桥连茂金属和FI型钛化合物催化烯烃聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚烯烃如聚乙烯(PE)和聚丙烯(PP)等具有密度低、强度高、抗化学腐蚀性强且制造成本低等优点,被广泛应用于制造包装材料和各类容器具,是当今世界应用最广泛的高分子材料。
     尽管工业上已广泛应用的多活性中心Ziegler-Natta催化剂对乙烯聚合具有很高活性且能高活性催化丙烯聚合得到高等规度聚丙烯,但聚烯烃市场上以茂金属催化剂和限定几何构型催化剂(CGC)为代表的单活性中心催化剂正占据着越来越重要的地位。由于其明确的活性位及对聚合产物分子量,分子量分布、共聚单体组分的含量,以及对聚合物立构规整性的准确控制方面所具有的优势,单活性中心催化剂常被用于合成许多具有高性能的聚烯烃材料,成为研发的前沿课题。研发的关键是设计合适的配体:必需有适当的取代基来修饰配体的空间效应和电子效应。
     最近开发的单活性中心催化剂中,由三井化学Fujita研究小组首创的含苯氧基亚胺配体烯烃聚合催化剂(被称为FI催化剂)因其远高于茂金属的超高活性和聚合特性而成为又一研究热点。制备该类配合物催化剂的原料来源广泛,合成成本较低。通过配体结构的方便修饰,可任意生产从低分子量到分子量达数百万的超高分子量聚合物。通过乙烯和α—烯烃、甲基丙烯酸甲酯(MMA)和丙烯腈(AN)等单体共聚反应,还能开发出各种新型聚烯烃材料。
     烯烃聚合用单活性中心催化剂的传统研究重点集中在催化活性中心金属原子上。基于配体导向型催化剂分子设计新理念,本论文着眼于配体结构与配合物催化烯烃聚合性能构效关系,选择桥连茂金属和FI型非茂催化剂两个领域进行有关前过渡金属配合物的合成与催化烯烃聚合研究。
     采用三种不同大小的螺环(环戊基、环己基、环庚基)碳桥连双环戊二烯基二氯化钛和甲基铝氧烷(MAO)组成的催化体系,研究其在甲苯溶剂中对乙烯聚合的催化性能。结果发现,由于大环桥对茂金属配合物的稳定作用,环己基碳桥连双茂钛化合物A_2和环庚基碳桥连双茂钛化合物A_3均在较高的聚合温度(~60℃)下达到最高活性,而小环碳桥连双茂钛化合物A_1则在相对较低的聚合温度(~50℃)下才具有最佳催化活性。
     采用环己基桥连双(4,5,6,7-四氢茚基)二氯化锆化合物B_1为主催化剂,以MAO为助催化剂,研究其对乙烯和丙烯的催化性能,并对聚合产物进行了表征。选定实验条件下,锆化合物B_1对丙烯聚合的催化活性最高达6.37x10~7g-PP(mol-Zr)_(-1)h~(-1)。采用~(13)C NMR对不同反应温度和助催化剂/主催化剂摩尔比下所得PP的甲基五元组序列结构进行了测定。通过相同条件下的催化聚合结果的比较,可以看出,由于环己基桥连双四氢茚基配体的特殊空间效应和电子效应,使得单碳桥连锆化合物B_1对丙烯聚合的催化活性远高于结构相近的双碳桥连锆化合物,而聚合产物等规度则大大降低。给定实验条件下,桥连锆化合物B_1对乙烯聚合活性为0.46x10~6到9.87×10~6g-PE(mol-Zr)~(-1)h~(-1),所得PE粘均分子量在0.97×10~4到11.16×10~4g·mol~(-1)间~(13)C NMR的测定表明LPE的合成。
     本文以两种结构新颖的含吡啶基几何限制型茂铬化合物[(C_5H_4)C(C_5H_(10))CH_2(C_5H_4N)]CrCl_2(C_1)和[(C_5H_4)C(CH_3)_2CH_2(C_5H_4N)]CrCl_2(C_2)为主催化剂,以MAO为助催化剂,研究了对乙烯和甲基丙烯酸甲酯的催化聚合反应。结果发现,由于茂环上的π电子和吡啶环上给电子N都能给中心金属原子Cr良好的配位,而由桥连碳连接的配体和配位中心Cr构成了稳定的六员环结构,所有电子效应和空间结构的影响都有利于铬化合物与助催化剂MAO形成的阳离子活性中心的稳定,所以,两种茂铬化合物对乙烯聚合都具有极高的催化活性。其中C_1/MAO体系在60℃下催化乙烯聚合活性达7.96×10~6g-PE/mol-Cr·h,高于文献所报道的普通非桥连茂铬化合物的催化活性。研究还发现,铬配合物C_2在Al(i-Bu)_3的助催化下能高效催化MMA聚合得到PMMA。在较温和的条件(40℃,MMA/Al(i-Bu)_3/Cat.=2000:20:1)下催化反应18小时,77.55%单体MMA聚合得到粘均分子量达26.13万PMMA,高于同条件下Kaminsky型茂金属化合物Cp_2TiCl_2的催化活性。
     合成了13种单希夫碱配体L_1~L_(13)和8种新型双希夫碱配体L_(14)~L_(21),并用~1H NMR、~(13)C NMR、IR、GC/MS(或LC/MS)和元素分析等手段表征了有关化合物的结构和组成。合成了7种新的FI型单核钛化合物(D_1~D_7)和1种新的FI型双核钛化合物(D_8),并用~1H NMR、~(13)C NMR、MS、元素分析和XRD等手段表征了钛化合物的结构和组成。
     分别采用所合成的三种单核钛配合物:5-硝基水杨醛缩2,6-二异丙基苯胺钛配合物(D_1)、5-氯水杨醛缩2,6-二异丙基苯胺钛配合物(D_2)、5-溴水杨醛缩2,6-二异丙基苯胺钛配合物(D_3)及一种双核钛配合物:2,2-二(4-羟基,3-氨基)苯基丙烷双缩(3,5-二叔丁基水杨醛)双核钛配合物(D_8)为主催化剂,MAO为助催化剂,考察了其对乙烯催化聚合性能。在反应温度为
    60℃,单体压力为0.2 MPa,MAO与主催化剂摩尔比为1500等条件下,单核钛配合物D_1~D_3催化乙烯聚合活性为(4.55~8.80×10~7g PE/mol-Ti·h·MPa),比在相同条件下未取代苯氧基亚胺钛配合物D_9的催化活性高得多。可能是配体上硝基、卤素等吸电子取代基的引入增加了金属-碳阳离子活性中心数目所致。所得PE粘均分子量在24.8×10~4到44.9×10~4 g·mo~(-1),分子量分布M_w/M_n在1.85到2.34间。单核钛配合物D_1~D_3随着反应温度的升高,催化聚合活性增大,在60℃左右达到最高活性,且催化体系活性和聚合产物的分子量随着单体压力增加而增大,表明该体系较适合于现有工业化聚乙烯装置。新型双核钛化合物D_8与结构相近的典型单核FI-Ti催化剂D_(10)(3,5-二叔丁基水杨醛苯亚胺二氯化钛)催化乙烯聚合的对比研究表明:在25~55℃聚合温度范围内,双核钛配合物(D_8)显示中等催化活性,低于类似结构单核钛催化剂。说明该双核FI型催化剂分子内两金属间并不能形成协同效应。
Polyolefins, such as polyethylene (PE) and polypropylene (PP), are the most widely used polymers in our life. Because of their cost effectiveness as well as low density, high strength, and good resistance to chemical attack, these polyolefins can be applied for the manufacture of all kinds of packaging film and containers.
    Although commercial multi-site Ziegler-Natta catalysts exist very high activity for ethylene and propylene polymerization and high isospecificity in propylene polymerization ,single-site catalysts represented by metallocene catalysts and constrained-geometry catalysts (CGC) are gaining an increasing presence in the worldwide polyolefin market, especially for PE and PP. Duo to the well-defined active sites of these single-site catalysts in contrast to multi-site Ziegler-Natta catalysts and the advantage of control over polymer molecular weight and molecular weight distribution, uniform comonomer incorporation, and precise control of polymer stereoregularity, single-site catalysts have had a significant impact on contemporary polyolefin science and technology and have been in the forefront of these developments.The key step for these researches and developments (R&D) is to design ligands with suitable electronic and steric effects.
    Among the recently-developed single-site catalysts, phenoxy-based catalysts,which was firstly discovered and named with FI catalysts by the research group of Terunori Fujita of Mitsui Chemicals Inc., constitute an important class of olefin polymerization catalysts. Because of their super-high activities for olefins polymerization and the polymers' distinctive microstructures and related material properties, R&D for FI catalyst have become another forefront of developments of single-site catalysts. Phenoxy-based ligands can be commercially available in generally good to high yields and low cost, so FI catalysts have the advantageous properties of diversity as well as tunability. The most interesting is that the ligands are readily tailored synthetically from both an electronic and steric point of view and thus a wide range of FI catalyst can be designed for the synthesis of polymers with molecular weight ranging from thousands to several millions. By copolymerization between ethylene anda-olefin, MMA or AN ,various new type polymers can be obtained.
    Traditional researches for single-site catalysts for olefin polymerization focus on central metals. Basing on the new concept of "ligand-oriented catalyst design" and aiming at the relationship between high performance of single-site catalysts and the structure of their ligands, this dissertation study on the synthesis of early transition metal catalysts including the ansa metallocences and FI type titanium complexes and their catalytic performance in olefins polymerization.
    Firstly, the properties of ethylene polymerization under the same polymerization conditions with three of cycloalkylidene-bridged cyclopentadienyl titanium catalysts in the presence of MAO are investigated. It is firstly discovered by us that both of
    cyclohexenebridged cyclopentadienyl titanocene A_2 and the cycloheptenebridged cyclopentadienyl titanocene A_3, in our polymerization conditions, the activity increase with temperature to a maximum activity at 60℃. This indicates that A_2 and A_3 are very thermally stable and do not deactivate even at higher temperatures. While the cyclopentene-bridged cyclopentadienyl titanocene A_1 has the highest activity at lower temperature (50℃)o
    Secondly, ansa-Cyclohexyl-bis(4,5,6,7-tertrahydro-l-indenyl) zirconium dichloride (B_1) was used as catalyst for propylene and ethylene polymerization together with methyl aluminoxane (MAO) as the cocatalyst. Isotactic polypropylene (PP) was obtained with the highest activity of 6.37×10~7g-PP (mol-Zr)~(-1)h~(-1). The meso-meso (mmmm) pentads sequence content of PP was determined by ~(13)C NMR spectroscopy. The dependence of the microstructure on the reaction temperature and the Al/Zr molar ratio was examined and the catalytic activity of complex B_1 was compared with that of the similar ansa-zirconocene: trans-1,2-cycloalkylene-bridged bis(tetrahydro-indenyle)ZrCl_2. The high activity of the new zirconocene B_1 for propylene isospectic polymerization at high temperature (60 ℃) is the result of its unique bridged-group structure. Complex B_1/MAO displays also high catalytic activity of 0.46×10~6 to 9.87×10~6g-PE(mol-Zr)~(-1)h~(-1) in the homopolymerization of ethylene. The visometric molecular weight of PE ranges from 0.97×10~4 gmol~(-1) to 11.16×10~4 g·mol~(-1) under the given conditions. ~(13)C NMR spectroscopy analysis proves the PE to be linear polyethylene (LPE).
    Thirdly, two carbon bridged cyclopentadienylchromium complexes [(C_5H_4) C (C_5H_(10)) CH_2 (C_5H_4N) ]CrCl_2(C_1)and[ (C_5H_4) C (CH_3)_ 2CH_2 (C_5H_4N) ]CrCl_2 (C_2) were synthesized and characterized byh mass spectra and elemental analyses. The structure of C_1 and C_2 were determined by X-ray diffraction analysis. Activated by MAO,the complexes C_1 and C_2 were efficient for ethylene polymerization yielding linear polyethylene (LPE) with high molecular weight and narrow molecular weight distribution. For chromium complex C_1, polyethylene was produced with high catalytic activity of 7.96×10~6g /mol·h and viscometric average molecular weight (M_v) of 2.969×10~4 and the molecular weight distribution of 3.14 at 60℃ .High melting point and low branching degree of the obtained PE was confirmed by DSC and ~(13)C NMR. Activated by Al(i-Bu)_3 ,Complex C_2 displayed a higher activity than Kaminsky catalyst-Cp_2TiCl_2 for methyl methacrylate (MMA) polymerization under the same reaction conditions. After 18 hours, 77.55% MMA was converted to poly(methyl-methacrylate) (PMMA) with a viscosity average molecular (M_v) of 261300 at 40℃ at MMA/ Al(i-Bu)_3 /titanium complex of 2000:20:1 in MMA bulk. High activities of polymerization are related to the unique electronic and steric structure of complexes C_1 and C_2.
    Finally, in order to study the relationship between ligands structure of FI catalysts
    and their catalytic performances for ethylene polymerization , thirteen kinds of mono-Schiff bases (ligands: L_1~L_(13) ) and eight kinds of bis-Schiff bases(ligands: L_(14)~L_(21))were synthesized and characterized by ~1H NMR , ~(13)C NMR, IR ,GC/MS (or LC/MS) and elemental analyses ,then seven kinds of novel FI-catalysts with mono-titanium centre (D_1~D_7) and a novel binuclear titanium complex (D_8) were prepared and characterized by ~1H NMR ,~(13)C NMR, MS, XRD and elemental analyses. In the presence of methylaluminoxane (MAO), the complexes D_1~D_3 in toluene are able to efficiently catalyze ethylene polymerization. Under the conditions of T= 60℃ ,P=0.2 MPa and n(MAO)/n(cat)=1500,the activities of (D_1~D_3) reach (4.55~8.80×10~7 gPE /mol-Ti·h·MPa) which is much higher than that of bis[N-salicylidene-2,6-diisopropyl anilinato] titanium(IV) dichloride (D_9) .The viscometric average molecular weight of polyethylene rangs from 24.8×10~4 to 44.9×10~4 for D_1~D_3 and the molecular weight distribution M_w /M_n is 1.85 to 2.34. The effects of reaction conditions on polymerization were examined in detail. Increase in ethylene pressure and rise in polymerization temperature are favourable for D_1~D_3/MAO to raise catalytic activity and molecule weight of polyethylene. The results of ethylene polymerization under the temperature of 25~55℃ with binuclear titanium complex (D_8) as catalyst displays its moderate catalytic activity which is very lower than that of the similar structural mono-titanium catalyst (D_(10)). So no strong synergism of two metal centre exists within the binuclear FI catalyst.
引文
[1] Ewen J. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts [J]. J Am Chem Soc,1984,106 (21) 6355-6364
    [2] Ishihara N, Seimiya T, Kuramoto M et al. Crystalline syndiotactic polystyrene[J]. Macromolecules; 1986; 19(9): 2464-2465
    [3] Jordan R F, Dasher W E, Echols S F. Reactive cationic dicyclopentadienyl zirconium(Ⅳ) complexes [J]. J Am Chem Soc, 1986,108(7) 1718-1719
    [4] Ewen J A, Jones R L, Razavi A, et al. Syndiospecific propylene polymerizations with Group IVB metallocenes [J]. J Am Chem Soc, 1988,110 (18): 6255-6256
    [5] Coates G W, Waymouth R M. Oscillating Stereocontroh A Strategy for the Synthesis of Thermoplastic Elastomeric Polypropylene[J]. Science, 1995, 267(5195): 217-219
    [6] Natta G, Pino P, Mazzanti G, et al. The nature of some soluble catalysts for low pressure ethylene polymerization[J]. J Polym Sci, 1957, 26 (112): 120-123
    [7] Breslow D S, Newberg N R. Bis-(cyclopentadienyl)-titanium dichloride- alkylalyminum complexes as catalysts for the polymerization of ethylene[J]. J Am Chem Soc,1957,79 (18): 5072-5073
    [8] Kaminsky W, Vollmer HJ, Heins E, et al. Die Bildung von Dimetalloalkylenen, eine unvermeidliche Nebenreaktion homogener Ziegler-Katalysatoren[J]. Makromol Chem, 1974,175: 443-444
    [9] Sinn H, Kaminsky W, Vollmer HJ, et al. "Lebende Polymere" bei Ziegler-Katalysatoren extremer Produktivitat [J]. Angew Chem, 1980, 92 (5): 396-402
    [10] Ewen J A, Jones R L, RazaviA, et al. Syndiospecific propylene polymerizations with Group IVB metallocenes [J]. J A m Chem S oc , 1988,110(18): 6 255-6256
    
    [11] Chien J C W , Gong B M. Hexene-1 polymerization by homogeneous zirconocene and heterogeneous-supported TiCl_3 catalysts[J]. J Polym Sci, Part A: Polym Chem [J].1993,31(7): 1747-1754
    
    [12] Xu S S, Deng X B, Wang B Q,et al. Ethylene Polymerization with Cycloalkylidene-Bridged Cyclopentadienyl Metallocene Catalysts[J]. Macromol Rapid Commun,2001, 22(9): 708-709
    
    [13]Wild F R W P,Zsolnai L,Huttner G, et al. ansa-Metallocene Derivatives : IV. Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands [J]. J Organomet Chem, 1982,232(3):233-247
    
    [14]SchwemLein h, Brintzinger H H. ansa-Metallocene derivatives : V. Synthesis of tetramethylethylene-bridged titanocene and zirconocene derivatives via reductive fulvene coupling [J]. J Organomet Chem, 1983,254(1):69-73.
    
    [15] Ewen J A, Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts[J]. J Am Chem Soc, 1984,106(21): 6355-6364
    
    [16] Kaminsky W, Kulper K, Brintzinger H H, et al. Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst[J]. Angew Chem, Int Ed Engl, 1985, 24(6):507-508
    
    [17] Roll W, Brintzinger H H, Rieger B, et al. Stereo- and Regioselectivity of Chiral, Alkyl-substituted ansa-Zirconocene Catalysts in Methylalumoxane-activated Propene Polymerization[J]. Angew Chem, Int Ed Engl,1990, 29(3):279-280
    
    [18] Herrmann W A, Rohrmann J. The First Example of an Ethylene-Selective Soluble Ziegler Catalyst of the Zirconocene Class [J]. Angew Chem, Int Ed Engl, 1989,28(11): 1511-1512
    
    [19] Mise T, Miya S, Yamazaki H. Excellent Stereoregular Isotactic Polymerization of Propylene with C_2-symmetric Silylene-Bridged Metallocene Catalysts [J] . Chem Lett, 1989,1853
    
    [20] Spaleck W, Kuber F, Bachmann B, et al. New bridged zirconocenes for olefin polymerization: Binuclear and hybrid structures [J]. J Mol Catal A: Chem, 1998,128(1-3): 279-287
    
    [21] Spaleck W, Kuber F, Winter A, et al. The Influence of Aromatic Substituents on the Polymerization Behavior of Bridged Zirconocene Catalysts [J]. Organometallics, 1994,13(3): 954-963
    
    [22] Stehling U, Diebold J, Roll W, et al. ansa-Zirconocene Polymerization Catalysts with Anelated Ring Ligands - Effects on Catalytic Activity and Polymer Chain Length [J]. Organometallics, 1994,13(3): 964-970
    
    [23] Jungling S, Mulhaupt R, Stehling U, et al. Propene polymerization using homogeneous MAO-activated metallocene catalysts: Me_2Si(Benz[e]Indenyl)_2ZrCl_2/MAO vs. Me_2Si(2-Me-Benz[e]Indenyl)_2ZrCl_2/MAO[J]. J Polym Sci, Part A: Polym Chem, 1995, 33(8): 1305-1317
    
    [24] Ewen J A, Elder M J, Jones R L, et al. Chiral Ansa Metallocenes with Cp Ring-Fused to Thiophenes and Pyrroles: Syntheses, Crystal Structures, and Isotactic Polypropylene Catalysts [J]. J Am Chem Soc, 2001,123(20):4763-4773
    
    [25] Mengele W, Diebold J, Troll C, et al. ansa-Metallocene derivatives. 27. Chiral zirconocene complexes with two dimethylsilylene bridges [J]. Organometallics,1993,12:1931-1935
    
    [26]WeissK ,Neugebauer U, Blau S, et al. Untersuchungen von polymerisations- und metathesereaktionen, XXII Einfach und zweifach dimethylsilylen-verbruckte Metallocen- dichloride des Ti, Zr und Hf in der Ethen- und Propen-Polymerisation [J]. J Organomet Chem, 1996,520(1-2): 171-179
    [27] Lang H, Blau S, Pritzkow H, et al. Synthesis and Reaction Behavior of the Novel Mono(sigma-alkynyl)titanocene Chloride [(eta5-C_5H_2SiMe_3)SiMe_2]2Ti(Cl)(CCSiMe_3) [J]. Organometallics, 995, 14(4): 1850-1854
    [28] Herzog T A, Zubris D L, Bercaw J E. A new class of zirconocene catalysts for the syndiospecific polymerization of propylene and its modification for varying polypropylene from isotactic to syndiotactic[J]. J Am Chem Soc, 1996, 118(47): 11988-11989
    [29] Veghini D, Henling L M, Burkhardt T J, et al. Mechanisms of Stereocontrol for Doubly Silylene-Bridged C_5- and C_1-Symmetric Zirconocene Catalysts for Propylene Polymerization. Synthesis and Molecular Structure of Li_2[(1,2-Me_2Si)_2{C_5H_2-4-(1R,2S,5R-menthyl)} {C_5H-3,5-(CHMe_2)_2}]]'3THF and [(1,2-Me_2Si)_2{η~5-C_5H_2-4-(1R,2S,5R-menthyl)}{η~5-C_5H-3,5-(CHMe_2)_2}]ZrCl_2 [J]. J Am Chem Soc, 1999, 121(3): 564-573
    [30] Miyake S, Bercaw J E. Doubly [SiMe_2]-bridged C_5-and C_(2v)-symmetric zirconocene catalysts for propylene polymerization. Synthesis and polymerization characteristics [J]. J Mol Catal A: Chem 1998,128(1-3): 29-39
    [31] Baar C R, Levy C J, Min E Y J, et al. Kinetic Resolution of Chiral α-Olefins Using Optically Active ansa-Zirconocene Polymerization Catalysts[J]. J Am Chem Soc, 2004, 126(26): 8216-8231
    [32] Chen Y X, Rausch M D, Chien J C W. Stereoselective Synthesis of a Germanium- Bridged Zirconocene for Temperature-Invariant Propylene Polymerizations[J].Organometallics, 1994, 13(3): 748-749
    [33] 徐善生,田公路,王佰全等.柄型金属有机化合物(Ⅴ)——锗桥连茚基及取代茚基锆化合物的合成及催化烯烃聚合[J].高等学校化学学报,2002,23(4):595-599
    [34] Herrmann W A, Morawietz M J A, Herrmann H F, et al. Tin-bridged ansa-metallocenes of zirconium: synthesis and catalytic performance in olefin polymerization [J]. J Organomet Chem, 1996, 509(1): 115-117
    [35] Chien J C W, Wang B-P. Metallocene-methylaluminoxane catalysts for olefin polymerization. I. Trimethylaluminum as coactivator[J]. J Polym Sci.Polym chem.,1988, 26(11): 3089-3102
    [36] Chien J C W, Wang B-P. Metallocene-methylaluminoxane catalysts for olefin polymerization. V. Comparison of Cp_2ZrCl_2 and CpZrCl_3 [J]. J Polym Sci, Polym chem.,1990, 28(1): 15-38
    [37] Chien J C W, Sugimoto R. Kinetics and stereochemical control of propylene polymerization initiated by ethylene bis(4,5,6,7-tetrahydro-1-indenyl) zirconium dichloride/methyl aluminoxane catalyst[J]. J polym Sci. Polym Chem, 1991, 29(4): 459-470
    [38] Kaminsky W, Kuiper K, Niedoba S. Olefinpolymerization with Highly Active Soluble Zirconium Compounds using Aluminoxan as Cocatalyst[J]. Makromol Chem Macromo Symp.1986,3: 377-379
    [19] Fisher D, Mulhaupt R. Cooperative effects in binuclear zirconocenes: Their synthesis and use as catalyst in propene polymerization[J]. J Orgaomet Chem, 1991,417: C7-C11
    [40] Kaminsky W, Steiger R. Polymerization of olefins with homogeneous zirconocene/alumoxane catalysts [J]. Polyhedron, 1988,7(22-23): 2375-2381
    [41]. Dutschke J, Kaminsky W, Luker H. Polymer Reaction Engineering (Reichert K H and Geiseler W. Eds), p209, Hanser Publishers, Munich (1983)
    [42] Bohm L C. Ethylene polymerization process with a highly active Ziegler-Natta catalyst: 2. Molecular weight regulation [J].Polymer,1978,19(5):562-566
    
    [43]Tsutsui T, Kashiwa N. Kinetic study on ethylene. polymerization with bis(cyclopentadienyl) zirconium dichloride (Cp_2ZrCl_2)/methylaluminoxane catalyst system [J].Polym Commun, 1988,29: 180-183
    
    [44]Forlini I,Fan Z Q.Tritto I,et al.Metallocene-catalyzed propene/1-hexene copolymerization: Influence of amount and bulkiness of cocatalyst and of solvent polarity[J].Macromol Chem Phs,1997,198(8):2397-2408
    
    [46] Cozzi P G, Gallo E, Floriani C, et al. (Hydroxyphenyl)oxazoline: a Novel and Remarkably Facile Entry into the Area of Chiral Cationic Alkylzirconium Complexes Which Serve as Polymerization Catalysts [J]. Organometallics,1995,14 (11): 4994-4996
    [47] Matsui S, Tohi Y, Mitani M, et al. New Bis(salicylaldiminato) titanium Complexes for Ethylene Polymeriztion[J]. Chem Lett 1999:1065-1066
    [48] Matsui S, Fujita T. FI Catalysts: super active new ethylene polymerization catalysts[J].Catalysis Today, 2001,66 (1): 63-73
    
    [49] Saito J, Mitani M, Matsui S, et al. A New Titanium Complex Having Two Phenoxy-Imine Chelate Ligands for Ethylene Polymerization[J]. Macromol. Chem. Phys.2002, 203 (1) : 59-65.
    [50] Rieko Furuyama, Junji Saito, Sei-ichi Ishii, Makoto Mitani, Shigekazu Matsui.Yasushi Tohi, Haruyuki Makio, Naoto Matsukawa, Hidetsugu Tanaka, Terunori Fujita. Ethylene and propylene polymerization behavior of a series of bis(phenoxy-imine)titanium complexes[J]. Journal of Molecular Catalysis A: Chemical, 2003,200 :31-42
    [51] Matsui S,Mitani, M, Saito J,et al. Chem. Lett. 2000,554—555
    [52] Matsui S, Mitani M, Saito J, et al. J Am Chem Soc. 2001,123, 6847—6856.
    [53] Ishii S,Saito J,Mitani M,et al. Highly active ethylene polymerization catalysts based on titanium complexes having two phenoxy-imine chelate ligands[J].J. Mol. Catal. A:Chem. 2002, 179,11-16.
    
    [54] Mitani M, Mohri J, Yoshida Y,et al. Living Polymerization of Ethylene Catalyzed by Titanium Complexes Having Fluorine-Containing Phenoxy-Imine Chelate Ligands[J]. J Am Chem Soc. 2002,124(13): 3327-3336
    
    [55] M. Mitani, T. Nakano, and T. Fujita, Chem. Eur. J., 9,2396 (2003).
    [56] Mitani M, Furuyama R, Mohri J,et al. Syndiospecific Living Propylene Polymerization Catalyzed by Titanium Complexes Having Fluorine-Containing Phenoxy-Imine Chelate Ligands[J]. J Am Chem Soc, 2003,125(14):4293-4305
    
    [57] Saito J, Mitani M, Mohri J,et al. Living Polymerization of Ethylene with a Titanium Complex Containing Two Phenoxy-imine Chelate Ligands[J]. Angew. Chem. 2001,113(15):3002-3004
    [58] Saito J, Mitani M, Onda M, et al. Microstructure of Highly Syndiotactic Living Poly- (propylene)s Produced from a Titanium Complex with Chelating Fluorine-Containing Phenoxyimine Ligands (an FI Catalyst)[J]. Macromol Rapid Commun. 2001,22(13): 1072-1075
    
    [59] Nakayama Y, Bando H, Sonobe Y,et al. New olefin polymerization catalyst systems comprised of bis(phenoxy-imine) titanium complexes and MgCl_2-based activators[J]. Journal of Catalysis.2003,215:171-175
    
    [60] Mitani M, Furuyama R, Mohri J,et al. Fluorine- and Trimethylsilyl-Containing Phenoxy- Imine Ti Complex for Highly Syndiotactic Living Polypropylenes with Extremely High Melting Temperatures[J] J Am Chem Soc, 2002,124(27):7888-7889
    
    [61] Saito J, Mitani M, Mohri J, et al. Living Polymerization of Ethylene with a Titanium Complex Containing Two Phenoxy-Imine Chelate Ligands [J].Angew Chem Int Ed, 2001,40(15): 2918 -2920
    
    [62] S. Kojoh, T. Matsugi, J. Saito, et al. Chem Lett, 2001, 822
    
    [63] Tohi Y, Nakano T, Makio H, et al. Polyethylenes Having Well-Defined Bimodal Molecular Weight Distributions Formed with Bis(phenoxy-imine) Zr Complexes[J]. Macromol Chem Phys, 2004,205(9):1179-1186
    
    [64] Nakayama Y, Saito J, Bando H, et al. Propylene Polymerization Behavior of Fluorinated Bis(phenoxy-imine) Ti Complexes with an MgC12-Based Compound (MgC12-Supported Ti-Based Catalysts)[J]. Macromol Chem Phys, 2005, 206(18): 1847-1852
    
    [65] Furuyama R, Mitani M, Mohri J, et al. Ethylene/Higher a-Olefin Copolymerization Behavior of Fluorinated Bis(phenoxy-imine)titanium Complexes with Methylalumoxane: Synthesis of New Polyethylene-Based Block Copolymers [J]. Macromolecules,2005, 38(5): 1546-1552
    
    [66] Inoue Y, Nakano T.Tanaka H, et al. Chem.Let. 2001,1060-1061.
    
    [67] Strauch J, Warren T H, Erker G, et al. Formation and structural properties of salicylald- iminato complexes of zirconium and titanium[J] Inorg Chim Acta, 2000, 300-302: 810-821
    
    [68]Tian J, Coates G W. Development of a Diversity-Based Approach for the Discovery of Stereoselective Polymerization Catalysts: Identification of a Catalyst for the Synthesis of Syndiotactic Polypropylene[J]. Angew Chem Int Ed, 2000,39(20), 3626—3629
    
    [69] Huang J L, Lian B, Qian Y L, et al. Syntheses of Titanium(IV) Complexes with Mono-Cp and Schiff Base Ligands and Their Catalytic Activities for Ethylene Polymerization and Ethylene/1-Hexene Copolymerization [J]. Macromolecules 2002,35(13) :4871-4874
    
    [70] Reinartz S, Mason A F, Lobkovsky E B, et al.Titanium Catalysts with Ancillary Phenoxy- ketimine Ligands for Living Ethylene Polymerization[J].Organometallics 2003, 22(13):2542- 2544
    
    [71] Suzuki Y, Kashiwa N, Fujita T. synthesis and ethylene polymerization behavior of a new titanium complex having two imine-phenoxy chelate ligands[J].Chem. Lett., 2002:358-359.
    [1] 陈寿山,张正之,王序昆,刘以寅,张增佑编,金属有机化学合成手册,化学工业出版社,1986,30-31
    [2] 刘柏平,浙江大学博士学位论文,1997,杭州.
    [3] 曾长春,浙江大学硕士学位论文,1997,杭州.
    [4] 中国科学院大连化学物理研究所聚烯烃组编,聚丙烯、聚乙烯粘均分子量的测定,科学出版社,1979,北京.
    [5] 郑昌仁编,高聚物分子量及分布,化学工业出版社,1986,北京。
    [6] Person D S, Fetters L J, Younghouse L B, Mays J W. Rheological. properties of poly(1,3-dimethyl-1-butenylene) and model atactic polypropylene[J]. Macromolecules, 1988, 21(2): 478-484
    [1] Ewen J A. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts[J].J Am Chem Soc 1984, 106(21): 6355-6364
    [2] Steinhorst A, Erker G, Grehl M, et al. Group 4 ansa-metallocene Ziegler catalysts derived from trans-1,2-cycloalkylene-bis(indenyl)- and -bis(tetrahydroindenyl) MCl_2 systems: structural and reactivity studies [J]. J Organomet Chem,1997,542(2): 191-204
    [3] Mendelson R A. Effect of molecular structure on polyethylene melt theology. Ⅲ Effect of long-chain branching and of temperature on melt elasticity in shears.J Appl Polym Sci, 1973, 17: 797-808
    [4] Usami T, Takayama S. Fine-branching structure in high-pressure, low-density poly- ethylenes by 50.10-MHz carbon-13 NMR analysis [J]. Macromolecules,1984; 17(9): 1756-1761.
    [5] Linderman L P, Adams J Q. Carbon-13 Nuclear Magnetic Resonance Spectrometry Chemical Shifts for the Paraffins through Cg[J]. Anal Chem, 1971, 43(10): 1245-1252
    [6] Pooter M D, Smith P B, Dohrer K K, et al. Determination of the common linear low density polyethylene copolymers 13CNMR spectroscopy[J].J Apply Polym Sci,1991,42(2):399-408.
    [7] Galland G B, De Souza R F, Mauler R S,et a1.~(13)C NMR Determination of the Composition of Linear Low-Density Polyethylene Obtained with [η~3-Methallyl-nickel-diimine]PF_6 Complex [J]. Macromolecules,1999, 32 (5) :1620-1625
    [8] Usami T, Takayam S. Identification of branches in low-density polyethylene by Fourier transform infrared spectroscopy[J].Polymer Journal,1984,16(10):7 31-738
    [9] Ushioda T, Green M LH, Haggitt J, et al. Synthesis and catalytic properties of ansa- binuclear metallocenes of the Group IV transition metals [J].J Organomet Chem, 1996, 518(1-2):155-166
    [10] Bochann M, Lancaster S J. Base-free cationic zirconium benzyl complexes as highly active polymerization catalysts [J]. Organometallics 1993,12(3): 633-640
    [11] Reddy S S, Sivaram S. Homogeneous metallocence-methylaluminoxane catalyst systems for ethylene polymerization[J].Progress of Polymer Science, 1995, 20:309-367
    [12] Theopld K H. Homogeneous chromium catalysts for olefin polymerization[J]. European Journal of Inorganic Chemistry,1998, (1) :15-24
    [13] Liang Y F.Yap G P A, Rheingold, et al. Constrained geometry chromium catalysts for olefin polymerization [J].Organometallics,1996, 15(25): 5284-5286
    [14] Heinemann O, Jolly P W, Kruger C, et al. Bis(indenyl)chromium is a dimmer[J]. Organometallics, 1996,15(26):5462-5463
    [15] DOhring A, GOhre J, Jolly P W, et al. Donor-ligand-substituted cyclopentadienyl chromium (III) complexes: a new class of alkene polymerization catalyst. 1. amino-substituted systems [J]. Organometallics, 2000,19(4):388-402
    [16] Enders M, FernOndez P, Ludwig G, et al. New chromium(III) complexes as highly active catalysts for olefin polymerization[J].Organometallics,2001, 20(24):5005-5007
    [17] DOhring A,Jensen V R, Jolly P W, et al. Donor-ligand-substituted cyclo- pentadienyl-chromium(III) complexes: a new class of alkene polymerization catalyst. 2. phosphinoalkyl-substituted systems [J]. Organometallics, 2001, 20(11): 2234- 2242
    [18] Zhang H, Ma J, Qian Ya, et al. Synthesis and characterization of nitrogen-functionalized cyclopentadienylchromium complexes and their use as catalysts for olefin polymerization [J]. Organometallics, 2004, 23(24): 5681-5688.
    [19] Yasuda H, Yamamoto H, Yokota K, et al. Synthesis of monodispersed high molecular weight polymers and isolation of an organolanthanide(III) intermediate coordinated by a penultimate poly(MMA) unit[J]. J Am Chem Soc, 1992,114(12); 4908-4910.
    [20] Yasuda H, Ihara E. Rare earth metal initiated polymerizations of polar and nonpolar monomers to give high molecular weight polymers with extremely narrow molecular weight distribution[J]. Macromol Chem Phys, 1995,196(8): 2 417-2 441
    [21] SUN Jun-quan, PAN Zhi-da, HU Wei-qiu, et al. Polymerization of methyl methacrylate with ethyl enabled heterodinuclear metallocene of samarium and titanium-study on synergism and kinetics[J].J Zhejiang Univ (Sci), 2001,2(4): 366-371
    [22] HU Wei-qiu, SUN Jun-quan, PAN Zhi-da, et al.The polymerization of methyl methacrylate with a new tin-bridged yttrocene/ Al (i-Bu) 3[J], J Zhejiang Univ (Sci), 2000,1(2): 157 -161
    [23] Sun Junquan, Pan Zhida, Zhong Yu,et al. Polymerization of methyl methacrylate by single component catalyst of lanthanocene chloride O(C_2H_4C_5H_3CH_3)_2LnC (Ln = Y, Nd, Sm) [J]. Euro Polym J, 2000,36 (11) : 2375-2380
    [1] Clintons R O, Laskowski S C. Coumarins. I. Derivatives of Coumarin-3-and 4-Carboxylic Acids [J]. J Am Chem Soc ,1949, 71(11): 3602-3606
    [2] 柳翠英,赵全芹.2-羟基-5-氯苯甲醛的合成[J].中国医药工业杂志,2001,32(1):37-37
    [3] Brewster C M, Millam L H. Phototropic and Thermotropic Anils from 5-Bromo-salicylaldehyde [J]. J Am Chem Soc, 1933, 55(2): 763-766
    [4] Brewster C M. Schiff's bases from 3,5-dibromo-salicyladehyde[J]. J Am Chem Soc,1924, 46(11): 2463-2468
    [5] Furuyama R, Saito J, Ishii, S. Ethylene and propylene polymerization behavior of a series of bis(phenoxy-imine)titanium complexes[J]. Journal of Molecular Catalysis A: Chemical 200 (2003) 31-42
    [6] 樊能廷.有机合成事典[M].北京:北京理工大学出版社,1992:205-206
    [7] Sun J Q, Shan Y H, Xu YJ, et al. Neutral Nickel Complexes for Copolymerization of ethylene with polar monomers, J Polym Sci Part A: Polym Chem, 2004, 42 (23): 6071-6080
    [8] 龙春梅,孙汉洲,唐俊,等.2,2-二(4-羟基-3-硝基)苯基丙烷的合成[J].精细化工,2002,19(7):429-430
    [9] 孙汉洲,赵芳,唐俊,等.2,2-二(4-羟基-3,5_二硝基)苯基丙烷和2,2-二(4-羟基-3-硝基)苯基丙烷的合成.合成化学[J].2003,11(3):246-249
    [10] 孙汉洲,赵芳,邓集平,等.2,2-二(4-羟基-3-胺基)苯基丙烷的合成.合成化学[J].2004,12(5):508-510
    [1] Suzuki, Terao H, Fujita T. Recent Advances in Phenoxy-Based Catalysts for Olefin Polymerization[J]. Bull Chem Soc Jpn, 2003,76(8): 1493-1517
    [2] Wang C M, Friedrich S, Younkin T R, et al. Neutral Nickel(Ⅱ)-Based Catalysts for Ethylene Polymerization[J]. Organometallics, 1998, 17(15): 3149-3151
    [3] Younkin T R, Connor E F, Henderson J I, et al. Neutral, Single-Component Nickel (Ⅱ) Polyolefin Catalysts That Tolerate Heteroatoms[J]. Science, 2000, 287 (5452): 460-462
    [4] Connor E F, Younkin T R, Henderson J I, et al. Linear functionalized polyethylene prepared with highly active neutral Ni(Ⅱ) complexes[J].J Polym Sci Part A: Polym Chem, 2002, 40(16): 2842-2854
    [5] Bansleben D A, Friedrich S K, Younkin T R, et al. Olefin Polymers and Production Processes Thereof, US 6 410 664, 2002
    [6] CarLini C, Martinelli M, Galletti A M R, et al. Copolymerization of ethylene with methyl methacrylate by ziegler-natta-type catalysts based on nickel salicylaldiminate/methylalumoxane systems[J]. Macromol Chem Phys, 2002, 203(10-11): 1606-1613
    [7] Fujita T, Mitani M, Matsui S, et al. Olefin Polymerization Catalysts, Transition Metal Compounds, Processes for OlefinPolymerization and Alpha-olefin/ Conjugated Diene Copolymers ,Eur patent 0874005,1998
    [8] Matsui S ,Tohi Y, Mitani M, Saito J.makio H, Tanaka H .Nitabaru M, Nakano T, Fujita T, Chem . Lett. 1999, 1065-1073.
    [9] Mitani M, Mohri J, Yoshida Y, et al. Living Polymerization of Ethylene Catalyzed by Titanium Complexes Having Fluorine-Containing Phenoxy-Imine Chelate Ligands[J].J Am Chem Soc ,2002,124 (13):3327-3336
    [10] Ishii S, Saito J, Mitani M,et al. Highly active ethylene polymerization catalysts based on titanium complexes having two phenoxy-imine chelate ligands [J].J Mol Catal A:chem., 2002, 179(1-2):11-16
    [11] Mitani M, Furuyama R, Mohri J, et al. Syndiospecific Living Propylene Polymerization Catalyzed by Titanium Complexes Having Fluorine-Containing Phenoxy-Imine Chelate Ligands[J]. J Am chem Soc, 2003,125(14):4293-4305
    [12] Nakayama Y, Saito J, Bando H, et al. Propylene Polymerization Behavior of Fluorinated Bis(phenoxy-imine) Ti Complexes with an MgCl_2-Based Compound [J]. Macromol Chem Phys, 2005, 206(18): 1847-1852
    [13] Heldrick G M. SADABS program for empirical absorption correction of area detector data[Z]. Gottingen, Germany: Universitat Gottingen, 1997
    [14] Sheldrick G M. SHELXS-97 Program for the solution of crystal structures [Z]. Gottingen, Germany: Universitat Gottingen, 1990
    [15] Strauch J ,Warren T H, Erker G, et al. Formation and structural properties of salicylaldiminato complexes of zirconium and titanium[J].Inorganica Chimica Acta, 2000,300-302: 810-821
    [16] Kaminsky W, Kulper K, Brintzinger H H, et al. Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyats[J]. Angew Chem, Int Ed Engl, 1985, 24:507-508
    [17] Lisovskii A, Shuter M, Gishvoliner M,et al. Polymerization of Propylene by Mixed Ziegler-Natta and Metallocene Catalysts [J].Appl Organomet Chem, 1998,12(6), 401-408
    [18] Ahlers A, Kaminsky W.Variation of molecular weight distribution of polyethylene obtained with homogeneous Ziegler-Natta catalysts[J]. Macromol Rapid Commin, 1988, 9: 457-461
    [19] Jershow A, Ernst E, Hermann W, et al. Nuclear Magnetic Resonance Evidence for a New Microstructure in Ethene-Cyclopentene Copolymers [J]. Macromolecules, 1995, 28(21), 7095-7099
    
    [20] Diamond G M.Chernega A N, Mountford P,et al. New mono-and bi-nuclear ansa-metallocenes of zirconium and hafnium as catalysts for the polymerization of ethane and propene [J] J Chem Soc, Dalton Trans,1996, (6):921-938
    
    [21] Kaminsky W. in Proceeding of Worldwide Metallocene Conference, Metcon93, Catalysts Consultants Inc, TX, Spring House, 1993, P235
    
    [22]Gibson V C, Maddox P J C, Newton C,et al. Chem Commun, 1998:1651
    
    [23] Rhodes B, Chien J C W, Wood J S, et al. Synthesis of titanium(IV) complexes containing 2, 6-dimethylaniline substituted amino alcohols and their utilization in ethylene polymerizations [J]. J Organomet Chem, 2001,625(1):95-100
    
    [24] Furuyama R, Saito J, Ishii S,et al. Ethylene and propylene polymerization behavior of a series of bis(phenoxy-imine)titanium complexes[J]. Journal of Molecular Catalysis A: Chemical, 2003,200:31-42
    
    [25] Saito J, Mitani M, Matsui S,et al. A New Titanium Complex Having Two Phenoxy- Imine Chelate Ligands for Ethylene Polymerization [J]. Macromol Chem Phys,2002, 203(1): 59-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700