GmDREB5互作蛋白GmTPR1的功能分析及利用核蛋白筛选系统克隆抗逆基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅰ、大豆抗逆相关转录因子GmDREB5互作蛋白GmTPR1的功能分析
     转录因子在高等植物抗逆反应及基因表达调控中起着重要的作用。DREB(dehydration resistance element binding protein)是一类重要的逆境响应转录因子,DREB基因的过表达能显著提高植物的抗逆性。DREB转录因子的活性受到很多互作蛋白的调控,目前对于DREB转录因子互作蛋白的研究还很少。因此,对其互作蛋白的深入研究,将有助于阐明DREB转录因子的调控机制。本课题组的前期工作已经从大豆中筛选到可以显著提高转基因植物抗逆性的DREB基因(GmDREB5),并利用GmDREB5蛋白为诱饵,采用酵母双杂交的方法筛选到一个编码互作蛋白的基因GmTPR1。该基因目前研究较少,生物学功能未知。本研究对GmDREB5互作蛋白GmTPR1的特性及生物学功能进行了较为系统研究。具体研究结果如下:
     1、GmTPR1基因的克隆及序列比对:从大豆中克隆转录因子GmDREB5互作蛋白编码基因GmTPR1。氨基酸序列分析显示:GmTPR1只含有一个TPR基序(tetratricopeptide repeat motif),将GmTPR1与拟南芥中含有相同保守域的蛋白进行氨基酸同源性比较,结果显示与其同源性最高的只有14%,推测其可能为一个新的TPR蛋白家族成员。
     2、GmTPR1蛋白与GmDREB5蛋白互作鉴定:分别将GmTPR1、GmDREB5构建到含His标签的pEASY-E1和含GST标签的pGEX 4T-1载体上,形成融合表达载体,进行Pull-down、western blot技术分析。结果表明:GmTPR1蛋白与GmDREB5蛋白在体外具有强烈的相互作用;再分别将GmTPR1、GmDREB5构建到pUC-SPYNE和pUC-SPYCE双分子荧光互补载体上,基因枪法轰击洋葱表皮,荧光共聚焦显微镜下观察。结果表明:GmTPR1蛋白与GmDREB5蛋白在体内也具有强烈的相互作用。
     3、GmTPR1蛋白与GmDREB5蛋白亚细胞定位:采用含有绿色荧光蛋白基因(GFP)的163hGFP载体与GmTPR1、GmDREB5基因分别构建融合表达载体,转化洋葱表皮细胞进行亚细胞定位分析。结果表明:GmTPR1蛋白定位于细胞核内,GmDREB5蛋白定位于细胞核内及细胞膜上,说明GmTPR1蛋白与GmDREB5蛋白相互作用可能发生于细胞核内。
     4、GmTPR1基因的表达特征分析:RT-PCR和Real-time PCR结果表明:GmTPR1基因受干旱、低温、高盐、高温、脱落酸(ABA)、乙烯(ETH)、水杨酸(SA)等多种胁迫或激素处理诱导表达。脱落酸(ABA)、水杨酸(SA)胁迫1 h时,GmTPR1基因表达量达到最高;高盐处理6 h时,GmTPR1基因表达量达到最高;干旱处理时,GmTPR1基因表达量逐渐增高,24 h达到峰值;低温胁迫,表达量12 h达到最高,24 h有所降低。同时GmTPR1也对乙烯(ETH)、高温等激素或胁迫处理有所应答。这些结果表明:GmTPR1基因受多种胁迫处理的诱导,可能参与多种信号转导途径。
     5、在酵母中,GmTPR1可以提高转录因子GmDREB5转录激活活性:将GmTPR1插入到pGADT7载体上,GmDREB5插入到YepGAP载体上,分别形成pGADTPR1和YepD5融合表达载体,将其共同转化到含报告基因HIS3和LacZ的野生型DRE酵母报道子,结果发现其能在附加20 m mol/L 3-AT的四缺营养缺陷性平板(SD/His-/Ura-/Trp-/Leu-)上生长,而单独转化YepD5,酵母报道子则不能生长,结果说明,在酵母中,GmTPR1对GmDREB5转录因子的转录激活活性具有一定的促进作用。
     6、GmTPR1与GmDREB5蛋白互作位点分析:将全长GmTPR1基因及分段缺失基因插入pGADT7载体上,构建含不同GmTPR1基因片段(1-896,1-675,675-896,1-573,573-896)的载体,与酵母双杂交诱饵载体pGBKT7-GmDREB5共同转化酵母AH109,结果发现,当只有缺失GmTPR1的C端(573-896)时,酵母转化子不能在四缺营养缺陷性平板(SD/His-/Ade-/Trp-/Leu-)上生长,而其他片段均能正常生长,表明GmTPR1的C端对GmTPR1与GmDREB5相互作用可能起关键作用。
     7、GmTPR1基因的功能分析:将GmTPR1基因转化烟草和拟南芥进行功能鉴定。在干旱和高盐胁迫条件下,转基因烟草地上和地下部分的长度明显长于对照;转基因拟南芥的萌发率明显高于对照,根长明显长于对照;在盐胁迫条件下,转基因烟草的叶绿素含量明显高于对照,证明GmTPR1基因的过表达能够显著提高转基因烟草及拟南芥对干旱和高盐胁迫的抗性。
     综上所述:GmTPR1蛋白与GmDREB5蛋白在细胞核内具有强烈的相互作用,其GmTPR1的C端对GmTPR1与GmDREB5相互作用可能起关键作用。在酵母中,GmTPR1可以提高转录因子GmDREB5转录激活活性,且受各种胁迫诱导表达,其过量表达能明显提高转基因烟草及拟南芥对干旱和高盐胁迫的抗性。
     Ⅱ、利用核蛋白筛选系统克隆抗逆基因
     核蛋白(Nuclear proteins)在植物发育、逆境胁迫响应等生理过程中发挥重要的调控作用。转录水平的基因调控大部分发生在细胞核内,研究植物核蛋白的组成及动态变化是研究植物基因调控网络的基础。目前研究核蛋白的方法操作复杂,而且成本较高。因此,建立简便快速、低成本的研究方法来研究核蛋白的动态组成对于剖析植物细胞发育、环境胁迫响应等过程中的基因表达调控机制具有重要的理论意义。本研究对本课题组前期建立的核蛋白筛选(NTT)系统进行了鉴定,在此基础上,采用NTT系统对小白麦干旱处理5小时cDNA文库进行了筛选,并对候选克隆TaABP1进行了进一步的分析。具体结果如下:
     1、NTT筛选系统的鉴定及应用:为了验证NTT系统的可靠性,将具有核定位功能的转录因子基因GmAREB插入NTT筛选载体pLEXAD中,转化酵母EGY48,在SD/His-/Leu-营养缺陷性平板能够正常生长,证明NTT筛选系统是可靠的;同时,构建了小白麦干旱处理5小时cDNA文库,插入筛选载体pLEXAD中进行筛选,共得到大约200个候选克隆,测序后分析发现,在所有克隆中,参与胁迫类蛋白占29%;信号传导类蛋白占23%;转运类蛋白占8%;能量及基础代谢类蛋白占23%;未知蛋白占17%。59.4%的蛋白可以预测具有核定位信号。
     2、候选克隆TaABP1的克隆及功能分析:在获得的克隆中,有一个bZIP(basic leucine zipper,碱性亮氨酸拉链)转录因子基因,命名为TaABP1,同源性分析表明:TaABP1与TaABI5、TmABI5等都具有较高的同源性;转录激活分析表明TaABP1具有转录激活活性;亚细胞定位分析表明TaABP1定位于细胞核中;TaABP1基因表达特性分析表明,TaABP1基因的表达受ABA、高盐、低温和干旱的诱导,可能参与这些逆境信号传导;在不同逆境胁迫处理下,TaABP1基因在小白麦的根、茎、叶中的表达量也存在差异:叶>茎>根;将TaABP1转化了烟草进行功能鉴定,结果表明,干旱胁迫条件下,转基因烟草表现明显的抗旱性。
     3、小麦成熟胚愈伤组织诱导及分化研究:为了利用小麦成熟胚进行遗传转化,本研究尝试优化小麦组织培养条件。以小麦成熟胚为外植体进行离体培养,研究了不同预处理、不同激素浓度、组合等因素对愈伤组织诱导及分化的影响。结果表明:低温预处理对愈伤组织诱导及分化有利;在不同预处理条件下,2,4-D浓度对出愈率及再生苗率的影响与基因型有关,附加KT能缓解高浓度2,4-D对再生苗率的抑制作用。
Ⅰ. Functional analysis of interactional protein GmTPR1 with stress-related transcription factor GmDREB5
     Transcription factors play important role in the regulation of plant growth, development, and response to environment. The DREB (dehydration resistance element binding protein) is a family of stress-related transcription factors. DREB family can enhance plant tolerance to abiotic stresses. The activity of DREB is regulated by some specific interactive proteins. Therefore, isolation of genes coding DREB interactive proteins will be contributed for the clarifying of the regulative mechanisms of DREB transcription factors on translational level. In previous research, overexpression of GmDREB5 was proved to enhance stress tolerances of transgenic plants. In order to study regulative mechism of GmDREB5, GmTPR1 gene coding GmDREB5 interactive protein had been isolated by screening cDNA library of soybean treated with drought using yeast-two-hybrid systemt. So far, few members of TPR gene family were studied and functions of most members are unknown. In this study, characteristic and function of GmTPR1 were analyzed. Some main results have been achieved as follows:
     1. Isolation and phylogenetic analysis of GmTPR1 gene A gene coding GmDREB5 interactive protein, GmTPR1, was isolated from soybean cDNA library. The GmTPR1 protein has one TPR (tetratricopeptide repeat) motif. The homologic analysis of the TPR motif with the similar Arabidopsis indicated that the highest identity of with other TPR proteins was 14% only, suggesting that GmTPR1 is a novel member of TPR protein family.
     2. Identification of the interaction between GmTPR1 and GmDREB5 The fragment encoding GmTPR1 was inserted into pEASY-E1 (with 6×His in N’end) and the fragment encoding GmDREB5 was inserted to pGEX 4T-1 (with GST tag), respectively to form fusion expression vector,which was analyzed by pull-down and western blot .and results suggested GmTPR1 interacts with GmDREB5 obviously in vitro; full-length sequences of GmTPR1 and GmDREB5 were cloned into the pUCSPYNE and pUCSPYCE BIFC (Bimolecular fluorescence complementation) vectors, respectively,for transient expression analysis in onion (Allium cepa) epidermal cells using the particle bombardment,and fluorescence was observed with a laser scanning confocal microscope. Result indicated that GmTPR1 interacts with GmDREB5 in vivo strongly also.
     3. Subcellular localization assay of the GmTPR1 and GmDREB5 GmTPR1 and GmDREB5 under the control of the cauliflower mosaic virus (CaMV) 35S promoter were inserted to 163hGFP vector before the 5’end of the coding region of green fluorescence protein (GFP) gene. The fused of plasmids 163hGFP- GmTPR1 and 163hGFP-GmDREB5 were transformated into onion epidermal cells for transient activity analysis. The results indicated that GmTPR1 is located in nuclei and GmDREB5 in the nuclei and membrane, suggesting this two proteins might interact each other in the nuclei of plant.
     4. Expression pattern analysis of GmTPR1 RT-PCR and Real-time PCR results showed that the expression of GmTPR1 gene was induced by drought, low temperature, high-salt high temperature, ABA, ETH, SA. Under ABA and SA treatment for 1 h , maximal expression pattern of GmTPR1 was found. Under high-salt condition for 6 h, GmTPR1 expression level reached the maximal.Under drought treatment, GmTPR1 mRNA began to accumulate at 1 h and reached maximum at 24 h after treatment. Under low-temperature treatment, GmTPR1 mRNA began to accumulate at 1 h and reached its maximum at 12 h. Interestingly, the GmTPR1 gene was also induced by exogenous ETH and high-temperature. thereby expression of GmTPR1 gene was thought to be induced by multitudinal treatment, and it might be involved in different signal transduction pathway.
     5. GmTPR1 can enhance transcriptional activation activity of GmDREB5 in yeast cells YepD5 and pGADTPR1 recombine plasmid were co-transformed into yeast strains carrying the wild type DRE element, which was site before HIS3 and LacZ reporter genes in chromosome. The results showed that co-transformed yeast grew well on SD/-Ade/-His/-Leu/-Trp medium plus 20 m mol/L 3-AT, but yeast cells transforamed without pGADT7-GmTPR1 didn’t grow at all on the same medium, suggesting GmTPR1 might enhance transcriptional activation activity of GmDREB5.
     6. Interactive site analysis between GmTPR1 and GmDREB5 proteins The full-length and different length of GmTPR1 fragments were inserted into the pGADT7 vector using site-sepecific recombinant enzyme, and co-transformed into the yeast AH109 with pGBKT7-GmDREB5. The results indicated that only the yeast transformated with the vector containing C-terminal sequencing of GmTPR1 could grow on SD/His- /Ade- /Trp- /Leu- medium, suggesting that C-terminal sequencing of GmTPR1 might play a crucial role in the interaction between GmTPR1 and GmDREB5.
     7. Functional analysis of GmTPR1 gene GmTPR1 gene was transformed into tobacco and Arabidopsis thaliana by Agrobacterium method approach for fuctional analysis.The results indicatied that the over-expression of GmTPR1 gene significantly improved drought and high-salt stress resistance in the two kinds of transgenic plants, and the size of parts above and under ground form the transgenic plants were longer than the corresponding parts form wild-type after stresses treatment. The Chlorophyll contents in transgenic lines were higher than in wild-type.
     Above results suggested GmTPR1 and GmDREB5 might interact in the nuclei of plant; C-terminal sequence of GmTPR1 might play a crucial role in the interaction between GmTPR1 and GmDREB5; GmTPR1 can enhance transcriptional activation activity of GmDREB5 in yeast cells; Expression of GmTPR1 gene was induced by multitudinal treatments and the over-expression of GmTPR1 gene significantly improved drought and high-salt stress resistance of transgenic tobacco and Arabidopsis thaliana.
     Ⅱ. Isolation of stress responsive genes using nuclear transportation trap
     Nuclear proteins play vital roles in the growth and development of plants. The research on the component and the dynamic change of plant nuclear protein is essential to study on resistance-related genes of the regulation network. Current research methods are complex to operate and high cost. Therefore, it is important to build some simple and low cost techniques. In previous research, a high-efficiency nuclear transportation trap (NTT) system was constructed. In this study, the screening of wheat (Variety xiaobaimai treated under drought condition for 5 h ) cDNA library was completed using NTT system,and one (named TaABP1) of clones belonged to bZIP genes family was further studied.The major results are following:
     1. Identification and application of nuclear transportation trap (NTT) system In order to identify the reliability of NTT system, the one coding GmAREB with NLS (Nuclear location signal) motif was inserted into the pLEXAD vector and transformed into the yeast EGY48. The results showed that the yeast transformed with recombinant vector could survious on SD/His-/Leu- medium, suggesting that nuclear transportation trap (NTT) system is worked. We constructed wheat cDNA library and screened up 200 yeast clone using NTT system. The sequence results showed that, 29% genes among them is related to stresses response; 23% genes is related with energy and primary metabolism; The ratio of signal transduction related genes was 23%; The ratio of transport genes was 8%; And unknown protein was 17%.However, in all proteins, the most ones belonged to the type of nuclear proteins, which was accounted for 59.4%.
     2. Isolation and functional analysis of TaABP1 gene A novel basic leucine zipper transcription factor was isolated from wheat cDNA library using NTT system, and was named as TaABP1. Phylogenetic analysis showed that TaABP1 had higher homology with TaABI5 and TmABI5. The transcriptional activation activity analysis showed that TaABP1 did have the activation activity in yeast. The subcellular localization assay indicated that TaABP1 was localized in nucleus. Analysis of gene expression pattern indicated that the expression of TaABP1 was intensively induced by ABA, high salt, low temperature and drought. Under multitudinal treatment condition, tissue-specific expression pattern analysis indicated that TaABP1 expressed in the root, stem and leaf of wheat, and the expression quantity was decreased successively in the tissues of leaf, stem, and root. The functional analysis results indicated that TaABP1 gene improved the resistance to drought stress of transgenic tobacco significantly.
     3. Study on induction and differentiation of the callus from mature embroys of wheat Mature embryos of wheat as explants were cultured on the medium with different concentrations and combinations of 2,4-D and KT after different pretreatments to studyt their effects on callus induction and differentiation . It was shown that low temperature pretreatment(at 4℃) increased the calluses induction rates, Empleying this technique, regeneration rate of some genotypes was more than 30%.the results also indicated that 2,4-D concentration was related to genotypes and the addition of KT could abate the inhibition of high concentrations 2,4-D.
引文
[1] Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-salt and cold-responsive gene expression [J]. Plant J, 2003, 33 (4):751-763.
    [2] Bray E.A.Plant responses to water deficit [J].Trands in plant science 1997,2:48-54
    [3] Kasuga M, Miura S, Shinozaki K, et al.A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low temperature stress tolerance in tobacco by gene transfer [J]. Plant Cell Physiol, 2004, 45 (3):346-350.
    [4] Shinozaki K, Yamaguchi-Shinozaki K and Seki M. Regulatory network of gene expression in the drought and cold stress responses [J]. Curr Opin Plant Biol, 2003, 6 (5):410-417.
    [5] Chen W J, Zhu T. Networks of transcription factors with roles in environmental stress response [J]. Plant Science. 2004, 9:591-597.
    [6] Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation [J]. Eur J Biochem. 1999 262(2): 247-257.
    [7] Shen Y, Zhang W, He S, Zhang J, Liu Q, Chen S. An EREBP/AP2 type protein in Triticum aestivum was a DRE binding transcription factor induced by cold, dehydration and ABA stress[J]. Theor Appl Gnent, 2003, 106:923-930.
    [8] You Sakuma. DNA Binding specificity of the ERF/AP2 domain of Arabidopsis DREBs,transcription factors involved in dehydration and cold Inducible gene expression [J].Biochemical and Biophysical Research Communications, 2002, 290:998-1009.
    [9] Okamuro JK, Caster B, Villarroel R, Van-Montagu M, Jofuku KD. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA. 1997,94(13):7076-7081.
    [10] Hao D. Unique mode of GCC box recognition by the DNA binding domain of ethylene responsive element binding factor (ERF domain) in plant [J]. Biol Chem, 1998, 273(41):26857- 26861.
    [11] Cao Zhifang. TINY,a DREB like transcription factor binding to DRE element [J].Tsinghua Science and Technology, 2001, 6(5):432- 437.
    [12] QIN Feng, LI Jie, Zhang Gui You, et al. Isolation and structural analysis of DRE-binding transcription factor from maize(Zea mays L.) [J]. Acta Botanica Sinica, 2003, 45(3):331-339.
    [13] Shen Y G, Yan D Q, Zhang W K, et al. Novel halophyte EREBP/ AP2 type DNA binding protein improves salt tolerance in transgenic tobacce [J]. Acta Botanica Sinica, 2003, 45 (1):82-87.
    [14] Guo Z J,Chen X J,Wu X L, et al. Over-expression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco [J].Plant Molecular Biology, 2004, 55(4):607–618.
    [15]曹志方,李洁,刘强.植物转录因子的结构和功能[J].植物科学进展,2003(3):95-108.
    [16] Yamaguchi-Sbinozaki K,Kolzumi M,Urao S,et a1.Molecular cloning and characterization of 9 cDNAs for genes that file responsive to desiccation in Arabidopsis thaliana:Sequence analysis of one eDNA clone that encodes a putative transmembrane channel protein [J].Plant Cell Physiol,1992,33(3):217-224.
    [17] Yamaguchi-Shinozaki K,Kazuo Shinozaki A.Novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low temperature or high—salt stress [J].Plant Cell, 1994, (6): 251-264.
    [18] Baker S S,Wilhelm K S,Thomashow M F.The 5’region of Arabidopsis thaliana corl5a has cis—acting element that confer cold-drought-and ABA regulated gene expression [J].Plant Mol Biol,1994,24(5):701-713.
    [19] Jiang C, Lu B, Singh J. Requirement of a CCGAC cis-acing element for cold induction of the BNI 15 gene from winter Brassica napus [J].Plant Mol Biol,1996,30:679-684.
    [20] Liu Q, Kasuga M, SakumaY, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in droughtand low-temperature-responsive gene expression, respectively, in Arabidopsis [J].Plant Cell,1998,10(8): 1391-1406.
    [21] Maruyama K, Sakuma Y, Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems [J].Plant journal, 2004, 38(6):982-993.
    [22] Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002, 130 (2):639-648.
    [23] Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays [J].Plant Cell Physiol, 2004, 45 (8):1042-1052.
    [24] Ren M, Chen Q, Li L, et al. Functional analysis of a reporoductive organ predominant expressing promoter in cotto plants [J]. Sci China C Life Sci, 2005, 48(5):452-459.
    [25] Gao M J, Allard G, Byass L, et al. Regulation and characterization of four CBF transcription factors from Brassica napus [J]. Plant Molecular Biology, 2002, 49(5):459-471..
    [26] Xue G P. An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a) (C/t) CGAC motif [J]. Biochim Biophys Acta, 2002, 1577 (1):63-72.
    [27] Onishi M, Tachi H, Kojima T, et al. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.) [J]. Plant Physiol Biochem, 2006, 44(10):574-580
    [28] Yamagata H, Yonesu K, Hirata A, et al. TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene[J].J Biol Chem, 2002, 277 (13): 11582 -11590.
    [29] Zhang J Y, Broeckling C D, Blancaflor E B, et al. Over-expression of WXP1, a putative Medicagotruncatula AP2 domain-containing transcription factor gene, increase cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa) [J]. Plant J, 2005, 42(5):689-707.
    [30] Hao D, Ohme-Takagi M, Sarai A, et al. A unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant [J]. J Biol Chem, 1998, 273(41): 26857-26861.
    [31] Stockinger E J, Mao Y, Regier M K, et al. Arabidopsis thalinan CBF1 encodes an AP2 domain- containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit [J]. Proc Natl Acad Sci USA, 1997, 94: 1035-1040.
    [32] Cohn J R, Martin G B. Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato [J]. Plant J, 2005, 44(1): 139-154.
    [33] Boller T. Ethylene in pathogenesis and disease resistance [M]. In: Mattoo A K, Suttle J C, editors. The Plant Hormone Ethylene. Boca Raton, FL: CRC Press, 1991, 293-314.
    [34] Diaz J, ten Have A, van Kan J A, et al. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea [J]. Plant Physiology, 2002, 129(3): 1341-1351.
    [35] Brown G E, Lee H S. Interaction of ethylene with citrus stem- end rot caused by Diplodia natalensis [J]. Phytopathology, 1993, 83(11): 1204-1208.
    [36] Fischer U and Dr?ge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus [J]. Molecular Plant-Microbe Interactions, 2004, 17(10): 1162-1171.
    [37] Gu Y Q, Wildermuth M C, Chakravarthy S, et al. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis [J]. Plant Cell, 2002, 14(4): 817-831.
    [38] Iordachescu M, Verlinden S. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophylus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure [J]. J Exp Bot, 2005, 56(418): 2011-2018.
    [39] Kang J Y, Choi H I, Im M Y, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling [J]. Plant Cell, 2002, 14(2):343-57.
    [40] Huei-Jing Wang, Ai-Ru Wan, Chia-Mei Hsu, et al. Transcriptomic adaptations in rice suspension cells under sucrose starvation [J]. Plant Mol Biol. 2007, 63(4):441-463.
    [41] Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription[J]. Proc Natl Acad Sci USA,1999, 96(26):15348–15353.
    [42] Wu CY, Suzuki A, Washida H, Takaiwa F. The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants [J]. Plant Journal. 1998,14(6):673-683.
    [43] Choi H, Hong JH, Ha J, Kang JY, Kim YS. ABFs, a family of ABA-responsive element binding factors [J]. J Biol Chem. 2000,275(3):1723-1730.
    [44] Kim S, Kang JY, Cho DI et al. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance [J]. Plant J, 2004, 40(1): 75-87.
    [45] Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K.& Yamaguchi-Shinozaki K..Arabidopsis basicleucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions [J]. Proc Natl Acad Sci USA 2000, 97(21):11632-11637.
    [46] Casaretto J, Ho THD. The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells [J].Plant Cell. 2003,15(1):271-284.
    [47] Brocard IM, Lynch TJ, Finkelstein RR. Regulation and role of the Arabidopsis ABA-insensitive 5 gene in ABA, sugar and stress response [J].Plant Physiol. 2002,129(4) :1533-1543.
    [48] Kuhlmann M, Horvay K, Strathmann A, et al. The alphahelical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response [J]. J Biol Chem. 2003,278(10):8786-8794.
    [49] Kim JC, Lee SH, Cheong YH, et al. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants [J]. Plant J. 2001,25(3): 247-259.
    [50]王磊,赵军,范云六.玉米Cat1基因顺式元件ABRE2结合蛋白ABP9的基因克隆及功能分析[J].科学通报,2002,47(15):1167-1171.
    [51] Nakagawa H.,Ohmiya k.,and Hattori T..A rice Bzip PROTEIN,designated OSBZ8, is rapaidly induced by abscisic acid [J].Plant J, 1996b,9:217-227.
    [52] Hiroshi Abe, Kazuko Yamaguchi-Shinozaki, et al. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J]. The Plant Cell, 1997, 9:1859-1868.
    [53] Bilaud T., Koering C.E., Binet-Breasselet E., Ancelin K., Pollice A., Gasser S.M., Gilson E.. The telobox, a myb-related telomeric DNA binding motif found in proteins from yeast. Plants and human [J].Nucleic Acid Res, 1996, 24(7): 1294-1303.
    [54] Baniwal S K, Bharti K, Chan K Y, et al. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors [J]. J. Biosci, 2004, 29:471-487.
    [55] Cook D, Fowler S, Fiehn O, et al. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolism of Arabidopsis [J]. Proc Natl Acad Sci. USA, 2004, 101(42): 15243 -15248.
    [56] Petr Kaspar, Michal Dvorak.Involvement of phosphatidylserine externalization in the down regulation of c-myb expression in differentiating C2C12 cells [J]. Differentiation, 2008, 76:245-252.
    [57] Singh K.B. Transcriptional regulation in plants: the importance of combinatorial control [J]. Plant Physiol, 1998, 118(4): 1111-1120.
    [58] Quattrocchio F, Wing J, van der Wouder K,et al. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color [J]. Plant Cell,1999, 11(8):1433-1444.
    [59] Higginson T, Li S.F, Parish R.W.AtMYB103 regulates tapetum and trichome development in Arabidopsis thalian [J]. Plant J, 2003, 35(2): 177-192.
    [60] Kranz H.D, Denekamp M,Greco R.et al.Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana [J]. Plant J,1998, 16(2): 263-276.
    [61] Vailleau F, Daniel X, Tronchet M, et al. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack [J]. Proc Natl Acad Sci USA, 2002, 99(15): 10179-10184.
    [62] Rauch C and Loughna P. Inward relocation of exogenous phosphatidylserine triggered by IGF-1 in non-apoptotic C2C12 cells is concentration dependent [J]. Cell Biochem Funct, 2005, 23:383-388.
    [63] Ito M.. Factors controlling cyclin B expression [J]. Plant Mol Biol, 2000, 43(5): 677-690.
    [64] Rauch C and Loughna P. Inward relocation of exogenous phosphatidylserine triggered by IGF-1 in non-apoptotic C2C12 cells is concentration dependent [J]. Cell Biochem Funct, 2005, 23:383-388.
    [65] Ramsay R G. C-Myb a stem-progenitor cell regulator in multiple tissue compartments [J]. Growth Factors, 2005, 23:253-261.
    [66] Christopher D T, Peiyu Zeng, Alicia M R, et al. Transcripts of MYB-like genes respond to phosphorous and nitrogen deprivation in Arabidopsis [J]. Planta, 2004, 219:1003-1009.
    [67] Uro T, Yamaguchi-Shinozaki K, Urao S, et al. An Arbidopsis is MYB homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence [J]. Plant Cell, 1993, 5(11):1529-1539.
    [68] Sugimoto K, Takeda S, Hirochika H. MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco ret rot ransposon Ttol and defense-related genes [J]. Plant Cell, 2000, 5:1529-1539.
    [69] Shih C H, Chu I K, Yip W K, et al. Differential expression of two flavonoid 30-hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3-deoxyanthocyanidin phytoalexins in sorghum [J]. Plant Cell Physiol, 2006, 47(10):1412-1419.
    [70] Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana [J]. Curr Opin Plant Biol, 2001, 4(4):447-456.
    [71] Hiroshi Abe, Takeshi Urao, Takuya Ito, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional Activators in abscisic acid signaling [J]. The Plant Cell, 2003, 15(1):63-78.
    [72] Hubel A and Schoffl F. Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein [J]. Plant Mol. Biol, 1994, 26:353-362.
    [73] Bernd Heidenreich, Evi Bieber, Hein rich Sandermann et al. Identification of a new member of the WRKY family in tobacco in volved in ozone-induced gene regulation. [J]. Acta Physiolo Giae Plantarum, 2006, 28(2):117-125.
    [74] Chen C., Chen Z. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco [J]. Plant Mol. Biol. 2000,42:387-396
    [75] Cormack R S, Eulgem T, Rushton P J, et al. Leucine zipper containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley [J]. Biochim Biophys Acta. 2002, 1576:92-100.
    [76] Chen C., Chen Z.. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco [J]. Plant Mol Biol, 2000, 42(2): 387~396.
    [77] Sun C.X, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, Participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter [J]. Plant Cell, 2003, 15(9): 2076-2092.
    [78] Lagace M., Matton D.P.. Characterization of a WRKY transcription factor expressed in late torpedo- stage embryos in Solanum chacoense [J]. Planta, 2004, 219(1): 185-189.
    [79] Zhang Z.L., Xie Z, Zou X.L., et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells [J]. Plant Physiol, 2004, 134(4): 1500-1513.
    [80] Xu Y.H., Wang J.W., Wang S., et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-cadinene synthase-A [J]. Plant Physiol, 2004, 135(1): 507-515.
    [81] Borrone J.W., Kuhn D.N., Schnell R.J.. Isolation, characterization, and development of WRKY genes as useful genetic markers in Theobroma cacao [J]. Theor Appl Genet, 2004, 109(3): 495-507.
    [82] Ashida Y., Nishimoto M., Matsushima A., Watanabe J., Hi rata T.. Molecular cloning and mRNA expression of geraniol-inducible genes in cultured shoot primordial of Matricaria chamomilla [J]. Biosci Biotechnol Biochem, 2002, 66(11): 2511-2514.
    [83] Lambais M.R. In silico differential display of defense-related expressed sequence tags from sugarcane tissues infected with diazotrophic endiphytes [J]. Genet Mol Biol, 2001, 24(1-4): 103-111.
    [84] Pnueli L., Hallak-Herr E., Rozenberg M., Cohen M., Goloubinoff P., Kaplan A., Mittler R..Molecular and biochemical mechanisms associated with dormancy and drought tolerance in desert legume Retama raetam [J]. Plant J, 2002, 31(3): 319-330.
    [85] Liu X.Q., Bai X.Q., Qian Q., Wang X.J., Chen M.S., Chu C.C.. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1 [J]. Cell Res, 2005, 15(8): 593-603.
    [86] Liu X., Bai X., Wang X., Chu C. OsWRKY71, a rice transcription factor, is involved in rice defense response [J]. J Plant Physiol, 2006, [Epub ahead of print].
    [87] Xie Z., Zhang Z.L., Zou X., Yang G., Komatsu S., Shen Q.J.. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells [J]. Plant J, 2006, 46:231-242.
    [88] Qiu D.Y., Xiao J., Ding X.H.,et al.OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling [J]. Mol Plant Microbe Interact, 2007, 20(5): 492-499.
    [89] Zhang H.B, Zhang D.B, Chen J,et al. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum [J]. Plant Molecular Biology, 2004, 55: 825-834.
    [90] Eulgem T., Rushton P.J., Robatzek S., Somssich I.E.. The WRKY superfamily of plant transcription factor [J]. Trends in Plant Sci, 2000, 5:199-206.
    [91] Cormack R S, Eulgem T, Rushton P J, et al. Leucine zipper containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley [J]. Biochim Biophys Acta. 2002, 1576:92-100
    [92] Grimmig B., Gonzalez-Perez M N, Welzl G, et al. Ethylene and ozone induced regulation of agrape vine resveratrol synthase gene: different promoter regions [J]. Plant Physiol Biochem, 2002, 40:865-870.
    [93] Grimmig B, Gonzalez-Perez M N, Leubner Metzger G, et al. Ozone induced gene expression occurs via ethylene dependent and independent signaling [J]. Plant Mol Biol, 2003, 51:599-607.
    [94] Hara K, Yagi M, Kusano T, Sano H. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding [J]. Mol Gen Genet, 2000, 263:30-37.
    [95] Heidenreich B, Haberer G, Mayer K, et al. cDNA ar ray anal y sis of mercuryand ozone in- duced genes in Arabidopsis thaliana [J]. Acta Physiol Plant, 2005, 27: 45-51.
    [96] Ko S, Kamada H. Isolation of carrot basic leucine zipper transcription factor using yeast one-hybrid screening [J]. Plant Mol Biol Rep, 2002, 20:301a-301h.
    [97] Maeo K, Hayashi S, Kojima-Suzuki H, et al. Role of con served residues of the WRKY do main in DNA-binding of tobacco WRKY family proteins [J]. Biosc Biotechnol Biochem,2001, 65:2428-2436.
    [98] Sun C, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, par ticipates in sugar signalling in barley by binding to the sugar-responsive elements of the iso1 promoter [J]. Plant Cell, 2003, 15(9):2076-2092.
    [99] Sanchez-Ballesta M T, Lluch Y, Gosalbes M J, et al. A survey of genes differentially expressed during long-term heat induced chilling tolerance in citrus fruit [J]. Planta, 2003, 218:65-70.
    [100] Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence and defence related processes [J].Plant J, 2001, 28:123-133.
    [101] Stanley Fidds,Ok-kyu Song.A novel genetic system to detect protein-protein Interactions [J]. Nature, 1989,340(6230):245-246.
    [102]周芳芳,李志东,王蔚蔚,等.双杂交系统筛选与AID相互作用蛋白的初步研究[J].厦门大学学报(自然科学版), 2005, 44(3):299-303.
    [103]吴娟,钱凯,杨泽峰.酵母双杂交系统的研究进展[J].安庆师范学院学报(自然科学版), 2005, 11(2):59-63.
    [104]何淑雅,肖卫纯,李洁,等.酵母双杂交系统筛选CLN8P相互作用蛋白[J].国际遗传学杂志, 2006, 29(3):161-163.
    [105] Chien CT, Bartel PL, Sternglanz R, et al.The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest [J]. Proc Natl Acad Sci U S A. 1991, 88(21):9578-9582.
    [106] Walhout A J, Sordella R, Lu X, et al. Protein interaction mapping in C elegans using proteins involved in vulval development [J ]. Science, 2000, 287(5450):116-122.
    [107] Liao M, Fang F. Yeast one-hybrid system-one effective method study DNA-protein interaction [J]. Zhongguo yi xue ke xue yuan xue bao, 2000, 22(4):388-391.
    [108] Kazuki Moriguchi, Tadzunu Suzuki, Yukihiro Ito, et al. Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations [J]. Plant Cell, 2005, 17(2):389-403.
    [109]高宁,胡宝成.酵母双杂交系统的发展及其衍生系统的比较[J].生物技术通讯, 2006, 17(3):421- 424.
    [110] Chai J , Du C , Wu JW, et al . Structural and biochemical basis of apoptotic activation by Smac/DIABLO [J].Nature ,2000 ,406 (6 798) ,855-862. [111 ] Benard V , Bokoch GM. Assay of Cdc42 , Rac , and Rho GTPase activation by affinity methods [J]. Methods Enzymol ,2002,345:349-359.
    [112] Gruber TM, Markov D , Sharp MM, et al . Binding of the initiation factor sigma (70) to core RNA polymerase is a multi-step process [J].Mol Cell ,2001 , 8 (1) : 21-31.
    [113] Huang LJ , Constantinescu SN , Lodish HF. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor [ J ]. Mol Cell , 2001 , 8(6) : 1327-1338.
    [114] Ren L , Chang E , Makky K, et al . Glutathione S-transferase Pull-down assays using dehydrated immobilized glutathione resin [J] . Anal Biochem .2003 , 15 , 322 (2) : 164 - 169.
    [115] Bottero V , Rossi F , Samson M, et al . Ikappa b-alpha , the NF-kappa B inhibitory subunit , interacts with ANT, the mitochondrial ATP/ADP translocator [J ] . J Biol Chem , 2001 ,276 (24) : 21317 -21324.
    [116] Hu C D, Chinenov Y, Kerppola1 T. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation [J]. Molecular Cell, 2002, 9(4): 789-798.
    [117] Abedi M, Caponigro G, Shen J X, et al. Transcriptional transactivation by selected short random peptides attached to lexA-GFP fusion proteins [J]. BMC Mol Biol, 2001, 2 (10): 1-10.
    [118] Baird GS,Zacharias DA,Tsien RY.Circular permutation and receptor insertion within green fluorescent protein [J].Proc Natl Acad Sci USA,1999,96(20):11241-11246.
    [119] Hu C D,Kerppola TK.Simultaneous Visualization of multiple protein interactions in living cells using bimolecular fluorescence complementation [J].Nat Biotechnol, 2003,21(5):539-545.
    [120] Bass S, Greene R and Wells JA.Hormone phage: An enrichment method for variant proteins with altered binding properties [J]. Proteins , 1990,8:309-314.
    [121] McCafferty J, Griffiths AD, Winter G and Chiswell DJ. Phage antibodies: Filamentous phage displaying antibody variable domains [J]. Nature, 1990,348:552-554.
    [122] Barbas CF 3rd, Kang AS, Lerner RA and Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site [J]. Proc Natl Acad Sci USA, 1991,88:7978 -7982.
    [123] Smith GP. Surface presentation of protein epitopes using bacteriophage expression systems [J]. Curr Opin Biotechnol, 1991, 2:668-673.
    [124] Smith GP and Scott JK .Libraries of peptides and proteins displayed on filamentous phage [J]. Methods Enzymol, 1993,217:228-257.
    [125] Hoogenboom HR.Overview of antibody phage-display technology and its applications[J]. Methods Mol Biol ,2002,178:1-37.
    [126] Szardenings M. Phage display of random peptide libraries: Applications, limits, and potential [J]. J Recept Signal Transduct Res ,2003,23:307-349.
    [127] Bialek K, Swistowski A, and Frank R. Epitope-targeted proteome analysis: towards a large-scale automated protein-protein-interaction mapping utilizing synthetic peptide arrays [J]. Anal Bioanai Chem,2003,376:1006-1013.
    [128] Jonas G, Hoffmann S, and Willbold D. Binding of phage-displayed HIV-1 Tat to TAR RNA in the presence of cyclin Tl [J].J Biomed Sci,2001,8(5):430-436.
    [129] Malik P, and Perham R N. Simultaneous display of different peptides on the surface of filamentous bacteriophage [J]. Nucleic Acids Res,1997,25:915-916.
    [130] Selvin P R. The renaissance of fluorescence resonance energy transfer [J].Nat. Struct. Bio, 2000, 7:730-734.
    [131] Wouters F S, Verveer P J, and Bastiaens P I. Imaging biochemistry inside cells [J] Trends Cell Bio,2001,11:203-211.
    [132] Prasher D C, Eckenrode V K, and Cormier M J, et al. Primary structure of the Aequorea victoria green-fluorescent protein [J]. Gene,1992,11:229-233.
    [133] Kenworthy A K. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy [J]. Methods,2001,24:289-296.
    [134] Rye H S. Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction [J]. Methods,2001,24:278-288.
    [135] Jensen K K, Martini L, and Schwartz T W. Enhanced fluorescence resonance energy transfer between spectral variants of green fluorescent protein through zinc-site engineering [J].Biochemistry,2001,40:938-945.
    [136] Li H Y, Ng E K, Lee S M, et al. Protein-protein interaction of FHL3 with FHL2 and visualization of their interaction by green fluorescent proteins (GFP) two-fusion fluorescence resonance energy transfer (FRET) [J]. J Cell Biochem,2001, 80:293-303.
    [137] Mitra R D, Silva C M, and Youvan D C. Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein [J].Gene, 1996,173: 13-17.
    [138] Lucio Comai .Coimmunoprecipitation Assay for the Detection of Kinase-Substrate Interactions [J]. Methods in Molecular Biology. 2003, 218: 277 -284
    [139] Kuusi N, Nurminen M, and Sarvas M. Immunochemical characterization of major outer membrane components from Salmonella typhimurium [J]. Infect Immun,1981,33(3):750-757.
    [140] Lee C. Coimmunoprecipitation assay [J]. Methods in Molecular Biology,2007,362:401-406.
    [141] Golemis EA, Brent R, Fused moietles inhibit DNA binding by LexA derivatives [ J ]. Mol Cell Biol, 1992,(12) : 3006 -3014.
    [142] MariaMonti, Stefania Orru, Daniela Pagnozzi, et al, Interaction Proteomic [J]. Bioscience Reports, 2005,(25) : 45 -56.
    [143] Hammond PW, Cech TR ,Cech TR. Eu2p lotes telomerase : evidence for limited base - pairing duringp rimer elongation and dGTP as an effector of translocation [J].Biochemistry , 1998 ,(37) : 51-62.
    [144] MariaMonti , Stefania Orru , Daniela Pagnozzi , et al. Interaction Proteomic[J ] . Bioscience Reports , 2005,(25):45- 56.
    [145] Van Leene J, Stals H, Eeckhout D, et al. A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana [J]. Mol Cell Proteomics. 2007, 6(7): 1226- 1238.
    [146] Rohila J S, Chen M, Chen S, et al. Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice [J]. Plant J,2006,46:1-13.
    [147] Chen B P, and Hai . Expression vectors for affinity purification and radiolabeling of proteins using Escherichia coli as host [J]. Gene, l 994,139:73-75.
    [148] Borrebaeck C A, Ekstrom S, Hager A.C, et al. Protein chips based on recombinant antibody fragments: a highly sensitive approach as detected by mass spectrometry [J]. Biotechniques, 2001, 30:1126-1132.
    [149] Pramanik B N, Banner P L, Mirza U A, et al. Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology.) [J] Mass Spectrom,1998,33:911-920.
    [150] Gruber J, Zawaira A, Saunders R, et al. Computational analyses of the surface properties of protein-protein interfaces [J]. Acta Crystallogr D Biol Crystallogr,2007,63:50-57.
    [151]黄翠芬,叶棋浓.蛋白质间相互作用技术的研究近况[ J ].中国生物化学与分子生物学报, 1998, 14 (1):1-7.
    [152] Stokes S B, Kathy S W, Michael F T. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold, drought, and ABA-regulated gene expression[J]. Plant Mol Biol. 1994 Mar;24(5):701-713.
    [153] Wangxia Wang, Basia Vinocur, Arie Altman. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta, 2003, 218:1-14.
    [154] Cao Zhifang,et al. TINY,a DREB like transcription factor binding to DRE element [J].Tsinghua Science and Technology, 2001, 6(5):432- 437.
    [155] Kayal W E, Navarro M, Marque G, et al. Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold [J]. Journal of Experimental Botany, 2006, 57(10):2455-2469.
    [156] Nakashima K, Yamaguchi-Shinozaki K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants [J]. Physiologia Plantarum, 2006, 126:62–71.
    [157] Sikorski R S, Boguski M S, Goebl M and Hieter P. A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis [J]. Cell, 1990, 60: 307-317.
    [158] D’Andrea L D, Regan L. TPR proteins: the versatile helix [J].Trends Biochem Sci, 2003, 28: 655-662.
    [159] Buchner J. Hsp90 & Ca2- holding for folding [J]. Trends Biochem Sci, 1999, 24(4): 136-141.
    [160] Das AK, Cohen PW, Barford D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions [J],. EMBO 1998,17(5):1192~1199.
    [161] Russell, L. C., Whitt, S. R., Chen, M. S., and Chinkers, M. FK506-binding Proteins 51 and 52 Differentially Regulate Dynein Interaction and Nuclear Translocation of the Glucocorticoid Receptor in Mammalian Cells [J]. J. Biol. Chem,1999, 274(29), 20060-20063.
    [162] Hirano T Morikawa K Morikawa K,Snap helix with knob and hoe : Essential repeats in S. pombe protein nuc2+ [J].Cell,1990, 60: 319-328.
    [163] Sikorski R S, Michaud W A, and Hieter P.p62cdc23 of Saccharomyces cerevisiae: a nuclear tetratricopeptide repeat protein with two mutable domains. Mol [J]. Cell. Biol, 1993 13(2): 1212-1221.
    [164] SmithR L, Redd M J,and Johnson A D . The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2 [J]. Genes Dev, 1995, 9(23):2903-2910.
    [165] Tzamarias D and Struhl K. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters [J]. Genes Dev, 1995 9(7):821-831.
    [166] Pratt WB. The Hsp90 based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors [J]. Proc Soc Exp Biol Med,1998,217(4):420-431.
    [167] Nanding Zhao, Fang Lai, Anthony A. Fernald et al.HumanCDC23:cDNA Cloning, Mapping to 5q31, Genomic Structure, and Evaluation as a Candidate Tumor Suppressor Gene in Myeloid Leukemias[J]. Genomics,1998, 53: 184-190.
    [168] Yu H, Peters JM, King RW, Page AM, Hieter P, Kirschner MW. Identification of a cullin homology region in a subunit of the anaphase-promoting complex [J]. Science,1998,279(5354):1219-1222.
    [169] Lamb, J. R., Michaud, W. A., Sikorski, R. S.,et al. Membrane Association of the Cycling Peroxisome Import Receptor Pex5p [J]. EMBO.1994.13, 4321-4328.
    [170] Walter P, Johnson A E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane [J]. Annual review in cell biology. 1994,10:87-119.
    [171] Gorlich, D., and Mattaj, I.W.1996. Nucleocytoplasmic transport [J]. Science ,271:1513-1518
    [172] Nigg,E.A..Nucleocytoplasmic transport: signals, mechanismas and regulation [J]Nature,1997, 386 (24): 779-787.
    [173] Uiiman, k.S.,Powers, M.A.,and Forbes ,D.J.Nuclear export receptors: from importin to exportin [J]. Cell .1997,90: 967-970.
    [174] Pemberton , L.F.,Biobel,G., and Rosenblum, J.S. Transport routs through the nuclear pore complex [J]. Current opinion in cell biology. 1988,10: 392-399.
    [175] Wozniak R W, Rout M P, Aitchison J D. Karyopherins and kissing cousins [J].Trends in cell biology.1988,8:184-188.
    [176] Kumar A , Aqarwal S, Hevman JA, et al.. Subcellular localization of the yeast proteome [J]. Genes & Development. 2002,16(6):707–719.
    [177] Kazuki Moriguchi, Tadzunu Suzuki, Yukihiro Ito, et al. Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations [J]. Plant Cell. 2005,17,389-403.
    [178] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature .2000,408(6814), 796–813.
    [179] Goff S.A., Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J] .Science .2002,296(5565): 92–100.
    [180] Nobuhide Ueki, Tamaki Oda, Maiko Kondo, et al. Selection system for genes encoding nuclear-targeted proteins [J].Nature Biotechnology. 1998,16:1338-1342.
    [181]王冀姝,李荣,孙强等,利用核定位信号筛选系统初步筛选小鼠胚胎核定位蛋白基因[J].生物化学与生物物理学报.2000,32,454-457.
    [182]刘阳娜,陈明,李连城等.核蛋白筛选系统( NTT)的建立及鉴定[J].麦类作物学报,2007 ,27 (3) :386 -391.
    [183] Abdelaty Saleh, Victoria Lumbreras, Cristina Lopez. Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses [J]. The Plant Journal ,2006, 46(5): 747-757.
    [184] Riechmann JL,Heard J,Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK and Yu G. Arabidopsis transcriptional factors:genome—wide comparative analysis among eukaryotes [J]. Science, 2000,290(5499):2105-2110.
    [185]杨致荣,王兴春,李西明等.高等植物转录因子的研究进展[J].遗传,2004,26(3):403-408.
    [186]谢永丽,王自章,(张淑平). DREB-一类应答植物非生物逆境胁迫的转录因子[J].青海大学学报(自然科学版) ,2006, 24(2): 54-58.
    [187] Jaglo KR , Klef S , Amundsen KL et a1 . Components of the Arabidopsis C-repeat /dehydration-responsive element bindingfactor cold—response pathway are conserved in Brassica napus and other plant species [J].Plant Physiol,2001,127(3):910-917.
    [188] Yamaguchi-Shinozaki, K. & Shinozaki, K. Characterization of the expression of a desiccation- responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants [J]. Mol. Gen. Genet. 1993,236:331–340.
    [189] Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought,salt and freezing tolerance by gene transfer of a signle stress-inducible transcription factor [J].Novaritis Found Symposium, 2001, 236 (2):176-186.
    [190] Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance [J]. Planta, 2003, 218(1):1–14.
    [191] Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway [J]. Plant J, 2002, 30 (6): 679–689.
    [192] Rosado A, Schapire AL, Bressan RA, Harfouche AL, Hasegawa PM,Valpuesta V, Botella MA. The Arabidopsis Tetratricopeptide Repeat-Containing Protein TTL1 Is Required for Osmotic Stress Responses and Abscisic Acid Sensitivity [J]. Plant Physiol, 2006, 142 (3):1113-1126.
    [193] CubiR A B,Heim R,Adams S R,Boyd A E,Gross L A,Tsien R Y Understanding,improving and using green fluorescent proteins [J].Trends in Plant Science.1995,20:448-455.
    [194] Kǒhler R H.GFP for in vivo imaging of subcellular structures in plant cells [J]. Trends in Plant Science, 1998,3: 317-320.
    [195]陈峰,李洁,张贵友,刘强.酵母单杂交的原理与应用实例[J].生物工程进展.2001, 21(4):57-61.
    [196]刘强,赵南明,Yamaguchi-shinozaki K.,Shinozaki K..DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45(1):11~16.
    [197] Gubler U,Hoffman B J .A simple and very efficient method for generating cDNA libraries [J]. Genetics. 1983,2: 263-269.
    [198] Gubler U.A one tuble reaction for the synthesis of blunt-ended double-strand cDNA [J].Nucleic Acids Research. 1988, 16(6): 2726.
    [199] Fujita Y, Fujita M, Satoh R, et al.AREB1 is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances Drought Stress Tolerance in Arabidopsis [J].Plant Cell. 2005 17(12): 3470-3488
    [200] Kang J, Choi H. and Kim S.Y..Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling [J]. Plant Cell. 2002,14(2):343-357.
    [201] Shinozaki K,Yamaguchi-Shinzaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways [J].Curr Opin Plant Biol. 2000, 3 (3):217-223.
    [202] Choi H,Hong J,Kang J.ABFs,a family of ABA-responsive element binding factors [J].J Biol Chem .2000,21:1723-1730.
    [203] Varagona M .J,Schmidt R.J,Raikhel N.V. Nuclear localization signal(s) required for nuclear targetingof the maize regulatory protein Opaque-2 [J].Plant Cell 1992,4(10):1213-1227.
    [204] Zhang H B, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R. The ethylene-, jasmonate-, abscisic acid- and NaCl- responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco [J].Planta, 2004, 220(2):262-270.
    [205] Finkelstein R.R and Lynch T.J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor [J]. Plant Cell .2000,12:599-609.
    [206] Finkelstein R.R.,Gampala S.S.and Rock C.D.. Abscisic acid signaling in seeds and seedings [J]. Plant Cell 2002,14(Suppl.):S15-S45.
    [207] Schmidt R J ,Burr F A ,Burr B. Transposon tagging and molecular analysis of the maize regulatory locus opaque - 2 [J]. Science ,1987 ,238 :960-963.
    [208] Schmidt R J ,Burr F A ,Aukerman M J , et al . Maize regulatory gene opaque - 2 encodes a protein with a‘leucine zipper’motif that binds to zein DNA [J]. Proc Natl Acad Sci USA ,1990,87 :46-50.
    [209] Oyama T ,Shimura Y,Okada K. The A rabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyls [J].Genes Devel ,1997 ,11(22) :2983-2995.
    [210] Walsh J ,Waters C A ,Freeling M. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary [J].Genes Devel,1998,12(2):208- 218.
    [211] Niu X ,Renshaw - Gegg L ,Miller L , et al . Bipartite determinants of DNA-binding specificity of plant basic leucine zipper protein [J]. Plant Molecular Biology ,1999 ,41:1-13.
    [212] Ma J, Przibilla E, Hu J, et al. Yeast activators stimulate plant gene expression [J]. Nature, 1988, 334: 631-633.
    [213] Fischer J A, Giniger E, Maniatis T, et al. GAL4 activates transcription in Drosophila[J]. Nature, 1988, 332: 853-856.
    [214] Kakidani H, Ptashne M. GAL4 activates gene expression in mammalian cells [J].Cell,1988,52(2): 161-167.
    [215] Yanagisawa S. The transcriptional activation domain of the plant-specific Dof1 factor functions in plant, animal, and yeast cells [J].Plant and Cell Physiology, 2001, 42(8): 813-822.
    [216]尹哲,吉栩,吴云锋,李毅水稻矮缩病毒外壳蛋白P9具有体内转录激活活性[J].中国农业科技导报,2007,9(3):61-65.
    [217] Niggeweg R , Thurow C ,Weigel R , et al . Tobacco TGA factors differ with respect to interaction with NPR1 ,activation potential and DNA-binding properties [J].Plant Mol Biol,2000,42 (5):775- 788.
    [218] Schindler U , Terzaghi W,Beckmann H , et al . DNA binding site preferences and transcriptional activation properties of the Arabidopsis transcription factor GBF-1 [J].EMBO Journal, 1992 , 11(4): 1275-1289.
    [219] Walsh J ,Freeling M. The liguleless2 gene of maize function during the transition from the vegetative to the reproductive shoot apex[J].The Plant Journal ,1999 ,19 (4) :489-495.
    [220] Menkens A E ,Cashmore A R. Isolation and characterization of a fourth A rabi dopsis thaliana G - box–binding factor,which has similarities to Fos oncoprotein[J]. Proc Natl Acad Sci USA , 1994 , 91: 2522-2526.
    [221] Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K.& Yamaguchi-Shinozaki K..Arabidopsis basicleucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proc Natl Acad Sci USA 2000, 97:11632-11637.
    [222] Maddock,S.E.Cereal Trissue and Cell Calture [M].1985,131-134.
    [223] He D G.Somatic embryogenesis and morphogenesis in callus derived from the epiblast of immature embryos of wheat (Triticum aeativum L ) [J]. Plant Science, 1986,(45):119-124.
    [224] John P. Factors affecting the establishment and maintenance of embryogenic callus and suspension cultures of wheat(Triticum aeativun L)[J].Plant Cell Report, 1995,(15):232-237.
    [225] Maheshwarin,Rajyslakshmik,Chwdhary C N.In Vitro cluture of wheat and genetic transformation retyospect and prospect [J].Critical Review on Plant Science, 1995,14:149-178.
    [226]胡含,王恒立.植物细胞工程与育种[M].北京:北京工业大学出版社,1990.23-32;308-313.
    [227]覃建兵,何光源.不同小麦基因型及其不同外植体离体培养研究初探[J].华中农业大学学报,2001,20(6):522-527.
    [228]余泽高,卫良翠.不同小麦品种成熟胚离体培养的研究[J]湖北农业科学,2004,6(16) 10-12.
    [229]杨淑慎,郭振,徐虹.小麦胚愈伤组织的诱导和植株再生[J].西北农业学报,2002,11(4):46-48.
    [230]于晓红,朱祯,付志明,等.提高小麦愈伤组织分化频率的因素[J].植物生理学报,1999,25(1):388-394.
    [231]曹原,刘志学,黄晔俊.冬小麦成熟胚愈伤组织诱导及分化[J].上海大学学报(自然科学版)2004 10(5) 503-507.
    [232]廖祥儒,杜建芳,王俊霞,等.预处理对小麦成熟胚愈伤组织形成的影响[J].河北大学学报(自然科学版)。1999。19(1):41-44.
    [233]唐宗祥,张怀琼,张怀渝.2,4-D、KT对小麦成熟胚愈伤组织形成、分化的影响[J].四川农业大学学报2004 22(3)203-205.
    [234]李洪潮,胡道芬,王虹.影响小麦成熟胚培养因素的研究[J].华北农学报,1990,5(1):22-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700