镓、锌改性的HZSM-5分子筛芳构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的发展和人们环保意识的增强,汽油的标准也愈来愈严格。我国最新汽油标准中规定,硫含量不得高于50 ppm,烯烃不高于25%(体积百分数,以下同),芳烃与烯烃含量之和不高于60%。
     我国汽油组成中约80%为FCC汽油,其表现为硫和烯烃含量高的特征,但芳烃还有上升空间。在使用加氢脱硫技术降低硫含量的同时,会导致烯烃含量的降低,从而辛烷值也会随之降低。为了保住产品的辛烷值,可以通过芳构化的方法将FCC汽油中的烯烃和烷烃转化高辛烷值的芳烃,从而使汽油的辛烷值不降低,亦可将直镏汽油等低品质汽油改质,达到提高汽油品质的目的。
     纳米HZSM-5分子筛具有外表面酸中心多,吸附量大,吸附能力强,扩散阻力少等性能特点,使具有优良的芳构化性能和抗积碳能力,已应用于多种烃类转化反应中。水热处理是调节催化剂酸性和稳定性的常用方法,一定浓度的硝酸酸洗可以除去水热处理后催化剂孔道中堆积的非骨架铝,起到疏通孔道的作用,金属镓和锌具有良好的芳构化能力。以不同温度水热处理并酸洗后的与氧化铝混合挤条后的纳米HZSM-5为母体,分别以金属Ga和Zn为活性组分制备催化剂,并尝试用其他金属对其改性,考察其对FCC和直镏汽油的芳构化能力。
     通过上述研究,得出以下结论:
     (1)以600℃水热处理并酸洗的HZSM-5为母体制备的Ga/HZSM-5在Ga系催化剂中表现出了最优的芳构化性能,在反应温度为480℃、WHSV=1 h-1的条件下,其所得产品中芳烃含量为58.3%,C3+4含量为7.6%。
     (2)水热处理可以降低纳米HZSM-5的酸量,同时降低其L酸及B酸量,随着水热处理温度的升高,酸洗后的水热处理HZSM-5的L/B值升高,酸强度降低。
     (3)使用金属Fe、Cu和Cr的盐对Ga/HZSM-5进行二次改性,在选定条件下,对其芳构化性能的提高并无有利影响。
     (4)La和P改性后的Zn/HZSM-5芳构化效果要好于Cu和Ni改性,并且以2%Zn及1%La的负载量为最佳。在反应温度为380℃、WHSV=1.5h-1时,其产品中芳烃含量为22.1%,烯烃25.7%,计算辛烷值89.7。
     (5)Ga和Zn改性后的HZSM-5遵循相同的反应机理,并不因活性组分不同而导致芳构化机理改变。
Gasoline standards have become more and more stringent since the development of auto industry and human notice on environment protection. In China, the latest standard in which less than 50 ppm sulfur content, no more than 25V% olefins content and no more than 60V% aromatics plus olefins content is required has been executed in some city.
     In China, about 80% gasoline comes from FCC gasoline which has high sulfur and olefins content while aromatics still has growth room. The conventional hydrotreating technology results in the significant reduction of RON dut to the saturation of olefins in FCC gasoline. Aromatization can transfer olefins to aromatics to keep the octane number. The quality of straight run gasoline can also be improved by aromatization.
     ZSM-5 has been used in many hydrocarbon conversion reactions due to its excellent aromatization, isomerization and alkylation ability. The parent nano-HZSM-5 exhibited the properties of smaller crystallite, shorter micropore, and more acidic centers at external surface. Hydrothermal treatment can modify the acidity of HZSM-5 and its stability on the basis of retaining crystal structure. HNO3 treatment can remove the non-framework Al in the zeolite channel. Ga and Zn are excellent active component on aromatization process. In the study nano-HZSM-5 were prepared by hydrothermal & HNO3 treatment and loading Ga, Zn and other metal oxides. The aromatization performances of prepared catalysts for FCC and straight run gasoline were evaluated.
     Based on the above investigations, we got the following conclusions.
     (1) The Ga/HZSM-5 after nanoscale HZSM-5 was hydrothermal treated at 600℃showed the best aromatization performance (aromatization and C3+C4 contents were 58.3V%and 7.6V%, respectively) at reaction temperature 480℃, WHSV=1 h-1.
     (2) The total acid amount (including Leswis and Br(?)nsted acid) and strength decreased, and the ratio of L/B of prepared HZSM-5 increased as the hydrothermal treatment temperature rising.
     (3) Catalyst Ga/HZSM-5 which modified by Fe, Cu and Cr didn't show any advanced aromatization performance on FCC gasoline in the selected reaction conditions.
     (4) Catalyst Zn/HZSM-5 modified by La and P showed better aromatization performance than catalyst modified by Cu and Ni respectively. The evalution of the prepared catalyst which was loaded with 2% wt.Zn and 1wt.% La for FCC gasoline aromatization was conducted at 380℃, WHSV=1.5 h-1. After aromatization, the aromatic content in gasoline increased from 15.2V% to 22.1V%, and olefin content decreased from 40.1V% to 25.7V%. Meanwhile, gasoline RON was 89.7.
     (5) HZSM-5 modified by Ga and Zn followed the same mechanism in the aromatization process no matter what the active component was.
引文
[1]Doolan P C, Pujado P R. Make aromatics from LPG[J]. Hydrocarbon Processing, 1989,68 (9):72-80.
    [2]王智峰.催化裂化汽油芳构化生成清洁油品的技术研究[D].天津:天津大学化工学院,2008.
    [3]孙书红,谢进宁,马建泰.低碳烃、汽油芳构化技术进展[J].工业催化,2005,12(Z1):8-12.
    [4]朱建芳,钱伯章.炼油、石油化工的轻烃回收和综合利用技术进展(下)[J].石油化工,1993,22(8):540-549.
    [5]Chen N Y, Yan T Y. M2 forming-a process for aromatization of light hydrocarbons[J]. Ind. Eng. Chem. Process Des. Dev.,1986,25(1):151-155.
    [6]龚旭辉.直镏汽油芳构化改质催化剂的开发[D].西安:西安交通大学,2001.
    [7]沈吕宁.烃类的芳构化(Ⅰ)[J].石油化工,1987,16(8):541-546.
    [8]杨新康.烃类的芳构化(Ⅱ)[J].石油化工,1987,16(9):611-615.
    [9]杨新康.裂解轻油芳构化制取BTEX的工业试验[J].石油炼制与化工,1994,25(1):26-30.
    [10]郝代军,刘丹禾,李群柱,等.提高汽油辛烷值的汽油芳构化技术[J].炼油设计,2000,30(6):49-51.
    [11]郝代军,朱建华,王国良,等.直镏汽油芳构化改质工艺的研究[J].石油炼制与化工,2005,36(10):19-23.
    [12]刘丹禾,郝代军,王龙延,等.加氢焦化汽油芳构化改质提高辛烷值的研究[J].石油炼制与化工,1999,30(4):21-24.
    [13]杨翠广.OTA技术改质FCC汽油的研究及实际胶质的测定[D].大连:大连理工大学,2007.
    [14]李玉敏.工业催化原理[M].天津:天津大学出版社,1992.
    [15]赵晓波.改性纳米HZSM-5在低品质轻油改质中的应用研究[D].大连:大连理工大学,2006.
    [16]Yanmamura M, Chaki K, Wakatsuki T, et al. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization[J]. Zeolites,1994,14(8):643-649.
    [17]Zhang W P, Bao X H, Guo X W, et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite[J]. Catal. Lett.,1999,69(1-2):89-94.
    [18]王学勤.纳米ZSM-5沸石的合成、表征和催化性能研究[D].大连:大连理工大学,1997.
    [19]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅰ.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程[J].石油学报(石油加工),1994,10(2):38-43.
    [20]Pu S B, Inui T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylphthalene isomerization[J]. Zeolites,1996,17(4):334-339.
    [21]Caeiro G, Carvolho R H, Wang X, et al. Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts[J]. J. Mol. Catal. A:Chemical,2006,255(1-2): 131-158.
    [22]Kazansky V B, Frash M V, Santen R A. A quantum-chemical study of hydride transfer in catalytic transformations of paraffins on zeolites. Pathways through adsorbed nonclassical carbonium ions[J]. Catal. Lett.,1997,48(1-2):61-67.
    [23]Kazansky V B. Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons[J]. Catal. Today,1999,51(3-4):419-434.
    [24]Corma A, Orchilles A V. Current views on the mechanism of catalytic cracking[J]. Microp. Mesop. Mat.,2000,35-36:21-30.
    [25]Olah G A, Schilling P, Staral J S, et al. Electrophilic reactions at single bonds. XIV. Anhydrous fluoroantimonic acid catalyzed alkylation of benzene with alkanes and alkane-alkene and alkane-alkylbenzene mixtures [J]. J. Am. Chem. Soc.,1975, 97(23):6807-6810.
    [26]Guisnet M, Magnoux P. Coking and deactivation of zeolites:Influence of the Pore Structure[J]. Appl. Catal.,1989,54(1):1-27.
    [27]Lukyanov D B, Gnep N S, Guisnet M. Kinetic modeling of propane aromatization reaction over HZSM-5 and GaHZSM-5[J]. Ind. Eng. Chem. Res.,1995,34(2):516-523.
    [28]Lukyanov D B, Gnep N S, Guisnet M R. Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5[J]. Ind. Eng. Chem. Res.,1995,33(2): 223-234.
    [29]Gnepa N S, Doyemeta J Y, Seco A M. Conversion of light alkanes into aromatic hydrocarbons:1-dehydrocyclodimerization of propane on PtHZSM-5 catalysts[J]. Appl. Catal.,1987,35(1):93-108.
    [30]Guisnet M, Gnep N S. Aromatization of propane over GaHMFI catalysts. Reaction scheme, nature of the dehydrogenating species and mode of coke formation [J]. Catal. Today,1996,31 (3-4):275-292.
    [31]Meriaudeau P, Naccache C. The role of Ga2O3 and proton acidity on the dehydrogenating activity of Ga2Os-HZSM-5 catalysts:evidence of a bifunctional mechanismeng[J]. J. Mol. Catal.,1990,59(3):L31-L36.
    [32]Buckles G J, Hutchings G J. Aromatisation of propane over Ga/H-ZSM-5:comments on the activation of propane[J]. Catal. Today,1996,31(3-4):233-246.
    [33]Steinberg K H, Mroczek U, Roessner F. Aromatization of ethane on platinum containing ZSM-5 zeolites[J]. Appl. Catal.,1990,66(1):37-44.
    [34]Reschetilowski W, Mroczek U, Steinberg K H. Influence of platinum dispersion on the ethane aromatization on Pt/H-ZSM-5 zeolites[J]. Appl. Catal.,1991,78(2): 257-164.
    [35]Chetina 0 V, Vasina T V, Lunin V V. Aromatization of ethane over Pt, Ga/HZSM-5 catalyst and the effect of intermetallic hydrogen acceptor on the reaction[J]. Appl. Catal. A:Gen.,1995,131(1):7-14.
    [36]Mole T, Anderson J R, Creer G. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts[J]. Appl. Catal.,1985,17(1):141-154.
    [37]Scurrell M S. Factors affecting the selectivity of the aromatization of light alkanes on modified ZSM-5 catalysts[J]. Appl. Catal.,1988,41:89-98.
    [38]Biscardi J A., Meitzner G D., Iglesia E. Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts[J]. J. Catal.,1998,179(1):192-202.
    [39]Nicolaides C P, Sincadu N P, Scurrell M S. NAS (novel aluminosilicates) as catalysts for the aromatisation of propane:Studies of zinc and gallium modified zeolite-based systems having various extents of XRD crystallinity[J]. Catal. Today,2002,71(3-4):429-435.
    [40]Ono Y. Transformation of Lower Alkanes into Aromatic Hydrocarbons over ZSM-5 Zeolites[J]. Catal. Rev. Sci. Eng.,1992,34(3):179-226.
    [41]Salguero C C, Lam Y L, Schmal M. Propane transformation over H-ZSM5 zeolite modified with germanium[J]. Catal. Lett.,1997,47(2):143-154.
    [42]Krogh A, Hagen A, Hansen T W, et al. Re/HZSM-5:a new catalyst for ethane aromatization with improved stability[J]. Catal. Comm.,2003,4(12):627-630.
    [43]Solymosi F, Szoke A. Conversion of ethane into benzene on Mo2C/ZSM-5 catalyst [J]. Appl. Catal. A:Gen.,1998,166(1):225-235.
    [44]Iglesia E, Baumgartner J E, Price G L. Kinetic coupling and hydrogen surface fugacities in heterogeneous catalysis:I. Alkane reactions on Te/NaX, H-ZSM5, and Ga/H-ZSM5[J].Catal.,1992,134(2):549-571
    [45]Kaliaguine S, Lemay G, Adnot A. Ion exchange of Fe3+ in ZSM-5[J].Zeolites, 1990,10(6):559-564.
    [46]Meitzner G D, Iglesia E., Baumgartner J E. The Chemical State of Gallium in Working Alkane Dehydrocyclodimerization Catalysts. In situ Gallium K-Edge X-Ray Absorption Spectroscopy[J]. J. Catal.,1993,140(1):209-225.
    [47]Price G L, Kanazirev V. Ga203/HZSM-5 propane aromatization catalysts:Formation of active centers via solid-state reaction[J]. J. Catal.,1990,126(1):267-278.
    [48]Nowak I, Quartararo J, Derouane E G, et al. Effect of H2-O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts[J]. Appl. Catal. A:Gen.,2003,251(1):107-120.
    [49]Dooley K M, Chang C, Price G L. Effects of pretreatments on state of gallium and aromatization activity of gallium/ZSM-5 catalysts [J]. Appl. Catal. A:Gen.,1992, 84(1):17-30.
    [50]Giannetto G, Leon G, Papa J, et al. Preparation of acidic or bifunctional catalysts by means of straightforward calcination of as-synthesized [Ga]-ZSM-5 zeolites obtained from alkali-free media. Propane aromatization[J]. Catal. Lett.,1993, 22(4):381-386.
    [51]Giannetto G, Montes A, Gnep N S, et al. Conversion of Light Alkanes into Aromatic Hydrocarbons.VII. Aromatization of Propane on Gallosilicates:Effect of Calcination in Dry Air[J]. J. Catal.,1994,145(1):86-95.
    [52]Dooley K M, Price G L, Kanazirev V I, et al. Gallium-loaded zeolites for light paraffin aromatization:evidence for exchanged gallium cation active centers [J]. Catal. Today,1996,31(3-4):305-315.
    [53]Kolyagin Y G, Ordomsky V V, Khimyak Y Z, et al. Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques[J]. J. Catal.,2006,238(1):122-133.
    [54]Kazansky V B, Subbotina I R, Rane N, et al. On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga(?) cations [J]. Phys. Chem. Chem. Phys.,2005,7(16):3088-3092.
    [55]Choudhary V R, Mantri K, Sivadinarayana C. Influence of zeolite factors affecting zeolitic acidity on the propane aromatization activity and selectivity of Ga/H-ZSM-5[J]. Microp. Mesop. Mat.,2000,37(1-2):1-8.
    [56]Choudhary V R, Mulla S A R, Banerjee S. Aromatization of n-heptane over H-AlMFI, Ga/H-AlMFI, H-GaMFI and H-GaAlMFI zeolite catalysts:influence of zeolitic acidity and non-framework gallium[J]. Microp. Mesop. Mat.,2003,57(3):317-322.
    [57]Choudhary T V, Kinage A, Banerjee S, et al. Influence of space velocity on product selectivity and distribution of aromatics in propane aromatization over H-GaAlMFI zeolite[J]. J. Mol. Catal. A:Chem.,2006,246(1-2):79-84.
    [58]龙化云,王祥生,孙万付,等.脱铝方法对纳米HZSM-5物化性能的影响[J].石油学报(石油化工),2009,25(3):332-338.
    [59]王虎,王东明,田爱珍,等.催化裂化汽油芳构化影响因素研究[J].石油化工应用,2009,28(4):16-20.
    [60]Long H Y, Wang X S, Sun W F. Study of n-octene aromatization over nanoscale HZSM-5 zeolite[J]. Microp. Mesop. Mat.,2009,119(1-3):18-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700