利用人工设计反式作用小RNA进行细菌基因沉默的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非编码小RNA分子(small non-coding RNA)是近年来在生物体内发现的一类新型RNA分子,其大小一般在400bp以下,本身不编码蛋白质,而是直接参与生命活动的调控。目前非编码小RNA已成为生命科学研究的前沿和热点。在真核生物已发现了大量的非编码小RNA分子,如microRNA、siRNA和piRNA。近年来在原核生物中,尤其是细菌中,也发现了一类与真核生物中非编码小RNA类似的小RNA分子,称为反式作用小RNA(trans-encoded sRNA);它们通过与靶基因配对结合影响靶基因的翻译效率和稳定性。在真核生物中,RNA干扰(RNAi)技术作为一种简便的基因功能研究方法已经得到了广泛的应用,更为重要的是,它为疾病的治疗和预防提供了一种新的技术和方法。然而,目前在原核生物中进行基因功能研究的工具依然是传统的同源重组和转座技术。因此,在原核生物中建立一种类似于真核生物RNAi的基因功能研究技术具有重要的理论意义和明确的应用前景。
     在本论文中,我们利用人工设计的反式作用小RNA(artificial trans-encoded sRNA,atsRNA)进行了细菌基因沉默的研究。首先,通过对已知细菌内源反式作用小RNA的生物信息学分析,得到了它们在一级和二级结构上的共同特征,并以此建立了atsRNA的设计原则。atsRNA由靶基因配对结合区域、Hfq结合位点和不依赖于Rho因子的转录终止末端三个模块构成;根据每个模块的一级结构特征设计atsRNA的三个组成部分,然后按模块的顺序随机组合构建atsRNA多样性文库;对库中atsRNA进行二级结构预测,根据二级结构的设计标准从库中筛选并合成候选atsRNA。
     根据上述atsRNA设计原则,我们针对外源基因EGFP和内源基因uidA分别设计合成了一系列atsRNA,插入小RNA表达载体后,转入宿主菌,并检测它们对细菌靶基因的干扰效率。实验结果表明,大部分atsRNA有效地抑制了靶基因的表达。
     在此基础上,我们对atsRNA的作用机制进行了系统的研究。(一)atsRNA突变体实验结果证明,atsRNA的二级结构(如靶基因配对结合区域的茎环结构、配对区域内loop环内碱基个数等)和稳定性对atsRNA的干扰活性至关重要(;二)在构成atsRNA的三个模块结构中,靶基因配对结合区域和Hfq结合位点是atsRNA发挥基因沉默作用所必须的,且Hfq结合位点对于atsRNA在体内的稳定性非常重要。(三)利用hfq缺失菌株,我们发现atsRNA介导的基因沉默是Hfq依赖型的,且Hfq能够与atsRNA直接结合而增加其稳定性。(四)atsRNA能够直接抑制靶基因的翻译和降解靶mRNA,atsRNA介导的靶mRNA的降解是RNase E依赖型的;并且在atsRNA介导的基因沉默中,atsRNA对靶基因翻译的阻断作用起主导作用,而靶mRNA的降解不是atsRNA引起靶基因沉默所必须的。(五)为了进一步证明atsRNA能够作为一种细菌基因功能研究的工具,我们针对细菌体内的必须基因murA, trmA和ygjD设计合成了一系列的atsRNA,定量PCR的结果表明atsRNA明显的降低了靶基因的mRNA表达水平,且atsRNA的表达能够有效地抑制宿主细胞的生长速度,说明atsRNA的表达有效的降低了靶基因的表达。
     综上所述,本论文首次利用人工设计的反式作用小RNA成功地对细菌的靶基因进行了高效和特异性的沉默,从而建立了一种高效、简便的细菌功能基因的研究技术。随着细菌内源性小RNA的研究进展,人们发现小RNA在细菌的致病力和环境适应力方面发挥了重要的调节作用。针对细菌的致病基因或致病基因的调控基因设计相应的atsRNA,将有可能阻断或抑制细菌的致病力,达到抗感染的目的。因此,atsRNA基因沉默技术的建立不但具有重要的理论意义,而且具有广泛的应用前景,将为细菌感染的治疗提供了一种崭新的途径,同时为解决日益加剧的细菌耐药难题创造条件。
Small noncoding RNAs (sRNAs) are widespread in both eukaryotes and prokaryotes. These small noncoding RNAs, which function as regulators of gene expression, constitute a structurally diverse class of molecules that are typically shorter than 400 nucleotides (nt) in length and do not contain expressed open reading frames (ORFs). The eukaryotic small noncoding RNAs, such as microRNA (miRNA), short interfering RNA (siRNA) and Piwi-interacting RNA (piRNA) have making a splash during the past few years. Recently, with the development of the experimental and computational approaches, hundreds of sRNAs have been identified in prokaryotes, especially in bacterial. As their eukaryotic counterparts, a major class of bacterial trans-encoded sRNAs acts by basepairing with target mRNAs, resulting in changes in translation and stability of the mRNA. RNA interference (RNAi) has become an extraordinarily powerful RNA silencing tool for elucidating and manipulating gene functions in eukaryotes. However, such an effective RNA silencing tool remains to be developed for prokaryotes in which homologous recombination and transposon mutagenesis remain to be the major tools of deciphering the function of genes.
     In this study, we described firstly the use of artificial trans-encoded sRNAs (atsRNAs) for specific gene silencing in bacteria. Based on the common structural characteristics of the natural bacterial sRNAs, we have developed the principle and process for atsRNA design. atsRNA was designed to be a modular structure composed of three elements: mRNA basepairing region, Hfq binding site and typical Rho-independent terminator. The three component parts were selected randomly and then assembled into a series of atsRNA candidates whose secondary structures were then predicted by MFOLD program. atsRNAs should be selected from the atsRNA candidates according to predicted secondary structure and certain other selecting criteria. The complementary DNA oligonucleotides corresponding to the designed atsRNAs and cloned into a plasmid vector under the control of tac promoter for expression of atsRNAs. To evaluate the feasibility of this method, an exogenous EGFP gene on a multi-copy plasmid and an endogenous uidA gene encoding beta-glucuronidase were used as targets for the atsRNAs. Most, if not all, atsRNAs inhibited the expression of the target genes to effectively when they were expressed by IPTG addition in E. coli.
     Further studies demonstrated that the secondary structure (e.g. stem-loop structure of mRNA basepairing region, the number of unpaired nucleotides in a loop structure) and stability were crucial for the activity of atsRNA. Additionally, mutations in either mRNA basepairing regions or Hfq binding sites abolished the ability to repress the expression of target genes. This result also indicated that atsRNA acted by basepairing with target mRNA. The arsRNA-mediated gene silencing was Hfq dependent and Hfq could stabilize the atsRNA by binding to the atsRNA directing. atsRNA led to translational repression and RNase E dependent degradation of target mRNA, and the translation inhibition was the primary event for gene silencing. As for certain natural regulatory RNAs, degradation of the mRNA does not contribute to the efficiency of repression.
     Finally, in order to substantiate our findings, we generated atsRNAs for silencing of three essential genes murA, trmA and ygjD. We succeeded to cause the growth inhibition of E. coli cells by expressing atsRNAs complementary to several essential genes, suggesting that these atsRNAs inhibit efficiently the expression of these essential genes. All together, our findings demonstrated that atsRNA was an effective RNA tool for specific gene silencing in bacteria.
     Recent studies have demonstrated that numerous endogenous trans-encoded sRNAs have crucial roles in bacterial stress responses and virulence regulation. Therefore, atsRNAs targeting against virulence genes would function effectively in bacterial pathogens and it could potentially serve as antibiotics. Given the emergence and increasing prevalence of bacterial strains that are resistant to available antibiotics, atsRNAs will provide an alternative approach to antimicrobial therapy that offers promising opportunities to inhibit pathogenesis and its consequences without placing immediate life-or-death pressure on the target bacterium.
引文
[1] Vaughn MW, Martienssen R. It's a small RNA world, after all. Science (New York, NY 2005, 309(5740):1525-1526.
    [2] Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409(6818):363-366.
    [3] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391(6669):806-811.
    [4] Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. The Plant cell 1990, 2(4):279-289.
    [5] van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant cell 1990, 2(4):291-299.
    [6] Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular microbiology 1992, 6(22):3343-3353.
    [7] Asikainen S, Heikkinen L, Wong G, Storvik M. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans. BMC genomics 2008, 9:270.
    [8] Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science (New York, NY 2008, 320(5879):1077-1081.
    [9] Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant molecular biology 1996, 31(5):957-973.
    [10] Hannon GJ. RNAi: A Guide to Gene Silencing. Cold Spring Harbor Laboratory 2003:.
    [11] Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995, 81(4):611-620.
    [12] Hunter CP. Genetics: a touch of elegance with RNAi. Curr Biol 1999, 9(12):R440-442.
    [13] Lam G, Thummel CS. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr Biol 2000, 10(16):957-963.
    [14] Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature cell biology 2000, 2(2):70-75.
    [15] Dernburg AF, Karpen GH. A chromosome RNAissance. Cell 2002, 111(2):159-162.
    [16] Ebhardt HA, Thi EP, Wang MB, Unrau PJ. Extensive 3' modification of plant small RNAs is modulated by helper component-proteinase expression. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(38):13398-13403.
    [17] Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes & development 2005, 19(5):517-529.
    [18]马鹏鹏,薛社普,韩代书. RNA干扰技术的原理和应用.中国组织化学与细胞化学杂志2003, 12(2):201-207.
    [19] Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. Regulation ofheterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science (New York, NY 2002, 297(5588):1833-1837.
    [20] Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats. Science (New York, NY 2002, 297(5588):1831.
    [21] Wassenegger M, Heimes S, Riedel L, Sanger HL. RNA-directed de novo methylation of genomic sequences in plants. Cell 1994, 76(3):567-576.
    [22] Voinnet O. Induction and suppression of RNA silencing: insights from viral infections. Nature reviews 2005, 6(3):206-220.
    [23] Ross JS, Carlson JA, Brock G. miRNA: The New Gene Silencer. American journal of clinical pathology 2007, 128(5):830-836.
    [24]俞焙秦. m iRNA的生物学特性和功能.上海交通大学学报(医学版) 2007, 05:0621-0623.
    [25]周凡,庄诗美. microRNA与肿瘤.生命科学2008, 20(2):0207-0206.
    [26] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
    [27] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75(5):855-862.
    [28] Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000, 403(6772):901-906.
    [29] Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular cell 2000, 5(4):659-669.
    [30] Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000, 408(6808):86-89.
    [31] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science (New York, NY 2001, 294(5543):853-858.
    [32] Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science (New York, NY 2001, 294(5543):858-862.
    [33] Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science (New York, NY 2001, 294(5543):862-864.
    [34] Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002, 12(9):735-739.
    [35] Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 2002, 12(17):1484-1495.
    [36] Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes & development 2002, 16(13):1616-1626.
    [37] Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J. Computational and experimental identification of C. elegans microRNAs. Molecular cell 2003, 11(5):1253-1263.
    [38] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
    [39] Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. Identification of hundreds of conserved and nonconserved human microRNAs. Nature genetics 2005, 37(7):766-770.
    [40] Lin SL, Chang D, Ying SY. Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 2005, 356:32-38.
    [41] Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature genetics 2004, 36(12):1282-1290.
    [42] Voinnet O. Shaping small RNAs in plants by gene duplication. Nature genetics 2004, 36(12):1245-1246.
    [43] Griffiths-Jones S. The microRNA Registry. Nucleic acids research 2004, 32(Database issue):D109-111.
    [44] Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T. Identification of virus-encoded microRNAs. Science (New York, NY 2004, 304(5671):734-736.
    [45] Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T. Identification of microRNAs of the herpesvirus family. Nature methods 2005, 2(4):269-276.
    [46] Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol 2005, 15(16):1501-1507.
    [47] Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X. Methylation as a crucial step in plant microRNA biogenesis. Science (New York, NY 2005, 307(5711):932-935.
    [48] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 2004, 23(20):4051-4060.
    [49] Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. The EMBO journal 2002, 21(17):4663-4670.
    [50] Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA (New York, NY 2004, 10(12):1957-1966.
    [51] Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432(7014):231-235.
    [52] Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432(7014):235-240.
    [53] Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes & development 2004, 18(24):3016-3027.
    [54] Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJ. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant physiology 2003, 132(3):1382-1390.
    [55] Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing andexport of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(10):3691-3696.
    [56] Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature cell biology 2005, 7(7):719-723.
    [57] Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science (New York, NY 2005, 309(5740):1519-1524.
    [58] Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005, 122(4):553-563.
    [59] Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science (New York, NY 2004, 303(5666):2022-2025.
    [60] Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Developmental biology 1999, 216(2):671-680.
    [61] Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. The Plant cell 2003, 15(11):2730-2741.
    [62] Guarnieri DJ, DiLeone RJ. MicroRNAs: a new class of gene regulators. Annals of medicine 2008, 40(3):197-208.
    [63] Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H. Stem cell division is regulated by the microRNA pathway. Nature 2005, 435(7044):974-978.
    [64] Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling. Science (New York, NY 2005, 310(5752):1288-1289.
    [65] Caldas C, Brenton JD. Sizing up miRNAs as cancer genes. Nature medicine 2005, 11(7):712-714.
    [66] Calin GA, Garzon R, Cimmino A, Fabbri M, Croce CM. MicroRNAs and leukemias: how strong is the connection? Leukemia research 2006, 30(6):653-655.
    [67] Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005, 122(1):6-7.
    [68] Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research 2008, 18(10):997-1006.
    [69] Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila MicroRNA targets. PLoS biology 2003, 1(3):E60.
    [70] Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006, 442(7099):203-207.
    [71] Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006, 442(7099):199-202.
    [72] Grivna ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes & development 2006, 20(13):1709-1714.
    [73] Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes.Genes & development 2006, 20(13):1732-1743.
    [74] Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE. Characterization of the piRNA complex from rat testes. Science (New York, NY 2006, 313(5785):363-367.
    [75] Kim VN. Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes & development 2006, 20(15):1993-1997.
    [76] Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 2003, 82(3):323-330.
    [77] Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 2007, 129(1):69-82.
    [78] Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science (New York, NY 2007, 315(5818):1587-1590.
    [79] Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128(6):1089-1103.
    [80] Seto AG, Kingston RE, Lau NC. The coming of age for Piwi proteins. Molecular cell 2007, 26(5):603-609.
    [81] Lin H. piRNAs in the germ line. Science (New York, NY 2007, 316(5823):397.
    [82] Storz G, Opdyke JA, Zhang A. Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 2004, 7(2):140-144.
    [83] Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms*. Annu Rev Microbiol 2004, 58:303-328.
    [84]周泉,许煜泉.原核生物小RNA的研究及其进展.生命科学2008, 20(5):0779-0705.
    [85]王晨红,杨光,邵宁生.大肠杆菌中的小RNA调节子.医学分子生物学杂志2006, 3(6):464-446.
    [86] Andersen J, Forst SA, Zhao K, Inouye M, Delihas N. The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. The Journal of biological chemistry 1989, 264(30):17961-17970.
    [87] Moller T, Franch T, Udesen C, Gerdes K, Valentin-Hansen P. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 2002, 16(13):1696-1706.
    [88] Masse E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 2002, 99(7):4620-4625.
    [89] Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, Baker CS, Georgellis D, Babitzke P, Romeo T. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Molecular microbiology 2003, 48(3):657-670.
    [90] Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004, 118(1):69-82.
    [91] Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jager JG, Huttenhofer A, Wagner EG.RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic acids research 2003, 31(22):6435-6443.
    [92] Masse E, Escorcia FE, Gottesman S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes & development 2003, 17(19):2374-2383.
    [93] Balbontin R, Figueroa-Bossi N, Casadesus J, Bossi L. Insertion hot spot for horizontally acquired DNA within a bidirectional small-RNA locus in Salmonella enterica. Journal of bacteriology 2008, 190(11):4075-4078.
    [94] Herskovits AA, Bochkareva ES, Bibi E. New prospects in studying the bacterial signal recognition particle pathway. Molecular microbiology 2000, 38(5):927-939.
    [95] Gopalan V, Vioque A, Altman S. RNase P: variations and uses. The Journal of biological chemistry 2002, 277(9):6759-6762.
    [96] Wassarman KM. 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol 2007, 10(2):164-168.
    [97] Storz G, Altuvia S, Wassarman KM. An abundance of RNA regulators. Annual review of biochemistry 2005, 74:199-217.
    [98] Kulkarni PR, Cui X, Williams JW, Stevens AM, Kulkarni RV. Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic acids research 2006, 34(11):3361-3369.
    [99] Babitzke P, Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 2007, 10(2):156-163.
    [100] Romeo T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Molecular microbiology 1998, 29(6):1321-1330.
    [101] Morita T, Maki K, Aiba H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 2005, 19(18):2176-2186.
    [102] Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A 1998, 95(21):12462-12467.
    [103] Lease RA, Belfort M. Riboregulation by DsrA RNA: trans-actions for global economy. Molecular microbiology 2000, 38(4):667-672.
    [104] Wadler CS, Vanderpool CK. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proceedings of the National Academy of Sciences of the United States of America 2007.
    [105] Gerdes K, Gultyaev AP, Franch T, Pedersen K, Mikkelsen ND. Antisense RNA-regulated programmed cell death. Annual review of genetics 1997, 31:1-31.
    [106] Wagner EG, Simons RW. Antisense RNA control in bacteria, phages, and plasmids. Annu Rev Microbiol 1994, 48:713-742.
    [107] Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 2007, 10(2):102-109.
    [108] Franch T, Petersen M, Wagner EG, Jacobsen JP, Gerdes K. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. Journal of molecular biology 1999, 294(5):1115-1125.
    [109] Heidrich N, Brantl S. Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid pIP501 for efficient inhibition bythe antisense RNA. Journal of molecular biology 2003, 333(5):917-929.
    [110] Kawano M, Reynolds AA, Miranda-Rios J, Storz G. Detection of 5'- and 3'-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic acids research 2005, 33(3):1040-1050.
    [111] Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 2005, 21(7):399-404.
    [112] Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S. Identification of novel small RNAs using comparative genomics and microarrays. Genes & development 2001, 15(13):1637-1651.
    [113] Vecerek B, Moll I, Blasi U. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. Embo J 2007, 26(4):965-975.
    [114] Escolar L, Perez-Martin J, de Lorenzo V. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 1999, 181(20):6223-6229.
    [115] Semsey S, Andersson AM, Krishna S, Jensen MH, Masse E, Sneppen K. Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic Acids Res 2006, 34(17):4960-4967.
    [116] Masse E, Vanderpool CK, Gottesman S. Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 2005, 187(20):6962-6971.
    [117] Duhring U, Axmann IM, Hess WR, Wilde A. An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci U S A 2006, 103(18):7054-7058.
    [118] Murphy ER, Payne SM. RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infect Immun 2007, 75(7):3470-3477.
    [119] Davis BM, Quinones M, Pratt J, Ding Y, Waldor MK. Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J Bacteriol 2005, 187(12):4005-4014.
    [120] Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A 2004, 101(26):9792-9797.
    [121] Mey AR, Craig SA, Payne SM. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun 2005, 73(9):5706-5719.
    [122] Oglesby AG, Murphy ER, Iyer VR, Payne SM. Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP. Mol Microbiol 2005, 58(5):1354-1367.
    [123] Herrmann KM, Weaver LM. The Shikimate Pathway. Annual review of plant physiology and plant molecular biology 1999, 50:473-503.
    [124] Prevost K, Salvail H, Desnoyers G, Jacques JF, Phaneuf E, Masse E. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 2007, 64(5):1260-1273.
    [125] Argaman L, Altuvia S. fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. Journal of molecular biology 2000, 300(5):1101-1112.
    [126] Altuvia S, Zhang A, Argaman L, Tiwari A, Storz G. The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. The EMBO journal 1998, 17(20):6069-6075.
    [127] Repoila F, Gottesman S. Temperature sensing by the dsrA promoter. Journal ofbacteriology 2003, 185(22):6609-6614.
    [128] Repoila F, Gottesman S. Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA. Journal of bacteriology 2001, 183(13):4012-4023.
    [129] Lease RA, Cusick ME, Belfort M. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proceedings of the National Academy of Sciences of the United States of America 1998, 95(21):12456-12461.
    [130] Vanderpool CK, Gottesman S. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Molecular microbiology 2004, 54(4):1076-1089.
    [131] Vanderpool CK, Gottesman S. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. Journal of bacteriology 2007, 189(6):2238-2248.
    [132] Kawamoto H, Morita T, Shimizu A, Inada T, Aiba H. Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli. Genes & development 2005, 19(3):328-338.
    [133] Kimata K, Tanaka Y, Inada T, Aiba H. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli. The EMBO journal 2001, 20(13):3587-3595.
    [134] Ikemura T, Dahlberg JE. Small ribonucleic acids of Escherichia coli. II. Noncoordinate accumulation during stringent control. The Journal of biological chemistry 1973, 248(14):5033-5041.
    [135] Sahagan BG, Dahlberg JE. A small, unstable RNA molecule of Escherichia coli: spot 42 RNA. II. Accumulation and distribution. Journal of molecular biology 1979, 131(3):593-605.
    [136] Adhya S. Suboperonic regulatory signals. Sci STKE 2003, 2003(185):pe22.
    [137] Polayes DA, Rice PW, Garner MM, Dahlberg JE. Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli. Journal of bacteriology 1988, 170(7):3110-3114.
    [138] Franze de Fernandez MT, Eoyang L, August JT. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 1968, 219(5154):588-590.
    [139] Nogueira T, Springer M. Post-transcriptional control by global regulators of gene expression in bacteria. Curr Opin Microbiol 2000, 3(2):154-158.
    [140] Tsui HC, Leung HC, Winkler ME. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12. Molecular microbiology 1994, 13(1):35-49.
    [141] He W, Parker R. Functions of Lsm proteins in mRNA degradation and splicing. Current opinion in cell biology 2000, 12(3):346-350.
    [142] Pannone BK, Wolin SL. Sm-like proteins wRING the neck of mRNA. Curr Biol 2000, 10(13):R478-481.
    [143] Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 2002, 9(1):11-22.
    [144] Arluison V, Folichon M, Marco S, Derreumaux P, Pellegrini O, Seguin J, Hajnsdorf E, Regnier P. The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. European journal of biochemistry / FEBS 2004, 271(7):1258-1265.
    [145] Sonnleitner E, Sorger-Domenigg T, Madej MJ, Findeiss S, Hackermuller J, Huttenhofer A, Stadler PF, Blasi U, Moll I. Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools. Microbiology (Reading, England) 2008, 154(Pt 10):3175-3187.
    [146] Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Blasi U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 2000, 14(9):1109-1118.
    [147] Vytvytska O, Jakobsen JS, Balcunaite G, Andersen JS, Baccarini M, von Gabain A. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability. Proc Natl Acad Sci U S A 1998, 95(24):14118-14123.
    [148] Mohanty BK, Maples VF, Kushner SR. The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Molecular microbiology 2004, 54(4):905-920.
    [149] Sukhodolets MV, Garges S. Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq. Biochemistry 2003, 42(26):8022-8034.
    [150] Geissmann TA, Touati D. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. Embo J 2004, 23(2):396-405.
    [151] Vecerek B, Moll I, Blasi U. Translational autocontrol of the Escherichia coli hfq RNA chaperone gene. Rna 2005, 11(6):976-984.
    [152] Arluison V, Mura C, Guzman MR, Liquier J, Pellegrini O, Gingery M, Regnier P, Marco S. Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins. J Mol Biol 2006, 356(1):86-96.
    [153] Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 2003, 299(5615):2039-2045.
    [154] Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E, Hannak E, Kirkham M, Pichler S, Flohrs K, Goessen A, Leidel S, Alleaume AM, Martin C, Ozlu N, Bork P, Hyman AA. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 2000, 408(6810):331-336.
    [155] Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 2003, 421(6920):268-272.
    [156] Judson N, Mekalanos JJ. Transposon-based approaches to identify essential bacterial genes. Trends in microbiology 2000, 8(11):521-526.
    [157] Green PJ, Pines O, Inouye M. The role of antisense RNA in gene regulation. Annual review of biochemistry 1986, 55:569-597.
    [158] Inouye M. Antisense RNA: its functions and applications in gene regulation--a review. Gene 1988, 72(1-2):25-34.
    [159] Moller T, Franch T, Hojrup P, Keene DR, Bachinger HP, Brennan RG, Valentin-Hansen P. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Molecular cell 2002, 9(1):23-30.
    [160] Furtig B, Richter C, Wohnert J, Schwalbe H. NMR spectroscopy of RNA. Chembiochem 2003, 4(10):936-962.
    [161] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31(13):3406-3415.
    [162] Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. Rna 2003, 9(11):1308-1314.
    [163] Valverde C, Livny J, Schluter JP, Reinkensmeier J, Becker A, Parisi G. Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics 2008, 9(1):416.
    [164] Opdyke JA, Kang JG, Storz G. GadY, a small-RNA regulator of acid response genes in Escherichia coli. Journal of bacteriology 2004, 186(20):6698-6705.
    [165] Morise H, Shimomura O, Johnson FH, Winant J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 1974, 13(12):2656-2662.
    [166] Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science (New York, NY 1994, 263(5148):802-805.
    [167] Casey WM, Nguyen NA. Use of the green fluorescent protein to rapidly assess viability of E. coli in preserved solutions. PDA journal of pharmaceutical science and technology / PDA 1996, 50(6):352-355.
    [168] Valdivia RH, Hromockyj AE, Monack D, Ramakrishnan L, Falkow S. Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene 1996, 173(1 Spec No):47-52.
    [169] Inouye S, Tsuji FI. Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS letters 1994, 341(2-3):277-280.
    [170] Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant cell 2006, 18(5):1121-1133.
    [171] Du G, Yonekubo J, Zeng Y, Osisami M, Frohman MA. Design of expression vectors for RNA interference based on miRNAs and RNA splicing. The FEBS journal 2006, 273(23):5421-5427.
    [172] Sledjeski DD, Whitman C, Zhang A. Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 2001, 183(6):1997-2005.
    [173] Searle MS, Williams DH. On the stability of nucleic acid structures in solution: enthalpy-entropy compensations, internal rotations and reversibility. Nucleic acids research 1993, 21(9):2051-2056.
    [174] Brennan RG, Link TM. Hfq structure, function and ligand binding. Curr Opin Microbiol 2007, 10(2):125-133.
    [175] Afonyushkin T, Vecerek B, Moll I, Blasi U, Kaberdin VR. Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res 2005, 33(5):1678-1689.
    [176]龙友明,郑吉顺,陈垦,姜英华.介绍一种改进的、简便的凝胶迁移滞留试验法.放射免疫学杂志2004, 17(1):21-23.
    [177] Callaghan AJ, Aurikko JP, Ilag LL, Gunter Grossmann J, Chandran V, Kuhnel K, Poljak L, Carpousis AJ, Robinson CV, Symmons MF, Luisi BF. Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. Journal of molecular biology 2004, 340(5):965-979.
    [178] Morita T, Mochizuki Y, Aiba H. Translational repression is sufficient for gene silencing by bacterial small noncoding RNAs in the absence of mRNA destruction. Proc Natl Acad Sci U S A 2006, 103(13):4858-4863.
    [179] Symmons MF, Williams MG, Luisi BF, Jones GH, Carpousis AJ. Running rings around RNA: a superfamily of phosphate-dependent RNases. Trends in biochemical sciences 2002, 27(1):11-18.
    [180] Regnier P, Arraiano CM. Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays 2000, 22(3):235-244.
    [181] Arraiano CM, Maquat LE. Post-transcriptional control of gene expression: effectors of mRNA decay. Molecular microbiology 2003, 49(1):267-276.
    [182] Carpousis AJ, Van Houwe G, Ehretsmann C, Krisch HM. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 1994, 76(5):889-900.
    [183] Carpousis AJ, Vanzo NF, Raynal LC. mRNA degradation. A tale of poly(A) and multiprotein machines. Trends Genet 1999, 15(1):24-28.
    [184] Carpousis AJ. The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. Biochemical Society transactions 2002, 30(2):150-155.
    [185] Ow MC, Perwez T, Kushner SR. RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E. Molecular microbiology 2003, 49(3):607-622.
    [186] Nicholson AW. Function, mechanism and regulation of bacterial ribonucleases. FEMS microbiology reviews 1999, 23(3):371-390.
    [187] Brown ED, Vivas EI, Walsh CT, Kolter R. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. Journal of bacteriology 1995, 177(14):4194-4197.
    [188] Persson BC, Gustafsson C, Berg DE, Bjork GR. The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 1992, 89(9):3995-3998.
    [189] Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H. A genome-based approach for the identification of essential bacterial genes. Nature biotechnology 1998, 16(9):851-856.
    [190] Lewis K. Riddle of biofilm resistance. Antimicrobial agents and chemotherapy 2001, 45(4):999-1007.
    [191] Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 1998, 27 Suppl 1:S93-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700