管已经知道ACH中FGFR3功能增强型突变抑制软骨细胞的增殖和分化,进而导致长骨变短,可是目前FGFR3对ACH出生后骨形成和骨重建的作用还不清楚。
     出生后和成年阶段,骨骼通过骨形成和骨吸收的协调作用经历持续的重建。研究证实FGFR3参与骨形成。FGFR3能影响膜内成骨。FGFR3的两种功能获得型突变(P250R和A391E)导致人类Muenke综合征和Crouzon综合征。这两种病症是由于颅缝早闭引起。TD中也经常发现颅缝早闭。另外,成年FGFR3敲除小鼠骨质减少,骨基质矿化有障碍。这些研究表明FGFR3能够调节骨形成和骨重建。
     我们以往的研究发现模拟人ACH的FGFR3~(G369C/+)突变小鼠(ACH小鼠)15天时骨小梁减少、生长板中成骨细胞标记如Cbfa1、OP和OC表达增高。我们还发现FGFR3激活能够影响ACH的早期骨形成,但是成年ACH小鼠骨形成的特点还不清楚。因此,我们利用FGFR3~(G369C/+)突变模拟人ACH的小鼠模型深入研究FGFR3调节骨形成的机制。在利用遗传动物模型研究FGFR3功能增强后对骨形成的影响的同时,我们还进行了软骨发育不全相关的临床研究。目前认为,ACH患者主要由FGFR3基因的G380R突变引起,此外也存在其他较为少见的突变。国外对ACH及相关疾病的患者研究较多,国内对ACH的研究相对零散。本研究中,我们收集了60例侏儒患者的病例和血液样本,并在知情同意的情况下,对其中临床诊断为软骨发育不全的患者进行遗传学分析,明确了FGFR3突变类型。
     主要实验方法
     第一部分FGFR3在小鼠骨形成中的作用和机制研究
     1、利用组织形态学分析和定量PCR检测骨形成情况及相关标记分子的改变。血清生化分析和Elisa检测PINP等研究矿物质平衡的系统变化。
     2、利用体外BMSCs培养和阻断实验检测成骨细胞的分化。通过ALP活性测定和染色,茜素红染色分析矿化的成骨细胞以检测成骨细胞的分化程度。Western Blot检测Erk1/2和p38的磷酸化水平。
     第二部分软骨发育不全患者的FGFR3基因突变
     1、对患者的一般情况、病史等进行询问,测量其身高、坐高、肢体长度、头围等相关指标,对患者进行临床诊断。
     2、收集临床诊断为ACH的患者的血液标本,提取DNA,采用PCR测序加限制性内切酶酶切方法对其进行FGFR3突变的遗传诊断。
     主要实验结果:
     一、FGFR3功能增强后小鼠骨量减少,成骨活性改变
     1、2月龄FGFR3~(G369C/+)小鼠胫骨骨小梁稀疏,骨矿化障碍。骨小梁表面成骨细胞胞体增大,伴有类骨质增多,矿物质沉积率降低,提示该小鼠成骨细胞虽然分泌基质的功能活跃,这与血清中PINP含量增加的结果一致。但细胞外基质矿化能力存在缺陷。
     2、FGFR3~(G369C/+)突变小鼠抑制BMSCs增殖,促进其分化,但抑制矿化,这些骨髓基质细胞自我复制能力降低及成骨活性障碍可能是导致小鼠骨量降低的原因。
     3、培养的BMSCs中FGFR3激活Erk1/2和p38通路参与调节成骨细胞增殖、分化和骨基质矿化。FGFR3主要通过激活Erk1/2通路导致BMSCs的骨基质矿化降低,通过激活p38通路导致BMSCs的增殖降低、成骨分化增强。
     二、发现了17例软骨发育不全患者存在FGFR3基因突变
     1、17位患者有ACH相关表型,临床诊断为ACH;
     2、发现16例ACH患者FGFR3基因发生G380R突变,1例FGFR3 Y278C的罕见突变。.
     主要结论:
     1、FGFR3~(G369C/+)突变小鼠通过抑制BMSCs增殖和矿化导致骨量降低。
     2、FGFR3主要通过激活Erk1/2通路导致BMSCs的骨基质矿化降低,通过激活p38通路导致BMSCs的增殖降低、成骨分化增强。
     3、绝大部分ACH病人为FGFR3G380R突变,与国外报道一致。.
Fibroblast growth factor receptor3 (FGFR3) belongs to membrane-bound receptor tyrosine kinases. FGFR3 is a negative regulator of endochondral bone development. Gain-of-function mutations in FGFR3 result in chondrodysplasias which include achondroplasia (ACH), hypochondroplasia and thanatophoric dysplasia (TD). In contrast, partial loss-of-function mutation of FGFR3 causes camptodactyly, tall stature, scoliosis and hearing loss (CATSHL) syndrome.
     ACH is characterized by the short limb dwarfism, spinal stenosis and facial dysmorphism, which is the most common hereditary dwarfism with an incidence rate between 1/15 000 and 1/40 000 live births. Although gain-of-function mutations of FGFR3 in ACH have been found to inhibit the proliferation and differentiation of chondrocytes and subsequently cause shortened long bone resulting in dwarfism, the effects of FGFR3 on the postnatal bone formation and bone remodeling in ACH have not been well elucidated.
     During postnatal and adult stages, bone undergoes continuous remodeling through the coordinated processes of bone formation and bone resorption. Evidence suggests that FGFR3 is involved in bone formation. FGFR3 can affect intramembranous ossification. Two gain-of-function mutations of FGFR3 (P250R and A391E) have been identified in humans resulting in Muenke syndrome, and Crouzon syndrome with Acanthosis Nigricans. Both syndromes have premature fusion of the cranial sutures. Furthermore, TD is also frequently associated with severe craniosynostosis. Additionally, adult Fgfr3 and Fgfr3IIIc null mutant mice showed osteopenia and defects in bone matrix mineralization. These studies indicate that FGFR3 could regulate bone formation and remodeling.
     Our previous study showed shortened trabecular bone and increased expressions of osteoblast markers such as core binding factor a1 (Cbfa1), osteopontin (OP) and osteocalcin (OC) in the growth plate of FGFR3~(G369C/+) mice (a mouse model mimicking human ACH resulting from the gain-of-function mutation, Gly375Cys, of FGFR3) on postnatal day 15. We also observed that activating mutation in FGFR3 caused decreased bone mass and compromised architecture in adult mice.These data indicate that activation of FGFR3 could influence bone formation at an early age of ACH, but the characteristics of the bone formation in adult ACH mice are not clear.
     Thus, we used mouse model mimicking human achondroplasia resulting from gain-of-function mutation of FGFR3 (FGFR3~(G369C/+) mice) to further explore the mechanism of FGFR3 regulating bone formation.
     In addition to study the mechanism of FGFR3 regulating bone formation, we also did some clinical studies. More than 98% of ACH cases are caused by a single G380R mutation in the transmembrane domain of FGFR3. Multiple researches on FGFR3 mutations associated with ACH have been carried out abroad,however there are a few studies on ACH patients in China. In this study, we collected 60 subjects with dwarfism and made genetic analysis of ACH patients of them.
     Methods
     Part I The mechanism of FGFR3 regulating bone formation
     1.Histomorphometric measurement and real-time quantitative RT-PCR (qRT-PCR) were used to evaluate osteoblastogenesis. Serum biochemistry and ELISA for PINP were used to investigate systemic alteration in mineral homeostasis.
     2. BMSCs culture and inhibitor studies in vitro were used to examine the differentiation of osteoblasts. ALP activity and staining, and alizarin red staining of mineralized osteoblast cultures were used to detect the extent of the differentiation of osteoblasts. The levels of Erk1/2 and p38 phosphorylation were detected by Western Blot.
     Part II Mutation analysis of ACH patients
     1. Sixty subjects with dwarfism were enrolled.The investigation content included: general condition and medical history. Physical examination was carried out including:body height,height of limbs, head circumference ,etc.
     2. Blood samples were collected from the patients with short limbs and genomic DNA wasisolated. Direct DNA sequence analysis of all exons and exon-intron bandraries of FGFR3 was carried out. Results
     Part I FGFR3~(G369C/+) mice showed decreased bone mass and changed osteoblastic function
     1. The adult FGFR3~(G369C/+)mice showed reduced trabecular number and thickness, larger and more cuboidal osteoblasts. There was a significant decrease in calcein labeling of mineralizing surfaces in FGFR3~(G369C/+) mice as evidenced by reduced mineral apposition rate (MAR) .
     2. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, FGFR3~(G369C/+) cultures showed decreased proliferation, increased alkaline phosphatase activity, and up-regulated expressions of osteogenic differentiation related genes but fewer mineralized nodules.
     3. Enhanced Erk1/2 activity in FGFR3~(G369C/+) BMSCs was responsible for the impaired mineralization, and that up-regulated p38 phosphorylation led to decreased proliferation and enhanced osteoblastic differentiation.
     Part II Mutation analysis of ACH patients
     1. There are 17 ACH patients according to clinical diagnostic criteria. They have signs of short limb dwarfism, spinal stenosis and facial dysmorphism.Most of them have limitation of motion and pain in joints.
     2. The mutation in 16 paients is a missense mutation G380R that results in a single heterozygous G to A transversion at nucleotide1138. One patient has a missense mutation Y278C that results in a single heterozygous A to G transversion at nucleotide 833.
     Conclusions
     1. A gain-of-function mutation (G369C) in FGFR3 in mice led to decreased bone mass by inhibiting the proliferation and mineralization of bone marrow stromal cells (BMSCs).
     2. Erk1/2 signaling activated by FGFR3 is mainly responsible for the decreased bone matrix mineralization of BMSCs, and the enhanced activity of p38 signaling results in the reduced replication and increased osteogenic differentiation of Fgfr3~(G369C/+) BMSCs.
     3. Majority of ACH patients in China carrying FGFR3 G380R mutation, which is similar to data from other countries.
引文
1. Ornitz, D.M. and P.J. Marie, FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev, 2002. 16(12): p. 1446-65.
    2. Coumoul, X. and C.X. Deng, Roles of FGF receptors in mammalian development and congenital diseases. Birth Defects Res C Embryo Today, 2003. 69(4): p. 286-304.
    3. Chen, L., et al., Gly369Cys mutation in mouse FGFR3 causes achondroplasia byaffecting both chondrogenesis and osteogenesis. J Clin Invest, 1999. 104(11): p. 1517-25.
    4. Chen, L., et al., A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet, 2001. 10(5): p. 457-65.
    5. Valverde-Franco, G., et al., Defective bone mineralization and osteopenia in young adult FGFR3-/- mice. Hum Mol Genet, 2004. 13(3): p. 271-84.
    6. Rousseau, F., et al., Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature, 1994. 371(6494): p. 252-4.
    7. Su, N., X. Du, and L. Chen, FGF signaling: its role in bone development and human skeleton diseases. Front Biosci, 2008. 13: p. 2842-65.
    8. Jacob, A.L., et al., Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol, 2006. 296(2): p. 315-28.
    9. Yu, K., et al., Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development, 2003. 130(13): p. 3063-74.
    10. Komori, T. and T. Kishimoto, Cbfa1 in bone development. Curr Opin Genet Dev, 1998. 8(4): p. 494-9.
    11. Ducy, P., Cbfa1: a molecular switch in osteoblast biology. Dev Dyn, 2000. 219(4): p. 461-71.
    12. Franceschi, R.T. and G. Xiao, Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem, 2003. 88(3): p. 446-54.
    13. Xiao, G., et al., MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem, 2000. 275(6): p. 4453-9.
    14. Funato, N., et al., Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Mol Cell Biol, 2001. 21(21): p. 7416-28.
    15. Zhou, Y.X., et al., A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Genet, 2000. 9(13): p.2001-8.
    16. Ge, C., et al., Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol, 2007. 176(5): p. 709-18.
    17. Marie, P.J., Fibroblast growth factor signaling controlling osteoblast differentiation. Gene, 2003. 316: p. 23-32.
    18. Xiao, G., et al., Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem, 2002. 277(39): p. 36181-7.
    19. Huang, Z., S.L. Cheng, and E. Slatopolsky, Sustained activation of the extracellular signal-regulated kinase pathway is required for extracellular calcium stimulation of human osteoblast proliferation. J Biol Chem, 2001. 276(24): p. 21351-8.
    20. Lee, S.W., et al., TGF-beta2 stimulates cranial suture closure through activation of the Erk-MAPK pathway. J Cell Biochem, 2006. 98(4): p. 981-91.
    21. Lai, C.F., et al., Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem, 2001. 276(17): p. 14443-50.
    22. Kono, S.J., et al., Erk pathways negatively regulate matrix mineralization. Bone, 2007. 40(1): p. 68-74.
    23. Higuchi, C., et al., Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res, 2002. 17(10): p. 1785-94.
    24. Rodriguez, J.P., et al., Differential activation of ERK1,2 MAP kinase signaling pathway in mesenchymal stem cell from control and osteoporotic postmenopausal women. J Cell Biochem, 2004. 92(4): p. 745-54.
    25. Kim, H.J., et al., Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure. Dev Dyn, 2003. 227(3): p. 335-46.
    26. Xiao, G., et al., Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells J Bone Miner Res, 2002. 17(1): p. 101-110.
    27. Raucci, A., et al., Activation of the ERK1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. J Biol Chem, 2004. 279(3): p. 1747-56.
    28. Hu, Y., et al., Activation of p38 mitogen-activated protein kinase is required for osteoblast differentiation. Endocrinology, 2003. 144(5): p. 2068-74.
    29. Lee, K.S., S.H. Hong, and S.C. Bae, Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene, 2002. 21(47): p. 7156-63.
    30. Suzuki, A., et al., Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone, 2002. 30(1): p. 91-8.
    1. H orton, W.A., Hall, J.G., and Hecht, J.T. 2007. Achondroplasia. Lancet 370:162-172.
    2. C., K.-G. 2001. Present status of the use of growth hormone in short children with bone diseases (diseases of the skeleton). J Pediatr Endocrinol Metab 14:17-26.
    3. Henderson, J.E., Naski, M.C., Aarts, M.M., Wang, D., Cheng, L., Goltzman, D., and Ornitz, D.M. 2000. Expression of FGFR3 with the G380R achondroplasia mutation inhibits proliferation and maturation of CFK2 chondrocytic cells. J Bone Miner Res 15:155-165.
    4. Su, N. 2008. FGF signaling: its role in bone development and human skeleton diseases. Front Biosci 13:2842-2865.
    5. Kruczek, A., Kruczek, P., Mitkowska, Z., and Pietrzyk, J.J. 2002. [Thanatophoric dysplasia: three patients hospitalized in PAIP in 1994-2000]. Przegl Lek 59 Suppl 1:137-139.
    6. Tavormina, P.L., Shiang, R., Thompson, L.M., Zhu, Y.Z., Wilkin, D.J., Lachman, R.S.,Wilcox, W.R., Rimoin, D.L., Cohn, D.H., and Wasmuth, J.J. 1995. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 9:321-328.
    7. Meyers, G.A., Orlow, S.J., Munro, I.R., Przylepa, K.A., and Jabs, E.W. 1995. Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat Genet 11:462-464.
    8. Toydemir, R.M., Brassington, A.E., Bayrak-Toydemir, P., Krakowiak, P.A., Jorde, L.B., Whitby, F.G., Longo, N., Viskochil, D.H., Carey, J.C., and Bamshad, M.J. 2006. A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am J Hum Genet 79:935-941.
    1. Olsen, B.R., Reginato, A.M., and Wang, W. 2000. Bone development. Annu Rev Cell Dev Biol 16:191-220.
    2. Kronenberg, H.M. 2003. Developmental regulation of the growth plate. Nature 423:332-336.
    3. Karsenty, G., Kronenberg, H.M., and Settembre, C. 2009. Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629-648.
    4. Provot, S., and Schipani, E. 2005. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 328:658-665.
    5. Karsenty, G., and Wagner, E.F. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389-406.
    6. Podkowa, M., and Attisano, L. 2010. A Skeleton in the Closet: Neogenin Guides Bone Development. Developmental Cell 19:1-2.
    7. Javed, A., Chen, H., and Ghori, F.Y. 2010. Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am 22:283-293, v.
    8. Ornitz, D.M., and Marie, P.J. 2002. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446-1465.
    9. Marie, P.J. 2003. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 316:23-32.
    10. Ornitz, D.M. 2005. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16:205-213.
    11. Chen, L., and Deng, C.X. 2005. Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci 10:1961-1976.
    12. Xu, X., Weinstein, M., Li, C., and Deng, C. 1999. Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res 296:33-43.
    13. Moon, A.M., and Capecchi, M.R. 2000. Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 26:455-459.
    14. Mariani, F.V., Ahn, C.P., and Martin, G.R. 2008. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature 453:401-405.
    15. Garofalo, S., Kliger-Spatz, M., Cooke, J.L., Wolstin, O., Lunstrum, G.P., Moshkovitz, S.M., Horton, W.A., and Yayon, A. 1999. Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor 9 in transgenic mice. J Bone Miner Res 14:1909-1915.
    16. Hung, I.H., Yu, K., Lavine, K.J., and Ornitz, D.M. 2007. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol.
    17. Ohbayashi, N., Shibayama, M., Kurotaki, Y., Imanishi, M., Fujimori, T., Itoh, N., and Takada, S. 2002. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16:870-879.
    18. Liu, Z., Xu, J., Colvin, J.S., and Ornitz, D.M. 2002. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16:859-869.
    19. Lazarus, J.E., Hegde, A., Andrade, A.C., Nilsson, O., and Baron, J. 2006. Fibroblast growth factor expression in the postnatal growth plate. Bone.
    20. Delezoide, A.L., Benoist-Lasselin, C., Legeai-Mallet, L., Le Merrer, M., Munnich, A., Vekemans, M., and Bonaventure, J. 1998. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 77:19-30.
    21. Jacob, A.L., Smith, C., Partanen, J., and Ornitz, D.M. 2006. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. In Dev Biol. 315-328.
    22. Yu, K., Xu, J., Liu, Z., Sosic, D., Shao, J., Olson, E.N., Towler, D.A., and Ornitz, D.M. 2003. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130:3063-3074.
    23. Iseki, S., Wilkie, A.O., and Morriss-Kay, G.M. 1999. Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 126:5611-5620.
    24. Valverde-Franco, G., Liu, H., Davidson, D., Chai, S., Valderrama-Carvajal, H., Goltzman, D., Ornitz, D.M., and Henderson, J.E. 2004. Defective bone mineralization and osteopenia in young adult FGFR3-/- mice. Hum Mol Genet 13:271-284.
    25. Xiao, L., Naganawa, T., Obugunde, E., Gronowicz, G., Ornitz, D.M., Coffin, J.D., and Hurley, M.M. 2004. Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts. J Biol Chem 279:27743-27752.
    26. Su, N., Sun, Q., Li, C., Lu, X., Qi, H., Chen, S., Yang, J., Du, X., Zhao, L., He, Q., Jin, M., Shen, Y., Chen, D., and Chen, L. 2010. Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum Mol Genet 19:1199-1210.
    27. Rice, D.P., Aberg, T., Chan, Y., Tang, Z., Kettunen, P.J., Pakarinen, L., Maxson, R.E., and Thesleff, I. 2000. Integration of FGF and TWIST in calvarial bone and suture development. Development 127:1845-1855.
    28. Cunningham, M.L., Seto, M.L., Ratisoontorn, C., Heike, C.L., and Hing, A.V. 2007. Syndromic craniosynostosis: from history to hydrogen bonds. Orthod Craniofac Res 10:67-81.
    29. Roscioli, T., Flanagan, S., Kumar, P., Masel, J., Gattas, M., Hyland, V.J., and Glass, I.A. 2000. Clinical findings in a patient with FGFR1 P252R mutation and comparison with the literature. Am J Med Genet 93:22-28.
    30. Meyers, G.A., Orlow, S.J., Munro, I.R., Przylepa, K.A., and Jabs, E.W. 1995. Fibroblast growth factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat Genet 11:462-464.
    31. Arnaud-Lopez, L., Fragoso, R., Mantilla-Capacho, J., and Barros-Nunez, P. 2007. Crouzon with acanthosis nigricans. Further delineation of the syndrome. Clin Genet 72:405-410.
    32. Su, N., Du, X., and Chen, L. 2008. FGF signaling: its role in bone development and human skeleton diseases. Front Biosci 13:2842-2865.
    33. Wilkes, D., Rutland, P., Pulleyn, L.J., Reardon, W., Moss, C., Ellis, J.P., Winter, R.M., and Malcolm, S. 1996. A recurrent mutation, ala391glu, in the transmembrane region of FGFR3 causes Crouzon syndrome and acanthosis nigricans. J Med Genet 33:744-748.
    34. Muenke, M., Gripp, K.W., McDonald-McGinn, D.M., Gaudenz, K., Whitaker, L.A., Bartlett, S.P., Markowitz, R.I., Robin, N.H., Nwokoro, N., Mulvihill, J.J., Losken, H.W., Mulliken, J.B., Guttmacher, A.E., Wilroy, R.S., Clarke, L.A., Hollway, G., Ades, L.C., Haan, E.A., Mulley, J.C., Cohen, M.M., Jr., Bellus, G.A., Francomano, C.A., Moloney, D.M., Wall, S.A., Wilkie, A.O., and et al. 1997. A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet 60:555-564.
    35. Tavormina, P.L., Shiang, R., Thompson, L.M., Zhu, Y.Z., Wilkin, D.J., Lachman, R.S., Wilcox, W.R., Rimoin, D.L., Cohn, D.H., and Wasmuth, J.J. 1995. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 9:321-328.
    36. White, K.E., Cabral, J.M., Davis, S.I., Fishburn, T., Evans, W.E., Ichikawa, S., Fields, J., Yu, X., Shaw, N.J., McLellan, N.J., McKeown, C., Fitzpatrick, D., Yu, K., Ornitz, D.M., and Econs, M.J. 2005. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 76:361-367.
    37. Dode, C., Levilliers, J., Dupont, J.M., De Paepe, A., Le Du, N., Soussi-Yanicostas, N., Coimbra, R.S., Delmaghani, S., Compain-Nouaille, S., Baverel, F., Pecheux, C., Le Tessier, D., Cruaud, C., Delpech, M., Speleman, F., Vermeulen, S., Amalfitano, A., Bachelot, Y., Bouchard, P., Cabrol, S., Carel, J.C., Delemarre-van de Waal, H., Goulet-Salmon, B., Kottler, M.L., Richard, O., Sanchez-Franco, F., Saura, R., Young, J., Petit, C., and Hardelin, J.P. 2003. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33:463-465.
    38. Toydemir, R.M., Brassington, A.E., Bayrak-Toydemir, P., Krakowiak, P.A., Jorde, L.B., Whitby, F.G., Longo, N., Viskochil, D.H., Carey, J.C., and Bamshad, M.J. 2006. A novelmutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am J Hum Genet 79:935-941.
    39. Yu, X., and White, K.E. 2005. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev 16:221-232.
    40. Fukumoto, S., and Yamashita, T. 2007. FGF23 is a hormone-regulating phosphate metabolism-unique biological characteristics of FGF23. Bone.
    41. Benet-Pages, A., Orlik, P., Strom, T.M., and Lorenz-Depiereux, B. 2005. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 14:385-390.
    42. Araya, K., Fukumoto, S., Backenroth, R., Takeuchi, Y., Nakayama, K., Ito, N., Yoshii, N., Yamazaki, Y., Yamashita, T., Silver, J., Igarashi, T., and Fujita, T. 2005. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 90:5523-5527.
    43. Larsson, T., Yu, X., Davis, S.I., Draman, M.S., Mooney, S.D., Cullen, M.J., and White, K.E. 2005. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab 90:2424-2427.
    44. Shimada, T., Mizutani, S., Muto, T., Yoneya, T., Hino, R., Takeda, S., Takeuchi, Y., Fujita, T., Fukumoto, S., and Yamashita, T. 2001. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A 98:6500-6505.
    45. Consortium, A. 2000. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345-348.
    46. Jonsson, K.B., Zahradnik, R., Larsson, T., White, K.E., Sugimoto, T., Imanishi, Y., Yamamoto, T., Hampson, G., Koshiyama, H., Ljunggren, O., Oba, K., Yang, I.M., Miyauchi, A., Econs, M.J., Lavigne, J., and Juppner, H. 2003. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656-1663.
    47. Yoshiko, Y., Wang, H., Minamizaki, T., Ijuin, C., Yamamoto, R., Suemune, S., Kozai, K., Tanne, K., Aubin, J.E., and Maeda, N. 2007. Mineralized tissue cells are a principal source of FGF23. Bone.
    48. Rohmann, E., Brunner, H.G., Kayserili, H., Uyguner, O., Nurnberg, G., Lew, E.D., Dobbie, A., Eswarakumar, V.P., Uzumcu, A., Ulubil-Emeroglu, M., Leroy, J.G., Li, Y., Becker, C., Lehnerdt, K., Cremers, C.W., Yuksel-Apak, M., Nurnberg, P., Kubisch, C., Schlessinger,J., van Bokhoven, H., and Wollnik, B. 2006. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet 38:414-417.
    49. Milunsky, J.M., Zhao, G., Maher, T.A., Colby, R., and Everman, D.B. 2006. LADD syndrome is caused by FGF10 mutations. Clin Genet 69:349-354.
    50. Harada, M., Murakami, H., Okawa, A., Okimoto, N., Hiraoka, S., Nakahara, T., Akasaka, R., Shiraishi, Y.I., Futatsugi, N., Mizutani-Koseki, Y., Kuroiwa, A., Shirouzu, M., Yokoyama, S., Taiji, M., Iseki, S., Ornitz, D.M., and Koseki, H. 2009. FGF9 monomer-dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. Nat Genet.
    51. Wu, X.L., Gu, M.M., Huang, L., Liu, X.S., Zhang, H.X., Ding, X.Y., Xu, J.Q., Cui, B., Wang, L., Lu, S.Y., Chen, X.Y., Zhang, H.G., Huang, W., Yuan, W.T., Yang, J.M., Gu, Q., Fei, J., Chen, Z., Yuan, Z.M., and Wang, Z.G. 2009. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. Am J Hum Genet 85:53-63.
    52. Montero, A., Okada, Y., Tomita, M., Ito, M., Tsurukami, H., Nakamura, T., Doetschman, T., Coffin, J.D., and Hurley, M.M. 2000. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 105:1085-1093.
    53. Coffin, J.D., Florkiewicz, R.Z., Neumann, J., Mort-Hopkins, T., Dorn, G.W., 2nd, Lightfoot, P., German, R., Howles, P.N., Kier, A., O'Toole, B.A., and et al. 1995. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 6:1861-1873.
    54. Sobue, T., Naganawa, T., Xiao, L., Okada, Y., Tanaka, Y., Ito, M., Okimoto, N., Nakamura, T., Coffin, J.D., and Hurley, M.M. 2005. Over-expression of fibroblast growth factor-2 causes defective bone mineralization and osteopenia in transgenic mice. J Cell Biochem 95:83-94.
    55. Hurley, M.M., Okada, Y., Xiao, L., Tanaka, Y., Ito, M., Okimoto, N., Nakamura, T., Rosen, C.J., Doetschman, T., and Coffin, J.D. 2006. Impaired bone anabolic response to parathyroid hormone in Fgf2-/- and Fgf2+/- mice. Biochem BiopHys Res Commun 341:989-994.
    56. Zhou, Y.X., Xu, X., Chen, L., Li, C., Brodie, S.G., and Deng, C.X. 2000. A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Genet 9:2001-2008.
    57. Chen, L., Li, D., Li, C., Engel, A., and Deng, C.X. 2003. A Ser252Trp [corrected]substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis. Bone 33:169-178.
    58. Wang, Y., Xiao, R., Yang, F., Karim, B.O., Iacovelli, A.J., Cai, J., Lerner, C.P., Richtsmeier, J.T., Leszl, J.M., Hill, C.A., Yu, K., Ornitz, D.M., Elisseeff, J., Huso, D.L., and Jabs, E.W. 2005. Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse. Development 132:3537-3548.
    59. Yin, L., Du, X., Li, C., Xu, X., Chen, Z., Su, N., Zhao, L., Qi, H., Li, F., Xue, J., Yang, J., Jin, M., Deng, C., and Chen, L. 2008. A Pro253Arg mutation in fibroblast growth factor receptor 2 (Fgfr2) causes skeleton malformation mimicking human Apert syndrome by affecting both chondrogenesis and osteogenesis. Bone 42:631-643.
    60. Chen, L., Adar, R., Yang, X., Monsonego, E.O., Li, C., Hauschka, P.V., Yayon, A., and Deng, C.X. 1999. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 104:1517-1525.
    61. Chen, L., Li, C., Qiao, W., Xu, X., and Deng, C. 2001. A Ser(365)-->Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 10:457-465.
    62. Li, C., Chen, L., Iwata, T., Kitagawa, M., Fu, X.Y., and Deng, C.X. 1999. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet 8:35-44.
    63. Iwata, T., Chen, L., Li, C., Ovchinnikov, D.A., Behringer, R.R., Francomano, C.A., and Deng, C.X. 2000. A neonatal lethal mutation in FGFR3 uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 9:1603-1613.
    64. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A., and Leder, P. 1996. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911-921.
    65. Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G., and Ornitz, D.M. 1996. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390-397.
    66. Mansukhani, A., Bellosta, P., Sahni, M., and Basilico, C. 2000. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol 149:1297-1308.
    67. Mansukhani, A., Ambrosetti, D., Holmes, G., Cornivelli, L., and Basilico, C. 2005. Sox2induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 168:1065-1076.
    68. Lomri, A., Lemonnier, J., Hott, M., de Parseval, N., Lajeunie, E., Munnich, A., Renier, D., and Marie, P.J. 1998. Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome. J Clin Invest 101:1310-1317.
    69. Lemonnier, J., Hay, E., Delannoy, P., Fromigue, O., Lomri, A., Modrowski, D., and Marie, P.J. 2001. Increased osteoblast apoptosis in apert craniosynostosis: role of protein kinase C and interleukin-1. Am J Pathol 158:1833-1842.
    70. Lomri, A., Lemonnier, J., Delannoy, P., and Marie, P.J. 2001. Increased expression of protein kinase Calpha, interleukin-1alpha, and RhoA guanosine 5'-triphosphatase in osteoblasts expressing the Ser252Trp fibroblast growth factor 2 receptor Apert mutation: identification by analysis of complementary DNA microarray. J Bone Miner Res 16:705-712.
    71. Minina, E., Kreschel, C., Naski, M.C., Ornitz, D.M., and Vortkamp, A. 2002. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439-449.
    72. Lu, X., Su, N., Yang, J., Huang, W., Li, C., Zhao, L., He, Q., Du, X., Shen, Y., Chen, B., and Chen, L. 2009. Fibroblast growth factor receptor 1 regulates the differentiation and activation of osteoclasts through Erk1/2 pathway. Biochem BiopHys Res Commun 390:494-499.
    73. Dailey, L., Ambrosetti, D., Mansukhani, A., and Basilico, C. 2005. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233-247.
    74. Ambrosetti, D., Holmes, G., Mansukhani, A., and Basilico, C. 2008. Fibroblast growth factor signaling uses multiple mechanisms to inhibit Wnt-induced transcription in osteoblasts. Mol Cell Biol 28:4759-4771.
    75. Murakami, S., Balmes, G., McKinney, S., Zhang, Z., Givol, D., and de Crombrugghe, B. 2004. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev 18:290-305.
    76. Murakami, S., Kan, M., McKeehan, W.L., and de Crombrugghe, B. 2000. Up-regulationof the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 97:1113-1118.
    77. Li, M., Seki, Y., Freitas, P.H., Nagata, M., Kojima, T., Sultana, S., Ubaidus, S., Maeda, T., Shimomura, J., Henderson, J.E., Tamura, M., Oda, K., Liu, Z., Guo, Y., Suzuki, R., Yamamoto, T., Takagi, R., and Amizuka, N. 2010. FGFR3 down-regulates PTH/PTHrP receptor gene expression by mediating JAK/STAT signaling in chondrocytic cell line. J Electron Microsc (Tokyo) 59:227-236.
    78. Ueda, K., Yamanaka, Y., Harada, D., Yamagami, E., Tanaka, H., and Seino, Y. 2007. PTH has the potential to rescue disturbed bone growth in achondroplasia. Bone 41:13-18.
    79. de Frutos, C.A., Vega, S., Manzanares, M., Flores, J.M., Huertas, H., Martinez-Frias, M.L., and Nieto, M.A. 2007. Snail1 is a transcriptional effector of FGFR3 signaling during chondrogenesis and achondroplasias. Dev Cell 13:872-883.
    80. Martinez-Frias, M.L., de Frutos, C.A., Bermejo, E., and Nieto, M.A. 2010. Review of the recently defined molecular mechanisms underlying thanatophoric dysplasia and their potential therapeutic implications for achondroplasia. Am J Med Genet A 152A:245-255.
    81. Yasoda, A., Komatsu, Y., Chusho, H., Miyazawa, T., Ozasa, A., Miura, M., Kurihara, T., Rogi, T., Tanaka, S., Suda, M., Tamura, N., Ogawa, Y., and Nakao, K. 2004. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10:80-86.
    82. Yasoda, A., and Nakao, K. 2010. Translational research of C-type natriuretic peptide (CNP) into skeletal dysplasias. Endocr J 57:659-666.
    83. Coumoul, X., Shukla, V., Li, C., Wang, R.H., and Deng, C.X. 2005. Conditional knockdown of Fgfr2 in mice using Cre-LoxP induced RNA interference. Nucleic Acids Res 33:e102.
    84. Shukla, V., Coumoul, X., Wang, R.H., Kim, H.S., and Deng, C.X. 2007. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet 39:1145-1150.
    1. Rodan GA, Martin TJ: Role of osteoblasts in hormonal control of bone resorption: a hypothesis.Calcif Tissue Int 1981, 33: 349-351.
    2. Martin TJ, Sims NA: Osteoclast-derived activity in the coupling of bone formation to resorption.Trends Mol Med 2005, 11:76?-81.
    3. Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development.Dev Cell 2002, 2:389?-406.
    4. Teitelbaum SL, Ross FP: Genetic regulation of osteoclast development and function. Nat Rev Genet 2003, 4:638-649.
    5. Cosman F, Nieves J, Zion M, Woelfert L, Luckey M, Lindsay R: Cosman F, Nieves J, Zion M, Woelfert L, Luckey M, Lindsay R: Daily and cyclic parathyroid hormone in women receiving alendronate.N Engl J Med 2005, 353:566-575.
    6. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ; PaTH Study Investigators: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis.N Engl J Med 2003, 349:1207-1215.
    7. Ma YL, Bryant HU, Zeng Q, Schmidt A, Hoover J, Cole HW, Yao W, Jee WS, Sato M: New bone formation with teriparatide [human parathyroid hormone-(1-34)] is not retarded by long-term pretreatment with alendronate, estrogen, or raloxifene in ovariectomized rats.Endocrinology 2003, 144:2008-2015.
    8. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al.: Induction and acti-vation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts.Dev Cell 2002, 3:889-901.
    9. Yao Z, Matsuo K, Nishimura R, Xing L, Boyce BF: c-Fos/NFAT1-or 2-mediated osteoclastogenesis requires NF-kB p50/p52 expression.J Bone Miner Res 2005, Suppl1:S145.
    10. Thiebaud D, Krieg MA, Gillard-Berguer D, Jacquet AF, Goy JJ, Burckhardt P: Cyclosporine induces high bone turnover and may contribute to bone loss after heart transplantation.Eur J Clin Invest 1996, 26:549-555.
    11. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B: The novel zinc finger-containing tran-scription factor osterix is required for osteoblast differentia-tion and bone formation.Cell 2002, 108:17-29.
    12. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H: NFAT and Osterix cooperatively regulate bone formation.Nat Med 2005, 11:880-885.
    13. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, et al.: Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis.Nature 2004, 428:758-763.
    14.廖二元,谭利华.代谢性骨病学.人民卫生出版社.2002,11:209241
    15. Morinaga T,Nakagawa N,Yasuda H,etal.Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis inhibitory factor.EurJBiochem, 1998,254:685691
    16. Hsu, H. et al. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. U. S. A. 96, 3540–3545
    17. 17 .Kong, Y.Y. et al. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323
    18. Mizuno, A. et al. (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun. 247, 610–615
    19. Bucay, N. et al. (1998) osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12, 1260–1268
    20. Hughes, A.E. et al. (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat. Genet. 24, 45–48
    21. Whyte, M.P. et al. (2002) Osteoprotegerin deficiency and juvenile Paget’s disease. N. Engl. J. Med. 347, 175–184
    22. Cundy, T. et al. (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum. Mol. Genet. 11, 2119–2127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700