桦木酸的免疫调节作用及其对淋巴细胞凋亡影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高效分离和提取技术的发展,从植物中提取生物活性物质作为药物使用越来越受到重视。桦木酸(betulinic acid,BA)属于五环羽扇豆烷型三萜类物质,广泛分布于多种植物中,如白桦树、鼠李科、桃金娘科和莲类植物等,以白桦树中含量最高。BA具有抗肿瘤,抗艾滋病,抗炎,抗疟疾,抗寄生虫等广泛的药理活性。BA药理作用的发挥可能是调节机体免疫力,不一定直接作用于感染或肿瘤细胞,而且很多从植物中提取的天然产物都具有免疫调控的能力,因此BA很有可能是一个免疫调节剂。本论文以纯化BA为实验材料,系统研究了BA对小鼠机体免疫功能及其对淋巴细胞凋亡的影响。主要研究内容和结果如下:
     1.以白桦树皮为试验原料,采用两步法合成了BA。从白桦树皮中提取桦木醇,经琼斯试剂氧化制备中间产物桦木酮酸,再用硼氢化钠还原合成BA,采用IR,HPLC-MS,1H-NMR以及13C-NMR对桦木醇和BA的结构进行鉴定,确定最佳提取与合成工艺,并建立了HPLC测定BA含量的方法,色谱柱:Zorbax Eclipse XDB-C8, (4.6mm×150mm,5μm);流动相:甲醇-水(4g/L甲酸铵)=40:60,流速1.0ml/min,波长210nm,柱温为室温。结果表明,最佳提取条件为:以甲醇为溶剂,白桦树皮与甲醇比率为15/200(g/mL),70℃提取时间为3h;最佳合成条件:桦木醇与琼斯试剂的摩尔比为1:6,20-22℃反应3h,桦木酮酸与硼氢化钠的质量比为1:1时,其转化率最高。BA的线性范围为0.03125-0.5mg/mL,回归方程为:Y=379381X-2397(R2=0.9988),平均回收率可达97.97%,BA的含量为96.53%。
     2.通过体内给药途径,研究了0,0.25,0.5,1mg/kgBA对正常小鼠免疫功能调节和抗氧化作用的影响。采用MTT比色法检测了淋巴细胞的增殖,流式细胞术检测脾和胸腺淋巴细胞亚群,溶血空斑法和血清溶血素法检测体液免疫功能;吞噬中性红能力检测巨噬细胞的吞噬能力,ELISA法检测细胞因子的分泌,并检测了BA对超氧化物歧化酶(Superoxide Dismutase,SOD)、谷胱甘肽过氧化物酶(Glutathione Peroxidase, GSH-Px)、丙二醛(Malondialdehyd, MDA)、溶菌酶(lysozyme, LSZ)和总抗氧化能力(Total Antioxidant capacity, T-AOC)的影响。结果表明,BA能提高小鼠的免疫器官指数,协同促进ConA或LPS诱导的小鼠脾脏T淋巴细胞或B淋巴细胞的增殖活性,提高胸腺淋巴细胞CD4+百分率,脾淋巴细胞的CD19+百分率以及CD4+/CD8+的百分比,表明BA从增强淋巴细胞活性和改变T、B淋巴细胞的数目或亚群,来提高机体的细胞免疫。BA增加SRBC免疫小鼠溶血空斑数,降低血清免疫球蛋白IgG和IgM的抗体滴度,提高血清溶菌酶含量,表明BA作为抗原刺激物,活化的B细胞数量增多,功能增强,从而提高机体的体液免疫功能。BA显著增强腹腔巨噬细胞吞噬中性红的能力,提高腹腔巨噬细胞肿瘤坏死因子(Tumor Necrosis Factor, TNF-α)水平,这表明BA能够刺激巨噬细胞,增强巨噬细胞的吞噬能力。BA降低小鼠血清IL-2和IL-6的分泌量,略提高血清IL-10的水平,说明BA混合调控Th1/Th2类细胞因子。BA提高小鼠胸腺和脾脏的T-AOC, SOD和GSH-Px活性,降低MDA含量。说明BA能消除自由基和活性氧以免引发脂质过氧化,减少活细胞内过氧化物,保护机体免受自由基的损伤,通过提高机体的抗氧化能力,从而提高机体的免疫力。
     3.采用体外培养方式,研究了BA对巨噬细胞能量代谢水平、吞噬能力、胞外NO释放量、TNF-α分泌量与GSH-Px活性以及胞内SOD与LSZ活性的影响。结果表明,BA在2.5~1μg/mL浓度范围内,能够显著性地促进小鼠腹腔巨噬细胞增殖,5~20μg/mLBA能促进巨噬细胞吞噬中性红的能力;BA在1.25~10μg/mL浓度范围内,能增强胞外NO的释放量与GSH-Px活性以及胞内SOD与LSZ的活性,以1.25μg/mLBA作用最强,BA在1.25~20μg/mL浓度范围内,能显著地提高TNF-α的分泌量。这说明BA能激活小鼠腹腔巨噬细胞,提高其吞噬能力和能量代谢水平,增强抗氧化能力,提高机体的免疫力。
     4.以地塞米松(Dexamethasone, Dex)诱发淋巴细胞凋亡为模型,利用荧光显微镜、电子透射显微镜和相差倒置显微镜进行细胞形态学及亚细胞结构变化的观察;通过琼脂糖凝胶电泳观察细胞凋亡过程中DNA的裂解以及用流式细胞仪分析并测定细胞凋亡率。在细胞形态学、生物化学以及细胞与分子生物学等水平上从体内给药和体外细胞培养两方面研究了BA对淋巴细胞凋亡的影响。体内研究表明,BA能改善和拮抗地塞米松诱导的小鼠淋巴细胞凋亡,并随着剂量的增加,拮抗作用越强,细胞凋亡减少,呈一定的量效关系。体外研究表明,低剂量的BA对地塞米松诱导的淋巴细胞凋亡具有一定的保护作用,但随着剂量的增加,保护作用越来越弱。这表明BA对Dex诱导的淋巴细胞凋亡具有干预作用,在一定程度上起到了预防性的保护作用,但作用的强弱与剂量有关。BA对机体免疫细胞的保护作用,可能通过抗氧化机制发挥免疫调节作用,其机制有待进一步研究。
It has recently attracted considerable scientific interest and attention to promote human health by enhancing natural immune protection via the potential of bioactive compound derived from the plant, with recent advances in the hightech instruments for isolation and characterisation of plant natural products, and the developments in the biological assay systems, there has been a growing attention to the importance of plants as a source of biologically-active substances. Betulinic acid (BA) is a pentacyclic triterpene which was found in the stem bark of the plant white birch, and also in various other plants widespread in tropical regions, such as Tryphyllum peltaum, Ancistrocladus heyneaus, Diospyoros leucomelas, Tetracera boliviana, and Syzygium formosanum. BA and its derivatives have been the subject of intense studies with focuses on their anti-cancer effects, anti-HIV, anti-bacterial, anti-inflammatory, antimalarial, as well as anti-helminthic and other pharmaceutical properties. These effects may be due to their ability to modulate immune function rather than having a direct effect on infections and on cancer cells. In addition, various bioactive materials derived from plants exhibit the immunomodulatory ability. Therefore, we proposed that BA may be another valuable immunomodulator. In the present study, the immunomodulatory effects of BA on mice were demonstrated by using the purified BA.
     1. BA was synthesized by oxidizing betulin from the bark of the white birth with Jone's reagent, followed by selective oxidation of the resulting betulonic acid with NaBH4. IR, HPLC-MS,1H-NMR and 13C-NMR were used identified the structure of betulin and betulinic acid. To compare extraction efficiency several solvents were evaluated, also extraction time and extraction temperature were optimized, and a quantitative analysis method of BA by HPLC was formed with ethanol-water (4g/L ammonium formate) as the mobile phase on Zorbax Eclipse XDB-C8 column (4.6 mm×150 mm,5μm). The flow-rate was 1 mL/min and the UV detection was set at 210 nm, with a column temperature of room temperature. The results showed that the optimal experimental conditions were as follows:the white birch bark was extracted 3 h with methanol under reflux at 70℃, and the ratio of the bark to the extraction solvent was 15/200(g/mL), and the ratio of betulin to Jone's reagent was 1:6 and the ratio of betulonic acid to NaBH4; was 1:1. A good linearity of betulinic acid was in the range of 0.03125 mg/mL to 0.5mg/mL (Y=379381x-2397, R2=0.9988), the recovery rate was 97.97%and the RSD (n=9) was 1.64%, and the content of betulinic acid was 96.53%.
     2. Female mice were orally administered with BA for 14 days at the dose of 0,0.25, 0.5, and 1 mg/kg body weight. We found that BA significantly enhanced the thymus and spleen indices and stimulated lymphocyte proliferation induced by Concanavalin A and lipopolysaccharide as shown by MTT assay. Flow cytometry revealed that BAincreased the percentage of CD4+in thymus as well as the percentage of CD19+B cells and the ratios of CD4+/CD8+cells in spleens. BA increased the number of plaque forming cell and the macrophage phagocytic activity as indicated by neutral red dye uptake assay, and the peritoneal macrophages levels of TNF-a were also increased by BA. In contrast, the serum level of anti-Sheep red blood cell antibodies (IgG and IgM) and the serum concentration of cytokine (IL-2 and IL-6) were decreased significantly in BA-treated mice compared to the control as assayed by haemagglutination test and ELISA assays, respectively. At the same time, BA significantly increased GSH-Px, SOD, T-AOC, LSZ activity and decreased MDA content. Considered together, these results suggest that BA enhances mouse cellular immunity, humoral immunity, and activity of macrophages and antioxidant. Thus, BA is a potential immune stimulator and may strengthen the immune response of its host.
     3. To investigate immune function and antioxidant activity effects of BA on mouse peritoneal macrophages. The effects of BA on the phagocytosis capability, energy metabolism level, nitrous oxide (NO) release, the product of tumor necrosis factor-α(TNF-α), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and lysozyme (LSZ) activity were assayed by adding different concentration of BA into cultured mouse peritoneal macrophages in vitro. The results showed that phagocytosis capability was increased at the dose of 2.5~10μg/ml BA and energy metabolism level was significantly enhanced at the dose of 5~20μg/ml BA, and the NO release, GSH-Px, SOD, LSZ activity were significantly higher at the dose of 1.25~10μg/ml BA, and the product of TNF-αwas augmented at the dose of 1.25~20μg/ml betulinic acid, compared to the control group. Thus, BA is a possible immune stimulant because it can activate macrophages, enhance its oxidation resistance.
     4. The protective effects of BA against the Dexamethasone (Dex) induced apoptosis of murine lymphocytes were investigated in vivo and in vitro. Morphological assessment of apoptosis was performed with fluorescence microscope and transmission electron microscope microscope. DNA fragmentation was visualized by agarose gel electrophoresis. The amount of apoptotic cells was measured by flow cytometry. The results showed that in the test of in vivo, apoptotic cells in spleen and thymus of mice treated with BA and Dex (25mg/kg) were less than those in Dex treatment alone. DNA fragmentation assay showed that BA (0.25,0.5, 1mg/mL) obviously reduced Dex-induced ladder bands. Flow cytometry analysis showed that BA decreased the ratio of apoptosis, Thus, BA reduced Dex-induced apoptosis in a dose dependent manner, In the test of in vitro,5μg/mL BA reduced Dex-induced apoptosis, the protective activity of BA was decreased in a dose dependent manner (5,10,20μg/mL BA). Thus, BA can reduced Dex-induced apoptosis, and protect lymphocytes, but the protective activity of preventive was in relation to dosage of BA.
引文
[1]李时珍.本草纲目[M].北京:人民卫生出版社,1978.
    [2]Perumal Y, Dharmarajan S. Betulinic Acid and Its Derivatives:A Review on their Biological Properties [J]. Curr Med Chem,2005,12(6):657-666
    [3]Flekhter OB, Nigmatullina LR, Baltina L. A, et al. Synthesis of betulinic acid from betulin eatract and study of the antiviral and antiulcer activity of some related terpenoids [J]. Pharmaceut Chem J,2002,36 (9):484-487.
    [4]张秀娟,凌莉莉,季宇彬.桦木酸生物活性研究进展[J].天然产物研究与开发,2006,18(3):508-513.
    [5]Robert HC, Samir AK. Chemistry, Biological Activity, and Chemotherapeutic Potential of Betulinic Acid for the Prevention and Treatment of Cancer and HIV Infection [J]. Med Res Rev, 2004,24(1):90-114.
    [6]Bringmann G, Saeb W, Assi LA, et al. Betulinic acid:isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester [J]. Planta Med,1997,63(3):255-257.
    [7]Aratanechemuge Y, Hibasami H, Sanrin K, et al. Induction of apoptosis by lupeol isolated from mokumen (Gossampinus malabarica L. Merr) in human promyelotic leukemia HL-60 cells[J]. Oncol Rep,2004,11 (2):289-292.
    [8]Hata K, Hori K, Takahashi S. Role of p38 MAPK in Lupeol-Induced B16 2F2 Mouse Melanoma Cell Differentiation[J]. J Biochem,2003,134 (3):441-445.
    [9]Tolstikova TG, Sorokina IV, Tolstikov GA. Biological activity and pharmacological prospects of lupane terpenoids:I. natural lupane derivatives[J]. Russian Journal of Bioorganic Chemistry, 2006,32(1):37-49.
    [10]Jeremias I, Steiner HH, Benner A, et al. Cell death induction by betulinic acid, ceramide and TRAIL in primary glioblastoma multiforme cells[J]. Acta Neurochir,2006,146 (7):721-729
    [11]Fulda S, Debatin K. Sensitization for anticancer drug-induced apoptosis by betulinic acid [J]. Neoplasia,2005,7 (2):162-170
    [12]Pisha E, Chai H, Lee IS, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis [J]. Nat Med,1995,1(10):1046-1051
    [13]李丹,周金培,吴晓明.白桦酸及其衍生物的研究进展[J].药学进展,2004,28(3):120-125.
    [14]Mayaux JF, Bousseau A, Pauwels R, et al. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells [J]. Proc Natl Acad Sci,1994,91(9):3564-3568
    [15]Holz-Smith SL, Sun I, Jin L, et al. Role of human immunodeficiency virus (HIV) type 1 envelope in the anti-HIV activity of the betulinic acid derivative IC9564 [J]. Antimicrob. Agents Chemother,2001,45(1):60-66
    [16]Soler F, Poujade C, Evers M, et al. Betulinic acid derivatives:a new class of specific inhibitors of human immunodeficiency virus type 1 entry [J]. J Med Chem,1996,39(5):1069-1083
    [17]Sun I, Chen C, Kashiwada Y, et al. Anti-AIDS agents 49. Synthesis, anti-HIV, and anti-fusion activities of IC9564 analogues based on betulinic acid [J]. J Med Chem,2002,45(19): 4271-4275
    [18]Yuan X, Huang L, Ho P. et al. Conformation of gp120 determines the sensitivity of HIV-1 DH012 to the entry inhibitor IC9564 [J]. Virology,2004,324 (2):525-530
    [19]Eckerman C, Ekman, R. Comparison of solvents for extraction and crystallization of betulinol from birch bark waste[J]. Paperi ja Puu,1985,67(3):100-106
    [20]Mitaine-Offer AC, Hornebeck W, Sauvain M, et al. Triterpenes and phytosterols as human leucocyte elastase inhibitors [J]. Planta Med,2002,68(10):930-932.
    [21]Hata K, Ishikawa K, Hori K, et al. Differentiation-inducing activity of lupeol, a lupane-type triterpene from Chinese on a mouse melanoma cell Line [J]. Biol Pharm Bull,2000,23(8): 962-966.
    [22]You YJ, Nam NH, Kim Y, et al. Antiangiogenic activity of lupeol from Bombax ceiba [J]. Phytother Res,2003,17(4):341-344.
    [23]Wada S, Iida A, Tanaka R. Screening of triterpenoids isolated from Phyllanthus flexuosus for DNA topoisomerase inhibitory activity [J]. J Nat Prod,2001,64(12):1545-1547.
    [24]Saleem M, Afaq F, Adhauri V M, et al. Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice [J]. Oncogene,2004,23 (30):5203-5214.
    [25]Sultana S, Saleem M, Sharma S, et al. Lupeol, a triterpene, prevents free radical mediated macromolecular damage and alleviates benzoyl peroxide induced biochemical alterations in murine skin [J]. Indian J Exp Biol,2003,41(8):827-831.
    [26]Shirwaikar A, Setti M, Bommu P,et al. Effect of lupeol isolated from Crataeva nurvala Buch-Ham. stem bark extract against free radical induced nephrotoxicity in rats[J]. Indian J Exp Biol,2004,42 (7):686-690.
    [27]Malini MM, Lenin M, Varalakshmi P, et al. Protective effect of triterpenes on calcium oxalate crystal-induced peroxidative changes in experimental urolithiasis [J]. Pharmacol Res,2000, 41(4):413-418.
    [28]Ziegler HL, Staerk D, Christensen J, et al. In vitro Plasmodium falciparum drug sensitivity assay:inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane [J]. Antimicrob Agents Chemother,2002,46(5):1441-1446.
    [29]Suksamrarn A, Tanachatchairatana T, Kanokmedhakul S. Antiplasmodial triterpenes from twigs of Gardenia saxatilis [J]. J Ethnopharmacol,2003,88(2-3):275-277.
    [30]Ziegler HL, Franzyk H, Sairafianpour M, et al. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth:structure-activity relationships for betulinic acid analogues[J]. Bioorg Med Chem,2004,12 (1):119-127.
    [31]Nadureira AM, Ascenso JR., Valdeira L, et al. Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from Euphorbia segetalis. [J]. Nat Prod Res,2003,17 (5): 375-380.
    [32]Mutstafa J, Anis E, Ahmed S, et al. Lupene-type triterpenes from Periploca aphylla [J]. J Nat Prod,2000,63 (6):881-883
    [33]Akihisa T, Takamine Y, Yoshizumi K, et al. Microbial transformations of two lupane-type triterpenes and anti-tumor-promoting effects of the transformation products[J]. J Nat Prod, 2002,65(3):278-282
    [34]Hwang BY, Chai HB, Kardono LBS, et al. Cytotoxic triterpenes from the twigs of Celtis philippinensis [J].Phytochemistry,2003,62 (2):197-201.
    [35]Akihisa T, Tokuda H, Ubiya M, et al.3-epicabraleahydroxylactone and other triterpenoids from camellia oil and their inhibitory effects on Epstein-Barr virus activation. [J].Chem Pharm Bull, 2004,52(1):153-156.
    [36]Nikiema JB, Vanhaelen-Fastre R, Vanhaelen M, et al. Effects of antiinflammatory triterpenes
    isolated from Leptadenia hastata latex on keratinocyte proliferation[J]. Phytother Res,2001,15 (2):131-4.
    [37]Sturm S, Gil RR, Chai HB, et al. Lupane derivatives from Lophopetalum wallichii with farnesyl protein transferase inhibitory activity [J]. J Nat Prod,1996,59 (7):658-663.
    [38]Cichewicz RH, Kouzi SA. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection [J]. Med Res Rev, 2004,24(1):90-114.
    [39]Amor EC, Villasenor IM, Yasin A, et al. Prolyl endopeptidase inhibitors from Syzygium samarangense (Blume) Merr.& L. M. Perry [J]. Z Naturforsch C,2004,59 (1-2):86-92.
    [40]Gong Y, Raj KM, Luscombe CA, et al. The synergistic effects of betulin with acyclovir against herpes simplex viruses [J]. Antiviral Res,2004,64(2):127-30.
    [41]Zdzisinska B, Rzeski W, Paduch R, et al. Differential effect of betulin and betulinic acid on cytokine production in human whole blood cell cultures [J].Pol J Pharmacol,2003,55(2): 235-238.
    [42]Gu JQ, Wang V, Franzblau SG, et al. Antitubercular constituents of Valeriana laxiflora [J].Planta Med,2004,70 (6),509-514.
    [43]Wachter GA, Valcic S, Flagg ML, et al. Antitubercular activity of pentacyclic triterpenoids from plants of Argentina and Chile [J].Phytomedicine,1999,6(5):341-345.
    [44]Kinoshita K, Akiba M, Saitoh M, et al. Antinociceptive effect of triterpenes from cacti[J], Pharm Biol,1998,36 (1):50-57
    [45]Enwerem NM, Okogun JI, Wambebe CO, et al. Antihelmintic activity of the stem bark extracts of Berlina grandiflora and one of its active principles, betulinic acid[J]. Phytomedicine, 2001,8(2):112-114
    [46]Ryu SY, Lee CK, Lee CO, et al. Antiviral triterpenes from Prunella vulgaris[J]. Arch Pharm Res,1992,15(3):242-245
    [47]Macias FA, Simonet AM, Galindo JCG. Natural products that influence plant growth and development from plants:The case of Melilotus messanensis [J]. Proc Growth Reg Soc Am, 1995,22:53-57.
    [48]Sun HH, Kaplita PV, Houck DR, et al. A metalloproteinase inhibitor from Doliocarpus verruculosus [J]. Phytother Res,1996,10 (3):194-197
    [49]Zhu M, Phillipson JD, Greengrass PM, et al. Chemical and biological investigation of the root
    bark of Clerodendrum mandarinorum[J]. Planta Med,1996,62 (5):393-396
    [50]Ryu SY, Oak MH, Yoon SK, et al. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris[J]. Planta Med,2000,66 (4):358-360
    [51]Fulda S, Jeremias I, Steiner HH, et al. Betulinic acid:A new cytotoxic agent against malignant brain-tumor cells [J]. Int J Cancer,1999,82 (3):435-441
    [52]Dunstan CA, Liu B, Welch CJ, et al. Alphitol, a phenolic substance from Alphitonia zizyphoides which inhibits prostaglandin biosynthesis in vitro[J]. Phytochemistry,1998,48(3): 495-497
    [53]Peng C, Bodenhausen G, Qiu S, et al. Computer-assisted structure elucidation:Application of CISOC-SES to the resonance assignment and structure generation of betulinic acid[J]. Magn Reson Chem,1998,36(4):267-278
    [54]Kim DSHL, Chen Z, Nguyen VT, et al. A concise semi-synthetic approach to betulinic acid from betulin[J]. Synth Commun,1997,27 (9):1607-1612
    [55]Sandberg F, Dutschewska H, Christov V, et al. Spondianthus preussii var. glaber Engler: Pharmacological screening and occurrence of triterpenes[J]. Acta Pharm Suec,1987,24(5): 253-256
    [56]Huang C, Tunon H, Bohlin L. Anti-inflammatory compounds isolated from Menyanthes trifoliata L[J]. Acta Pharm Sinica,1995,30(8):621-626
    [57]Mukherjee PK, Saha K, Das J, et al. Studies on the anti-inflammatory activity of rhizomes of Nelumbo nucifera[J]. Planta Med,1997,63 (4):367-369
    [58]Galgon T, Hoke D, Drager B. Identification and quantification of betulinic acid [J]. Phytochem Anal,1999,10 (4):187-190
    [59]Kouzi SA, Chatterjee P, Pezzuto JM, et al. Microbial transformations of the antimelanoma agent betulinic acid [J]. J Nat Prod,2000,63(12):1653-1657
    [60]Li TS, Wang JX, Zheng XJ. Simple synthesis of allobetulin,28-oxyallobetulin, and related biomarkers from betulin and betulinic acid catalysed by solid acids [J]. J Chem Soc Perkin Trans,1998, (23):3957-3965
    [61]Chatterjee P, Pezzuto JM, Kouzi SA. Glucosidation of betulinic acid by Cunninghamella species[J]. J Nat Prod,1999,62(5):761-763
    [62]Chatterjee P, Kouzi SA, Pezzuto JM, et al. Biotransformation of the antimelanoma agent betulinic acid by Bacillus megaterium ATCC 13368[J]. Appl Environ Microbiol, 2000,66(9):3850-3855
    [63]Grishkovets VI. Synthesis of triterpenoid sulfates using the SO3-dimethyl sulfide complex[J]. Chem Nat Comp,1999,35(1):73-74
    [64]. Dinda B, Hajra AK, Das SK, et al. Reactions on naturally occurring triterpenes:Part 1[J]. Indian J Chem,1995,34B:624-628
    [65]Kashiwada Y, Hashimoto F, Cosentino LM, et al. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents[J]. J Med Chem,1996,39 (5):1016-1017
    [66]Jeong HJ, Chai HB, Park SY, et al. Preparation of amino acid conjugates of betulinic acid with activity against human melanoma[J]. Bioorg Med Chem Lett,1999,9 (8):1201-1204
    [67]Chowdhury AR, Mandal S, Mittra B, et al. Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I:identification of the inhibitory step, the major functional group responsible and development of more potent derivatives [J]. Med Sci Monit,2002,8(7):254-65
    [68]Fulda S, Friesen C, Los M, et al. Betulinic acid triggers CD95 (APO-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors[J]. Cancer Res,1997,57(21):4956-4964.
    [69]Kim DSHL, Pezzuto JM, Pisha E. Synthesis of betulinic acid derivatives with activity against human melanoma [J]. Bioorg Med Chem Lett,1998,8(13):1707-1712
    [70]Jeong H, Chai H, Park S, et al. Preparation of amino acid conjugates of betulinic acid with activity against human melanoma [J]. Bioorg Med Chem Lett,1999,9(8):1201-1204
    [71]Selzer E, Pimentel E, Wacheck V, et al. Effects of betulinic acid alone and in combination with irradiation in human melanoma cells [J]. J Invest Dermatol,2000,114 (5):935-940
    [72]Kim JY, Koo HM, Kim DSHL. Development of C-20 modified betulinic acid derivatives as antitumor agents[J]. Bioorg Med Chem Lett,2001,11(17):2405-2408
    [73]Hata K, Hori K, Takahashi S. Differentiation-and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line [J]. J Nat Prod,2002,65(2):645-648
    [74]Hata K, Hori K, Ogasawara H, et al. Anti-leukemia activities of lup-28-al-20(29)-en-3-one, a lupane triterpene [J]. Toxicol Lett,2003,143(1):1-7
    [75]Zuco V, Supino R, Righetti SC, et al. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells [J]. Cancer Lett,2002,175 (1):17-25
    [76]Symon AV, Kaplun AP, Vlasenkova NK, et al. Epimerization of hydroxyl group in lupan series triterpenoids [J]. Russ J Bioorg Chem,2003,29 (2):185-189
    [77]Sarek J, Klinot J, Dzubak P, et al. New lupane derived compounds with pro-apoptotic activity in cancer cells:synthesis and structure-activity relationships [J]. J Med Chem,2003,46 (25): 5402-5415
    [78]Tan Y, Yu R, Pezzuto JM. Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation [J]. Clin Cancer Res,2003,9 (7):2866-2875
    [79]You Y, Kim Y, Nam N, et al. Synthesis and cytotoxic activity of A-ring modified betulinic acid derivatives [J]. Bioorg Med Chem Lett,2003,13(19):3137-3140
    [80]Urban M, Sarek J, Klinot J, et al. Synthesis of A-seco derivatives of betulinic acid with cytotoxic activity [J]. J Nat Prod,2004,67(7):1100-1105
    [81]Liu W, Ho JCK, Cheung FWK, et al. Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line [J]. Eur J Pharmacol,498(1-3):71-78
    [82]Zanon M, Piris A, Bersani I, et al. Apoptosis protease activator protein-1 expression is dispensable for response of human melanoma cells to distinct proapoptotic agents[J]. Cancer Res,2004,64 (20):7386-7394
    [83]Fulda S, Jeremias I, Debatin K. Cooperation of betulinic acid and TRAIL to induce apoptosis in tumor cells [J]. Oncogene,2004,23(46):7611-7620
    [84]Kasperczyk H, La Ferla-Bruehl K, Westhoff MA, et al. Betulinic acid as new activator of NF-κB:molecular mechanisms and implications for cancer therapy [J]. Oncogene,2005,24(46): 6945-6956
    [85]Mukherjee R, Jaggi M, Rajendran P, et al. Betulinic acid and its derivatives as anti-angiogenic agents [J]. Bioorg Med Chem Lett,2004,14 (9):2181-2184
    [86]Baglin I, Poumaroux A, Nour M, et al. New ursolic and betulinic derivatives as potential cytotoxic agents [J]. J Enzyme Inhib Med Chem,2003,18(2):111-117
    [87]Noda Y, Kaiya T, Kohda K, et al. Enhanced cytotoxicity of some triterpenes toward leukemia L1210 cells cultured in low pH media:possibility of a new mode of cell killing [J]. Chem Pharm Bull,1997,45 (10):1665-1670
    [88]Deng Y, Snyder JK. Preparation of a 24-Nor-1,4-dien-3-one triterpene derivative from betulin: a new route to 24-nortriterpene analogues[J]. J Org Chem,2002,67(9):2864-2873
    [89]Ehrhardt H, Fulda S, Fuhrer M, et al. Betulinic acid-induced apoptosis in leukemia cells[J]. Leukemia,2004,18 (8):1406-1412
    [90]Fulda S, Jeremias I, Steiner HH,et al. Betulinic acid:a new cytotoxic agent against malignant brain-tumor cells[J]. Int J Cancer,1999,82 (3):435-441
    [91]Jeremias I, Steiner HH, Benner A, et al. Cell death induction by betulinic acid, ceramide and TRAIL in primary glioblastoma multiforme cells [J]. Acta Neurochir,2006,146(7):721-729
    [92]Fulda S, Susin SA, Kroemer G, et al. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells[J]. Cancer Res,1998,58 (19):4453-4460
    [93]Schmidt ML, Kuzmanoff KL, Ling-Indeck L, et al. Betulinic acid induces apoptosis in human neuroblastoma cell lines[J]. Eur J Cancer,1997,33(12):2007-2010
    [94]Wick W, Grimmel C, Wagenknecht B, et al. Betulinic acid-induced apoptosis in glioma cells:a sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing [J]. J Pharmacol Exp Ther,1999,289(3):1306-1312
    [95]Fulda S, Scaffidi C, Susin SA, et al. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid [J]. J Biol Chem,1998,273(51):33942-33948
    [96]Sawada N, Kataoka K, Kondo K, et al. Betulinic acid augments the inhibitory effects of vincristine on growth and lung metastasis of B16F10 melanoma cells in mice[J]. Br J Cancer, 2004,90(8):1672-1678
    [97]Eder-Czembirek C, Czembirek C, Erovic BM.et al. Combination of betulinic acid with cisplatin-different cytotoxic effects in two head and neck cancer cell lines[J]. Oncol Rep, 2005,14(3):667-671.
    [98]Thurnher D, Turhani D, Pelzmann M,et al. Betulinic acid:a new cytotoxic compound against malignant head and neck cancer cells[J]. Head Neck,2003,25 (9):732-740.
    [99]Salti GI, Kichina JV, Das Gupta TK, et al. Betulinic acid reduces ultraviolet-C-induced DNA breakage in congenital melanocytic naeval cells:evidence for a potential role as a chemopreventive agent[J]. Melanoma Res,2001,11(2):99-104.
    [100]Takada Y, Aggarwal BB. Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation:abrogation of cyclooxygenase-2 and matrix metalloprotease-9[J]. J. Immunol.2003,171(6):3278-3286.
    [101]徐萍,周金培,徐进宜,等.白桦酸类化合物抗肿瘤活性的进展[J].中国药师,2006,9(2):173-174.
    [102]Flekhter OB, Karachurina LT, Nigmatullina LR, et al. Synthesis and pharmacological activity of betulin dinicotinate[J]. Russ J Bioorg Chem,2002,28(6):494-500
    [103]Eiznhamer DA, Xu Z. Betulinic acid:a promising anticancer candidate. [J]. I Drugs,2004,7 (4):359-373
    [104]Mukherjee R, Jaggi M, Rajendran P, et al. Synthesis of 3-O-acyl/3-benzylidene/3-hydrazone 13-hydrazine/17-carboxyacryloyl ester derivatives of betulinic acid as anti-angiogenic agents [J]. Bioorg Med Chem Lett,2004,14 (12):3169-3172
    [105]Baltina LA, Flekhter OB, Nigmatullina LR, et al. Lupane triterpenes and derivatives with antiviral activity[J]. Bioorg Med Chem Lett,2003,13(20):3549-3552
    [106]Mukherjee R, Jaggi M, Siddiqui MJA, et al. Synthesis and cytotoxic activity of 3-O-acyl/ 3-hydrazine/2-bromo/20,29-dibromo betulinic acid derivatives[J]. Bioorg Med Chem Lett, 2004,14 (15):4087-4091
    [107]Gao H, Wu L, Kuroyanagi M, et al. Antitumor-promoting constituents from Chaenomeles sinensis Koehne and their activities in JB6 mouse epidermal cells[J]. Chem Pharm Bull, 2003,51(11):1318-1321
    [108]Baglin I, Mitaine-Offer AC, Nour M, et al. A review of natural and modified betulinic, ursolic and echinocystic acid derivatives as potential antitumor and anti-HIV agents [J]. Mini Rev Med Chem,2003,3(6):525-539
    [109]Huang L, Chen CH. Molecular targets of anti-HIV-1 triterpenes [J]. Curr Drug Target Infect Disord,2002,2 (1):33-36
    [110]Kashiwada Y, Chiyo J, Ikeshiro Y, et al.3,28-Di-O-(dimethylsuccinyl)-betulin isomers as anti-HIV agents. Bioorg[J]. Med Chem Lett,2001,11 (2):183-185
    [111]Kashiwada Y, Hashimoto F, Cosentino LM, et al. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents[J]. J Med Chem,1996,39(5):1016-1017
    [112]Kashiwada Y, Nagao T, Hashimoto A,et al. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acylursolic acid derivatives[J]. J Nat Prod,2000,63(12):1619-1622
    [113]Yasukawa K, Takido M, Matsumoto T, et al. Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor promotion in mouse skin two-stage carcinogenesis[J]. Oncology,1991,48(1):72-76
    [114]Higa M, Ogihara K,Yogi S. Bioactive naphthoquinone derivatives from Diospyros maritime Blume[J]. Chem Pharm Bull 1998,46 (7):1189-1193
    [115]Min B, Lee GI, Ha JY, et al. Inhibitory effects of triterpenoids on interleukin-8/CINC-1 induction in LPS-stimulated rat peritoneal macrophages. Nat Prod Sci,1996,2(1):48-55
    [116]Ha JY, Min KR, Kang SH, et al. Suppressive effects of triterpenoids on CINC-1 induction in interleukin-lb-stimulated rat fibroblast NRK-49F cells[J]. Arch Pharm Res,1997,20(3):234-238
    [117]Manez S, Recio MC, Giner RM, et al. Effect of selected triterpenoids on chronic dermal inflammation[J]. Eur J Pharmacol,1997,334(1):103-105
    [118]Huguet A-I, Recio MC, Manez S, et al. Effect of triterpenoids on the inflammation induced by protein kinaseCactivators, neuronally acting irritants and other agents[J]. Eur J Pharmacol, 2000,410 (1):69-81
    [119]Chang CW, Wang JP, Wu PP, et al. Terpenoids from Ocium basilicum[J]. Chin Pharm J, 1999,51 (2):181-189
    [120]Krogh R, Kroth R, Berti C, et al. Isolation and identification of compounds with antinociceptive action from Ipomoea pes-caprae (L.) R. Br [J]. Pharmazie,1999,54 (6):464-466
    [121]Yamashita K, Lu H, Lu J, et al. Effects of three triterpenoids, lupeol, betulin, and betulinic acid on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils[J]. Clin Chim Acta,2002,325 (1/2):91-96
    [122]Recio MC, Giner RM, Manez S, et al. Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas[J]. Planta Med,1995,61(1):9-12
    [123]Nick A, Wright AD, Rali T, et al. Antibacterial triterpenoids from Dillenia papuana and their structure-activity relationships [J]. Phytochemistry,1995,40(6):169.1-1695
    [124]Schuhly W, Heilmann J, Calis Ⅰ, et al. New triterpenoids with antibacterial activity from Zizyphusjoazeiro[J]. Planta Med,1999,65(8):740-743
    [125]Wachter GA, Valcic S, Flagg ML, et al. Antitubercular activity of pentacyclic triterpenoids from plants of Argentina and Chile[J]. Phytomedicine,1999,6(5):341-345
    [126]JeongTS, Hwang El, Lee HB, et al. Chitin synthase Ⅱ inhibitory activity of ursolic acid, isolated from Crataegus pinnatifida[J]. Planta Med,1999,65(3):261-263
    [127]Shai L, McGaw LJ, Aderogba M, et al. Four pentacyclic triterpenoids with antifungal and antibacterial activity from Curtisia dentata (Burm.f) C.A. Sm. Leaves [J]. J Ethnopharma, 2008,119 (2):238-244
    [128]Stephane F, Marion G, Josephine M, et al. Ursolic, oleanolic and betulinic acids:Antibacterial spectra and selectivity indexes [J]. J Ethnopharma,2008,120 (2):272-276
    [129]Steele JCP, Warhust DC, Kirby GC, et al. In vitro and in vivo evaluation of betulinic acid as an antimalarial [J]. Phytother Res,1999,13 (2):115-119
    [130]Duker-Eshun G, Jaroszewski JW, Asomaning WA,et al. Antiplasmodial constituents of Cajanus cajan[J]. Phytother Res,2004,18(2):128-130
    [131]Steele JCP,Warhurst DC, Kirby GC, et al. In vitro and in vivo evaluation of betulinic acid as an antimalarial[J]. Phytother Res,1999,13 (2):115-119
    [132]Kanamoto T, Kashiwada Y, Kanbara K, et al. Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation[J]. Antimicrob. Agents Chemther,2001,45 (4):1225-1230
    [133]Flekhter OB, Ashavina OY, Boreko EI,et al. Synthesis of 3-O-acetylbetulinic and betulonic aldehydes according to Svern and the pharmacological activity of related oximes[J]. Pharm Chem J,2002,36 (6):303-306
    [134]Flekhter OB, Medvedeva NI, Karachurina LT,et al. Synthesis and antiinflammatory activity of new acylated betulin derivatives[J]. Pharm Chem J,2002,36(9):488-491
    [135]Flekhter OB, Boreko El, Nigmatullina LR, et al. Synthesis and antiviral activity of ureides and carbamates of betulinic acid and its derivatives[J]. Russ J Bioorg Chem,2003,29(6):594-600
    [136]Pavlova NI, Savinova OV, Nikolaeva SN, et al. Antiviral activity of betulin, betulinic and betulonic acids against some enveloped and non-enveloped viruses [J]. Fitoterapia,2003, 74(5):489-492
    [137]Hess SC, Brum RL, Honda NK,et al. Antibacterial activity and phytochemical analysis of Vochysia divergens (Vochysiaceae)[J]. J Ethnopharmacol,1995,47(2):97-100
    [138]Nick A, Wright AD, Rali T, et al. Antibacterial triterpenoids from Dillenia papuana and their structure-activity relationships [J]. Phytochemistry,1995,40(6):1691-1695
    [139]Ruta M, Kristine S, Juris R, et al. Betulin binds to y-aminobutyric acid receptors and exerts anticonvulsant action in mice[J]. Pharmacol Biochem Be,2008,90 (4):712-716
    [140]Channa S, Dar A, Yaqoob M, et al. Broncho-vasodilatory activity of fractions and pure constituents isolated from Bacopa monniera [J]. J Ethnopharmacol,2003,86 (1),27-33.
    [141]Rusmawati WMW, Ahmad FBH, Anuar K, et al. Solubility of betulinic acid in the microemulsion system of methyl acetate/Tween 80:BRIJ30/H2O[J]. Oriental J Chem, 2001,16 (3):393-398
    [142]Udeani GO, Zhao G-M, Shin YG, et al. Pharmacokinetics and tissue distribution of betulinic acid in CD-1 mice[J]. Biopharm Drug Dispos,1999,20 (8):379-383
    [143]Shin YG, Cho KH, Chung SM, et al. Determination of betulinic acid in mouse blood, tumor, and tissue homogenates by liquid chromatography-electrospray mass spectrometry [J]. J Chromatogr B,1999,732 (2):331-336
    [144]Akihisa T, Takamine Y, Yoshizumi K, et al. Microbial transformations of two lupane-type triterpenes and anti-tumor-promoting effects of the transformation products[J]. J Nat Prod, 2002,65(3):278-282
    [145]Clark AM, Hufford CD. Use of microorganisms for the study of drug metabolism:An update[J]. Med Res Rev,1991,11(5):437-501
    [146]Lewis DFV, Dickins M,Weaver RJ, et al. Molecular modeling of human CYP2C subfamily enzymes CYP2C9 and CYP2C19:Rationalization of substrate specificity and sitedirected mutagenesis experiments in the CYP2C subfamily[J]. Xenobiotica,1998,28(3):235-268
    [147]Cheng X, Shin YG, Levine BS, et al. Quantitative analysis of betulinic acid in mouse, rat and dog plasma using electrospray liquid chromatography/mass spectrometry [J]. Rapid Commun Mass Spectrum,2003,17(18):2089-2092.
    [148]Chou KJ, Fang HC, Chung HM, et al. Effect of betulinic acid on intracellular-free Ca2+levels in Madin Darby canine kidney cells[J]. Eur J Pharmacol,2000,408 (2):99-106
    [149]Zuco V, Supino R, Righetti SC, et al. Selective cytotoxicity of betulinic acid on tumor cell lines, but not normal cells [J]. Cancer Lett,2002,175 (1):17-25
    [1]张秀娟,凌莉莉,季宇彬.桦木酸生物活性研究进展[J].天然产物研究与开发,2006,18(3):508-513.
    [2]Robert HC, Samir AK. Chemistry, Biological Activity, and Chemotherapeutic Potential of Betulinic Acid for the Prevention and Treatment of Cancer and HIV Infection [J]. Med Res Rev, 2004,24(1):90-114.
    [3]Bringmann G, Saeb W, Assi LA, et al. Betulinic acid:isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester [J]. PlantaMed,1997,63(3):255-257.
    [4]苏青,周鲁.桦木酸类化合物的分离及合成研究进展[J].中国药房,2006,17(9):704-705.
    [5]李丹,周金培,吴晓明.白桦酸及其衍生物的研究进展[J].药学进展,2004,28(3):120-125.
    [6]Pisha E, Chai H, Lee IS, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis [J]. Nat Med,1995,1 (10):1046-1051
    [7]杨听,杨光,赖玲,等.酸枣仁中白桦脂酸的提取和制备[J].中国中药杂志,2006,31(5):437-438.
    [8]Guoling Z, Weidong Y, Dan C. Simultaneous determination of betulin and betulinic acid in white birch bark using RP-HPLC [J]. Journal of Pharmaceutical and Biomedical Analysis,2007, 43 (3):959-962.
    [9]陈玲,林一萍,游贵君.薄层扫描法测定重阳木中的白桦脂酸含量[J].福建中医学院学报,1994,4(2):29—30.
    [10]李万华,李琴,王小刚,等.皂角刺中五个白桦脂酸型三萜抗HIV活性研究[J],西北大学学报,2007,37(3):401—403.
    [11]高慧媛,吴立军,黑柳正典.光皮木瓜的化学成分[J].中国天然药物,2003,1(2):82-84
    [12]陈斌,朱梅,邢旺兴,等.蓝桉果实化学成分的研究[J].中国中药杂志,2002,27(8):596-597.
    [13]Flekhter OB, Nigmatullina LR., Baltina L. A., et al. Synthesis of betulinic acid from betulin eatract and study of the antiviral and antiulcer activity of some related terpenoids [J]. Pharmaceut Chem J,2002,36 (9):484-487.
    [14]Zhang T, Ye Q, Feng C, et al. Chemical Study on Gladiolus gandavensis[J]. Chin J Appl Environ Biol,2007,13(5):635-640.
    [15]梁侨丽,龚祝南,闵知大.地胆草三萜成分的研究[J].中国药学杂志,2007,42(7):494-496.
    [16]Peng C, Bodenhausen G, Qiu S, et al. Computer-assisted structure elucidation:Application of CISOC-SES to the resonance assignment and structure generation of betulinic acid [J]. Magn Reson Chem,1998,36:267-278.
    [17]Weinges K, Schick H. Dodecaacetyl prodelphinid in B3 from the dried leaves of ziziphus spinachristi [J]. Phytochemistry,1995,38 (2):505-507.
    [18]Carcache-Blanco EJ, Kangyoung H, Jungpark E, et al. Constituents of the stem bark of pongamia pinnata with the potential to induce quinone reductase [J]. J Nat Prod,2003,66(9): 1197-1202
    [19]马慧丽,姚军,陈慧.桦木酸制备的研究进展[J].现代中西医结合杂志,2005,14(4)551-552
    [20]栗巧云.白桦脂酸型三萜类化合物的提取分离工艺及测定方法研究[D].西北大学,2009(06)
    [21]赵国玲.白桦树皮中活性成分的提取分离及其衍生物的制备研究[D].浙江大学,2007(11)
    [22]王国梁.桦木醇的提取及桦木酸合成工艺研究[D].黑龙江大学,2006(06)
    [23]段旭光,周崇文,陈科,等.改进RP-HPLC法测定大鼠血浆淫羊藿苷浓度[J].湖南农业大学学报,2009,35(3):309-313.
    [24]邢其毅.基础有机化学[M].北京:高等教育出版社,第二版,2004:387-388
    [25]Jidong L. Zhinna X. Selective oxidation of Primary alcohols with chromium trioxide under solvent free conditions[J].Tetrahedron Letters,2002, (43):6095-6097
    [26]于世钧,郭宏.LiAIH4和NaBH4的还原反应[J].辽宁师范大学学报,2003,26(1):56-58
    [27]祁逸梅.长白山白桦树皮中白桦脂醇的提取、衍生化及生物活性研究[D].东北师范大学,2005.
    [28]孙宏,张泽.分光光度法测定白桦三菇类物质总量[J].南京林业大学学报,2005,19(1): 110-112
    [29]李辉,杨光,杨昕,等.酸枣仁中白桦脂酸的提取与含量测定[J].医药导报,2005,24(5):386-387
    [30]潘萍,贾凌云,孙启时.RP-HPLC测定大叶紫珠中桦木酸的含量[J].中国中药杂志,2008,33(7):753-755.
    [31]陈曦,龙晓蕾,王志宏,等.高效液相色谱法测定金银花中木犀草素含量[J].湖南农业大学学报,2009,35(2):127-129.
    [32]刘高,饶力群,范适,等.高效液相色谱法测定叶下珠中叶下珠素含量[J].湖南农业大学学报:自然科学版,2008,34(3):277-280.
    [33]张荣,刘睿,刘启德,等.钩藤中钩藤碱、异钩藤碱的提取与含量测定[J].中药新药与临床药理,2009,20(4):338-341
    [34]Young GS, Kyung HC, Sang MC. Determination of betulinic acid in mouse blood, tumor and tissue homogenates by liquid chromatography-electrospray mass spectrometry [J]. J Chromatogr B Biomed Sci Appl,1999,732 (2):331-336.
    [1]罗永明,刘爱华,李琴,等.植物萜类化合物的生物合成途径及其关键酶的研究进展[J].江西中医学院学报,2003,15(1):45-51
    [2]Pisha E, Chai H, Lee IS, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis[J]. Nat Med,1995,1(10):1046-1051.
    [3]Fujioka T, Kashiwada Y, Kilkuskie RE, et al. Anti-AIDS agents,11. Betulinic acid and platonic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of Structurally related triterpenoids [J]. J Nat Prod,1994,57(2):243-247.
    [4]Recio MC, Giner RM, Manez S, et al. Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas [J]. Planta Med,1995,61(6):9-12.
    [5]Schuhly W, Heilmann J, Calis I, et al. New triterpenoids with antibacterial activity from Zizyphus joazeiro[J]. Planta Med,1999,65(8):740-743.
    [6]Bringmann G, Saeb W, Assi LA,et al.Betulinic acid:isolation from Triphyophyllum peltatum and Ancistrocladus heyneanus, antimalarial activity, and crystal structure of the benzyl ester[J]. Planta Med,1997,63(3):255-257.
    [7]Kovalenko LP, Balakshin VV, Presnova GA, et al. Immunotoxicity and allergenic properties of betulin-containing birch bark dry extract [J]. Pharm, Chem J,2007,41,17-19.
    [8]Flekhter OB, Nigmatullina LR, Baltina LA, et al.Synthesis of betulinic acid from betulin ectract and study of the antiviral and antiulcer activity of some related terpenoids[J]. Pharm Chem J,2002.36,484-487.
    [9]李薇,李岩,金雄杰.白桦三萜类物质的抗肿瘤作用及其对免疫功能的增强效应[J].中国免疫学杂志,2000,16(9):485-487
    [10]梁惠,贺娟,张士璀,等.凹顶藻萜类化合物抑瘤活性及其对免疫作用的研究[J].中国海洋药物杂志,2005,24(1):6-9
    [11]王斌,胡岳山,李杰芬.灵芝三萜对小鼠脾脏树突状细胞增殖的影响[J].中药材,2005,28(7):577-578
    [12]洪介民,黎庆梅.灵芝三萜对T淋巴细胞的活化作用[J].中药新药与临床药理,2007,18(4):283-285
    [13]辛欣,余宙,范青生,等.藜蒿三萜分离纯化及其体外抗氧化、抗菌活性研究[J].天然产物研究与开发[J].2009,21(2):312-318
    [14]于善谦,王洪海,朱乃硕,等.免疫学导论[M].北京:高等教育出版社(第一版),1997
    [15]张晨晓.泥鳅多糖的免疫调节和抗肿瘤作用机理[D].华中科技大学,2005,(05)
    [16]韩超,肖柳英,张丹.复方女贞益母黄芪汤对小鼠免疫功能影响的实验研究[J].中药材,2008,31(7):1036-1038
    [17]张辉,李玉虎.中药复方促使T淋巴细胞增殖的实验研究[J].中国实用医药,2009,4(1):1-2
    [18]侯会娜,曾耀英.金银花提取物对小鼠淋巴细胞体外活化与增殖的影响[J].免疫学杂志,2008,24(2):183.
    [19]赵洁,王曦鸣,李继祥.MTT法检测淋巴细胞增殖能力的影响因素[J].畜禽业,2008,226(2):28.
    [20]雷红宇.圆弧青霉菌毒素—青霉酸的单克隆抗体及免疫毒理学研究[D].湖南农业大学,2009,(05)
    [21]Yunha Y, Shinha H, Eunjung P,et al. Immunodulatory Activity of Betulinic Acid by Producing Pro-Inflammatory Cytokines and Activation of Macrophages [J]. Arch Pharmacal Res.2003, 26(12):1087-1095.
    [22]梁庆红,王倩,张琳,等.双歧杆菌对小鼠体液免疫功能的影响[J].承德医学院学报,2004,21(2):100-101
    [23]李景鹏.抗体形成细胞介导的溶血空斑和溶血试验[J].黑龙江畜牧兽医,1998,(8):4-5
    [24]王忠,呙于明,袁建敏,等.酵母β-1,3/1,6-葡聚糖对断奶仔猪细胞免疫和体液免疫机能的影响[J].畜牧兽医学报,2007,38(12):1316-1322
    [25]帅学宏,胡庭俊,陈炅然,等.鬼臼多糖对小鼠免疫功能和抗氧化能力的影响[J].畜牧兽医学报,2008,39(7):1000-1004
    [26]程安玮.甘草多糖的提取及对小鼠腹腔巨噬细胞的免疫调节[D].江南大学,2008,(06)
    [27]张霞.蕨麻多糖免疫调节及抗氧化作用的研究[D].甘肃农业大学,2005,(06)
    [28]宋超,牛翠娟,陈欣然.壳聚糖对急性氨氮胁迫下中华鳖稚鳖非特异性免疫反应的影响[J].动物学报,2007,53(2):270-277.
    [29]刘华,田嘉铭,孙犁,等.正常小鼠巨噬细胞及外周血淋巴细胞亚群对方风多糖干预的反应[J].中国组织工程研究与临床康复,2008,12(18):3475-3478
    [30]彭勃,苗明三,郭会军,等.扶正排毒片干预环磷酰胺致免疫抑制小鼠免疫功能的效应[J].中国组织工程研究与临床康复,2006,10(43):126-128
    [31]杨汉春.动物免疫学[M].北京:中国农业大学出版社(第二版),2003.76-88,99,160-178.
    [32]韩春杨,林德贵,刘翠艳,等.四君子汤发酵液的抗肿瘤作用及其对荷瘤小鼠免疫功能的影响
    [J].畜牧兽医学报,2008,39(6):814-818.
    [33]Constant SL, BottomLy K. Induction of Thl and Th2 CD4+ T cell responses:The alternative approaches [J]. Annu Rev Immunol,1997,15,297-322
    [34]Dhur A, Galan P, Preziosi P, et al. Lymphocyte subpopulations in the thymus, lymph nodes and spleen of iron-deficient and rehabilitated mice[J].J Nutr,1991,121(9):1418-1424.
    [35]Duarte J, Vinderola G, Ritz B, et al. Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation[J]. Immunobiology,2006,211(5),341-350.
    [36]Gauthier SF, Pouliot Y, Saint-Sauveur, D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins[J]. Int Dairy J,2006,16,1315-1323.
    [37]Guo P, Piao X, Ou D, et al. Characterization of the antigenic specificity of soybean protein b-cong-lycinin and its effects on growth and immune function in rats[J]. Arch Anim Nutr, 2007,61(3),189-200.
    [38]Wang JB, Yu HL, Shen XY, et al. Effect of Chinese soft-shell turtle egg powder on immune functions in mice[J]. Food Agr Immunol,2003,15,207-216.
    [39]Yamauchi F, Suetsuna K. Immunological effects of dietary peptide derived from soybean protein [J]. J Nutrl Biochem,1993,4(8),450-457
    [40]Wang M, Li N, Zhang Q, et al. Acute influence of FK506 on T-lymphocyte populations of peripheral blood and spleen in rats[J].Transplant Proc,2007,39(1):292-294
    [41]郑海兴,周忠光,何倜.伸筋草煎剂对小鼠免疫功能影响的实验研究[J].中医药学报,2005,33(4):36-37
    [42]Manish G, Santanu S, Sarang B, et al. Immunomodulatory activity of Asparagus racemosus on systemic Thl/Th2 immunity:Implications for immunoadjuvant potential[J]. J Ethnopharmacol. 2009,121,241-247.
    [43]Kim SK, Byun HG, Park PJ, et al. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin[J]. J Agr Food Chem,2001,49(4):1984-1989.
    [44]Nurmuhammat A, Halmurat U, Adiljan A, et al. Immunomodulatory effects of Abnormal Savda Munsiq, a traditional Uighur medicine, on the combined stress mice[J]. J Ethnopharmacol. 2009,122(1):42-47.
    [45]Hartel C, Rupp J, Iblher P, et al. Immunomodulatory effects of Sanglifehrin A in the innate and acquired immune response of neonatal whole blood cells [J]. Immunobiology,2009,214 (3): 235-243
    [46]Ruiyue Y, Zhaofeng Zh, Xinrong P, et al. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhyrnchus keta) in mice[J]. Food Chem 2009,113, 464-470
    [47]Zeng ZC, Tang ZY, Liu KD, et al. Observation of changes in peripheral T lymphocyte subsets by flow cytometry in patients with liver cancer treated with radioimmunotherapy [J]. Nucl Med Commun,1995,16(5):378-385
    [48]Robinson E, Segal R, Struminger L, et al. Lymphocyte subpopulations in patients with multiple primary tumors[J].Cancer,1999,185(9):2073-2076
    [49]Kim SH, Johnson VJ, Sharma RP. Oral exposure to inorganic mercury alters T lymphocyte phenotypes and cytokine expression in BALB/c mice [J]. Arch Toxicol,2003,77(11):613-620
    [50]Quattrocchi KB, Frank EH, Miller CH, et al. Suppression of celluar immune activity following severe head injury [J]. J Neurotrauma,1990,7(2):77-87
    [51]Pozner A, Lotem J, Xiao C, et al.Developmentally regulated promoter-switch transcriptionally controls Runxl function during embryonic hematopoiesis [J]. BMC Dev Biol,2007,12(7):84
    [52]Erman B, Alag AS, Dahle O, et al. Coreceptor signal strength regulates positive selection but does not determine CD4/CD8 lineage choice in a physiologic in vivo model [J]. J Immunol, 2006,177(10):6613-6625
    [53]Kobayashi T,Iijima K, Mitamura T,et al. Effects of lycopene, a carotenoid, on intrathymic T cell differentiation and peripheral CD4/CD8 ratio in a high mammary tumor strain of SHN retired mice [J]. Anticancer Drugs,1996,7(2):195-198
    [54]计慧琴,王丙云,陈志胜,等.T细胞的发育分化及胸腺激素的作用[J].动物医学进展,2005,26(4):47-50
    [55]宋芳,王建军,李俊平.T细胞在胸腺内的分化发育[J].包头医学院学报,2001,(1):75-77.
    [56]韩佐宁.胸腺细胞与胸腺基质细胞的相互作用[J].国外医学-免疫学分册,1994,17(4):296-300.
    [57]席允平.T细胞在胸腺中的阳性选择及其意义[J].国外医学-免疫学分册,1997,20(2):79-81.
    [58]Chen CH, Gobel TWF,Kubota T,et al. T cell development in the chicken [J]. Poul Sci, 1994,73(7):1012-1018.
    [59]Ito T, Hisasue M, Neo S, et al.A case of atypical canine lymphoma with oral mass and multiple osteolysis[J]. J Vet Med Sci,2007,69(9):977-980
    [60]Werner-Klein M, Dresch C, Marconi P, et al. Transcriptional targeting of B cells for induction of peripheral CD8 T cell tolerance[J]. J Immunol,2007,178(12):7738-7746
    [61]杨锋,李彦民,李引刚,等.仙龙颗粒对大鼠佐剂性关节炎T淋巴细胞亚群的影响[J].中医正骨,2005,17(3):12-13
    [62]Matsumura Y, Byrne SN, Nghiem DX, et al.A role for inflammatory mediators in the induction of immunoregulatory B cells[J]. J Immunol,2006,177(7):4810-4817
    [63]毛平,马骏,陈艳艳,等.不同药性补气中药对小鼠脾淋巴细胞增殖及细胞因子分泌的影响[J].上海中医药大学学报,2006,20(3):349-351
    [64]Jefferey DP, Leonore AH, Kristine V,et al. Glutathione level in antigen-presenting cells modulate Thl versus Th2 response patterns [J]. Immunology,1998,95:3071-3076.
    [65]Bernard P, Scior T, Didier B,et al. Ethnopharmacology and bioinformatic combination for leads discovery:application to phospholipase A2 inhibitors[J]. Phytochem,2001,58,865-874.
    [66]Giner-Larza EM, Manez S, Recio MC, et al. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotrienesynthesis and has anti-inflammatory activity [J]. Eur J Pharmacol,2001, 428(1):137-143.
    [67]Rajic A, Akihisa T, Ukiya M, et al. Inhibition of trypsin and chymotrypsin by anti-inflammatory triterpenoids from Compositae flowers[J]. Planta Med,2001,67(7): 599-604.
    [68]Ying QL, Rinerart A R, Simon S R, et al. Inhibition of human leukocyte elastase by ursolic acid. Evidence for a binding site for pentacyclic triterpenoids[J]. Biochem J,1991,277(2):521-526.
    [69]Ryu SY, Oak MH, Yoon SK, et al. Anti-alergic and anti-inflammatory triterpenes from herb of Prunella vulgaris[J]. Planta Med,2000,66(4):358-360.
    [70]Suh N, Honda T, Finlay HJ, et al. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages[J]. Cancer Res,1998, 58(4):717-723.
    [71]Suh N, Wang Y, Honda T, et al. A novel synthetic oleanane triterpenoid,2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity[J]. Cancer Res,1999,59(2):336-341.
    [72]O'Garra A, Murphy K. Role of cytokines in determining T-lymphocyte function [J]. Curr Opin Pharmacol,1994,6,458-466.
    [73]Guan W, Jian Z, Jianwen L, et al.Enhancement of IL-2 and IFN-γ expression and NK cells
    activity involved in the anti-tumor effect of ganoderic acid Me in vivo[J].Int Immunophar, 2007,7(6):864-870
    [74]Jones SA, Horiuchi S, Topley N. et al.The soluble interleukin 6 receptor:mechanisms of production and implications in disease [J]. FASEB J,2001,15,43-58.
    [75]Kimura D, Ishihara K, Hirano T, IL-6 signal transduction and its physiological roles:the signal orchestration model[J]. Rev Physiol Biochem Pharmaco,2003,149,1-38.
    [76]Scheller J, Ohnesorge N, Rose JS. Interleukin-6 trans-signalling in chronic inflammation and cancer[J]. Scand J Immunol,2006,63,321-329.
    [77]Kristiansen OP, Mandrup PT. Interleukin-6 and diabetes, the good, the bad or the indifferent [J]. Diabetes.2005,54,114-124.
    [78]Takahashi M, Moriguchi S, Yoshikawa M, et al. Isolation and characterization of oryzatensin: A novel bioactive peptide with ileumcontracting and immunomodulating activities derived from rice albumin [J]. Biochem Mol Biol Inter,1994,33,1151-1158.
    [79]Zazisinska B, Reski W, Paduch R, et al. Differential effect of betulin and betulinic acid on cytokine production in human whole blood cell cultures [J]. Pol J Pharmacol,2003,55, 235-238.
    [80]Pezzuto JM, Das-Gupta TK, Schimidt ML, et al. Method and composition using betulinic acid or a betulinic acid derivative for treating cancer[P]. US Patent 5,1999,962,527.
    [81]Pokrovskii AG,Shintyapina AB, Pronkina, NV, et al. Activation of Apoptosis by Derivatives of Betulinic Acid in Human Tumor Cells in vitro[J]. Dokl Biochem Biophys,2006,407,94-97.
    [82]胡庭俊,陈炅然.山豆根多糖的自由基药理学研究[J].中兽医医药杂志,2005,24:53-58.
    [83]Tolstikova TG, Sorokina IV, Tolstikov GA, et al. Biological Activity and Pharmacological Prospects of Lupane Terpenoids:I Natural Lupane Derivatives[J].Russ J of Bioorg Chem, 2006,32 (1):37-49.
    [84]Sultana S, Saleem M, Sharma S, et al. Lupeol, a triterpene, prevents free radical mediated macromolecular damage and alleviates benzoyl peroxide induced biochemical alterations in murine skin [J]. Indian J Exp Biol,2003,41(8):827-831.
    [85]Shirwaikar A, Setti M, Bommu P. Effect of lupeol isolated from Crataeva nurvala Buch.-Ham. Stem bark extract against free radical induced nephrotoxicity in rats [J]. Indian J Exp Biol, 2004,42(7)686-690.
    [86]王明宇,刘强,车庆明,等.灵芝三萜类化合物对3种小鼠肝损伤模型的影响[J].药学学报,
    2000,35(5):326-329.
    [87]黄艳娟,肖桂林.灵芝三萜药理学作用研究进展[J].中医药导报,2008,14(9):87-87,97.
    [88]周昌艳,唐庆九,林志彬,等.灵芝中有效成分灵芝酸的抑制肿瘤研究[J].菌物学报,2004,23(2):275-279
    [89]Su CH, Lain MN, Chan MH. Hepatoprotective triterpenoids from Ganoderma tsugae Murrill Mushroom Biology and Mushroom Products [M]. Hongkong:The Chinese University Press, 1993,275-283.
    [90]Mayo LA, Curnutte JT. Kinetic microplate assay for superoxide production by neutrophils and other phagocytic cells [J]. Methods Enzymol,1990,186,571-575.
    [91]Yamashita K, Lu H, Lu J, et al. Effect of three triterpenoids, lupeol, betulin, and betulinic acid on the stimulus-induced superoxide generation and tyrosyl phosphorylation of proteins in human neutrophils[J]. Clin Chim Acta,2002,325,91-96.
    [92]Nagaraj M, Sunitha S, Varalakshmi P. Effect of lupeol, a pentacyclic triterpene, on the lipid peroxidation and antioxidant status in rat kidney after chronic cadmium exposure[J]. J Appl Toxicol,2000,20,413-417.
    [93]Raddassi K, Murray JJ. Ethanol increases superoxide anion production stimulated with 4beta-phorbol 12-myristate 13-acetate in human polymorphonuclear leukocytes.Involvement of protein kinase C [J]. Eur J Biochem,2000,267,720-727.
    [94]Agnieszka SC, Martyna KS. Protective effects of betulin and betulinic acid against ethanol-induced cytotoxicity in HepG2 cells [J]. Pharmacol rep,2005,57(5):588-595
    [95]Chowdbury AR, Mandal S, Mittra B, et al. Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I:identification of the inhibitory step, the major functional group responsible and development of more potent derivatives [J]. Med Sci Monit,2002,8,254-260.
    [96]Malini MM, Lenin M, Varalakshmi P. Protective effect of triterpenes on calcium oxalate crystal-induced peroxidative changes in experimental urolithiasis [J]. Pharmacol Res,2000, 41(4):413-418.
    [97]Miura N, Matsumoto Y, Miyairi S, et al. Protective effects of triterpene compounds against the cytotoxicity of cadmium in HepG2 cells [J]. Mol Pharmacol,1999,56,1324-1328.
    [98]Renata CG, Flavia B, Denise DD, et al. Antioxidative action of methanolic extract and buthanolic fraction of Vochysia tueanorum Mart, in the gastroprotection[J]. J Ethnopharmacol, 2009,121,466-471
    [99]Nguemfol EL, Dimol T, Dongmo AB, et al. Anti-oxidative and anti-inflammatory activities of some isolated constituents from the stem bark of Allanblackia monticola Staner L.C (Guttiferae) [J]. Inflammopharmacology,2009,17(1):37-41
    [1]王璐,邱培勇,陈正跃,等.玉屏风散对小鼠腹腔巨噬细胞一氧化氮生成的影响及机理[J].中药材,2009,32(2):262-263.
    [2]张志敏,王建华,赵兴华,等.苦马豆素对小鼠腹腔巨噬细胞免疫功能的影响[J].中国农业科学,2008,41(10):3422-3428
    [3]王毛妮,周春祥,孙秀娟.三物白散对Ana-1巨噬细胞免疫功能的影响[J].河南中医,2008,28(1):31-33
    [4]Lorsbach RB, Russell SW. A specific sequence of stimulation is required to induce synthesis of the antimicrobial molecule nitric oxide bymouse macrophage[J]. Infect Immun,1992,60 (5): 2133-2135
    [5]Nathan CF, Hibbs JB. Role of nitric oxide synthesis in Macrophage's antimicrobial activity [J]. Curr Opin Imm unol,1991,3(1):65-70
    [6]孙常松,李玛琳.五环三萜类化合物抗肿瘤活性及其机制研究进展[J].中国民族民间医药,2009,(12):14-15
    [7]罗永明,刘爱华,李琴,等.植物萜类化合物的生物合成途径及其关键酶的研究进展[J].江西中医学院学报,2003,15(1):45-51
    [8]黄艳娟,肖桂林.灵芝三萜药理学作用研究进展[J].中医药导报,2008,14(9):87-87,97.
    [9]Min BS, Gao JJ, Hattori M, et al. Anticomplement activity of triterpenoids from the spores of Ganodermalucidum[J]. Planta Med,2001,67:811-814
    [10]周昌艳,唐庆九,杨焱,等.灵芝中有效成分灵芝酸的抑制肿瘤作用研究[J].菌物学报,2004,23(2):275-279
    [11]Guan W, Jian Z, Jianwen L, et al. Enhancement of IL-2 and IFN-γ expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo [J]. Int Immunopharmacol,2007,7 (6):864-870
    [12]李薇,李岩,金雄杰.白桦三萜类物质的抗肿瘤作用及其对免疫功能的增强效应[J].中国免疫学杂志,2000,16(9):485-487
    [13]梁惠,贺娟,张士璀,等.凹顶藻萜类化合物抑瘤活性及其对免疫作用的研究[J].中国海洋药物杂志,2005,24(1):6-9
    [14]Fulda S, Friesen C, Los M, et al. Betulinic acid triggers CD95 (APO-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors[J]. Cancer Res, 1997,57,4956-4964
    [15]Pisha E, Chai H, Lee IS, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis[J]. Nat Med,1995,1(10):1046-1051.
    [16]Zuco V, Supino R, Righetti SC, et al. Selective cytotoxicity of betulinic acid on turrior cell lines, but not normal cells [J]. Cancer Lett,2002,175 (1):17-25
    [17]Yunha Y, Shinha H, Eunjung P, et al. Immunodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages[J]. Arch Pharm Res,2003,26(12): 1087-1095.
    [18]Obminska-Mrukowicz B, Szczypka M, Gaweda B. Modulation of murine macrophages and T lymphocytes by lysozyme dimmer [J]. Pol J Vet Sci,2002,5:237-241.
    [19]刘华,田嘉铭,孙黎,等.正常小鼠巨噬细胞及外周血淋巴细胞亚群对防风多糖干预的反应[J].中国组织工程研究与临床康复,2008,12(18):3475-3478.
    [20]白杰,李彦东.一氧化氮生物学特性研究进展[J].中国商界,2009,174:154-155
    [21]孙震,奚海燕,陈正行,等.玉米蛋白粉中叶黄素和玉米黄素对小鼠巨噬细胞免疫调节活性的研究[J].食品科学,2006,27(11):505-509.
    [22]尹乐乐,曾耀英,侯会娜,等.连翘提取物对小鼠腹腔巨噬细胞体外吞噬和NO释放的影响[J].细胞与分子免疫学杂志,2008,24(6):557-559
    [23]金惠铭,卢建,殷莲华.细胞分子病理生理学[M].郑州:郑州大学出版社,2002:225-235.
    [24]林明群,张宗梁.巨噬细胞免疫调变信号-PKA与PKC对MAPK信号通路的调节[J].生物化学与生物物理学报,1999,31(6):701-706.
    [25]Katja SF, Larissa B, Hui X, et al. Reciprocal regulation of endothelial nitric-oxide synthase and
    NADPH oxidase by betulinic acid in human endothelial cells [J]. J Pharmacol Exp Thera, 2007,322(2):836-842.
    [26]南京中医药大学.中药大辞典(上册)[M].上海:上海科学技术出版社,2006:1552-1555.
    [27]Jin HK, Dong HK, Seung HB, et al. Rengyolone inhibits inducible nitric oxide synthase exp ression and nitric oxide p roduction by down-regulation of NF-κB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells [J]. Biochem Pharm acol,2006,71 (8):1198-1205.
    [28]程安玮,金征宇,万发春.甘草多糖对小鼠腹腔巨噬细胞化学成分及胞内酶的影响[J].食品与生物技术学报,2008,27(1):76-79.
    [29]程安玮,金征宇,万发春.甘草多糖对小鼠腹腔巨噬细胞的激活作用[J].食品科学,2007,28(12):431-434.
    [30]Zdzisinska B, Rzeski W, Paduch R, et al. Differential effect of betulin and betulinic acid on cytokine production in human whole blood cell cultures [J]. Pol J Pharmacol,2003,55(2): 235-238.
    [31]周建云,蒋建新,杨策,等.皮质酮对大鼠腹腔巨噬细胞功能的影响.第三军医大学学报,2008,30(2):120-123
    [32]Victor VM, Rocha M, Dela-Fuente M. Regulation of marcophage function by the antioxidant N-acetylcysteine in mouse-oxidative stress by endotoxin [J]. Int lmmunopharmaeol,2003,3(1): 97-106.
    [1]Elliser E, Yuan JY, Horvitzh R. Mechanisms and functions of cell death [J]. Annu Rev Cell Biol, 1991,7:663-698.
    [2]吕小迅,黄摇瑶.枸杞多糖对Dex诱导的小鼠脾脏细胞凋亡的影响[J].广东药学院学报,2007,23(2):178-179
    [3]王君,仝小林,杨凌,等.增液汤对Dex诱导幼鼠胸腺细胞凋亡的影响[J].北京中医药大学学报,2003,26(5):35-38
    [4]夏洪生,李克松,张永锋,等.黄芪多糖对Dex诱导的脾淋巴细胞凋亡的影响[J].深圳中西医结合杂志,2001,11(4):193-199
    [5]曾芸,房慧伶,杨楷.黄连提取物对小鼠胸腺细胞凋亡的影响[J].广西农业生物科学,2007,26(1):40-43
    [6]高碧珍,江澍,高丹玲,等.螺旋藻对氢化可的松诱导小鼠胸腺细胞凋亡的保护作用[J].福建中医学院学报,2001,11(2):38
    [7]任晓娟,王桂琴,颜光涛,等.瘦素对LPS诱导的小鼠胸腺细胞凋亡的保护作用[J].中国免疫学杂志,200,24(3):216-218,223
    [8]刘金保,王随照,赵青,等.氨茶碱及Dex对小鼠脾淋巴细胞凋亡的调节作用[J].中国病理生理杂志,1-999,15(7):609-612
    [9]朱丽红,杨巧红,刘小东.黄芪注射液对Dex诱导小鼠胸腺细胞凋亡的调节作用[J].中医研究,2009,22(1):17-19
    [10]杨燕萍.加味玉屏风汤及黄芪多糖对胸腺细胞凋亡影响的实验研究[J].深圳中西医结合杂志,2000,10(3):18
    [11]郭钰琪,周宪宾,王丽,等.右归丸对糖皮质激素诱导的胸腺细胞凋亡的保护作用[J].中国免疫学杂志,2008,24(3):228-230
    [12]胡野,凌志强,单小云.细胞凋亡的分子医学[M].北京:军事医学科学出版社,2002.
    [13]彭黎明,王曾礼.细胞凋亡的基础与临床[M].北京:人民卫生出版社,2000.
    [14]冯建芳,章静波.程序性细胞死亡及细胞凋亡[J].生理科学进展,1995,26(4):373-378.
    [15]包倪荣,赵建宁,王与荣.糖皮质激素诱导淋巴细胞凋亡的细胞学机制[J].中国组织化学与细胞化学杂志,2003,12(1):94
    [16]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging imp lications in tissue kinetics [J]. Br J Cancer,1972,26(4):239-257
    [17]Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation [J]. Nature, 1980,284 (5756):555-556.
    [18]夏洪生,张玲梅,李克松,等.Dex诱导脾淋巴细胞凋亡模型的制备[J].深圳中西医结合杂志,2004,14(5):270-271
    [19]殷宗琦,崔春红,于洪波,等.Dex对小鼠免疫系统的抑制作用[J].滨州医学院学报,2008,31(3):174-176
    [20]刘静,高毅,李冉冉.地塞米松对大鼠肝脾细胞凋亡的影响[J].广东医学,2005,26(12):1638-1639
    [21]金红艳,欧阳铭,戴冀斌.Dex诱导体外培养星型胶质细胞凋亡机制的研究[J].数理医药学杂志,2006,19(4):370-375
    [22]王通,曾耀英,肇静娴,等.Dex介导胸腺细胞凋亡过程中线粒体和细胞结构蛋白的变化[J].中国病理生理杂志,2005,21(7):1415-1418
    [23]Sade H, Khandre NS, Mathew MK, et al. The mitochondrial phase of the glucocorticoid-induced apoptotic response in thymocytes comprises sequential activation of adeninenucleotide transporter (ant)-independent and ant-dependentevents [J], Eur J Immunol,2004,34 (1):119-125.
    [24]郑骏年,谢叔良,孙晓青,等.甲基强的松龙诱导淋巴细胞凋亡特点的探讨[J].上海免疫学杂志,2001,21(2):83
    [25]潘景轩,朱振宇,李惠玲,等.糖皮质激素诱导大鼠胸腺细胞程序性死亡研究[J].中国免疫学杂志,1996,12(4):228
    [26]杨巧红,苏俊芳,李长福,等.黄芪注射液对诱发性小鼠胸腺萎缩的干预作用及对胸腺淋巴细胞凋亡相关基因Bcl-2的影响[J].中药材,2009,32(7):1101-1104
    [27]江澍,陈菁,周凡,等.黄芪对诱发性小鼠胸腺淋巴细胞凋亡的调节作用[J].福建中医学院学报,2000,10(2):26-28
    [28]Ojedo F, Guarda MI, Moldonado C, et al. Protein kinase C involvement in thymocyte apoptosis induced by hydrocortisone [J].Cell Immunol,1990,125 (2):535-539.
    [29]Jiang S, Chow SC, Nicotera P, et al. Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca2+-ATPase inhibiter thapsigargin [J]. Exp cell Res,1994,212(1):84-92.
    [30]Auphan N, NiDonato JA, Rosette C, et al. Immunosuppression by glucocorticoids:Inhibition of NP-κB activity through inductionof IκB Synthesis[J]. Science,1995,270:286-290.
    [31]阳剑波.参麦注射液对小鼠烫伤后胸腺细胞凋亡保护及机制[J].中国感染控制杂志,2002,1(1):4-7
    [32]Mconkey DJ, Zhivotovsky B, Orrenius S. Apoptosis-molecular mechanisms and biomedical implications [J]. Mol Aspects Med,1996,17(1):1-110
    [33]卫兰,吴江声,郭琦,等.体外培养新生小鼠胸腺的超微结构[J].解剖学杂志,2002,25(2):114-117
    [34]李奎,康相涛,刘英,等.固始鸡中枢免疫器官细胞和自然凋亡细胞超微结构研究[J].畜牧兽医学报,2007,38(1):89-95
    [35]李玉谷,辛朝安,李楚宣,等.鸭胸腺细胞自然凋亡的电镜观察[J].畜牧兽医学报,2000,31(6):571~575.
    [36]李玉谷,辛朝安.鹅胸腺细胞自然凋亡的电镜观察[J].中国兽医科技,2001,31(12):35-37
    [37]宁章勇,刘思当,赵德明,等.热应激肉仔鸡胸腺、法氏囊超微组织观察和细胞凋亡检测[J].畜牧兽医学报,2004,35(3):310-313
    [38]黄行许,朴英杰,乔东访,等.放线菌酮诱导大鼠胸腺细胞凋亡的电镜观察[J].解剖学杂志,1997,20(6):583-586
    [39]霍霞,朴英杰,黄行许,等.放线菌酮诱发的凋亡淋巴细胞线粒体观察[J].电子显微学报,1998,17(6):702-705
    [40]彭黎明.吞噬细胞对凋亡细胞的识别与吞噬[J].中华病理学杂志,1999,28(4):304-306.
    [41]Nagata S. Apoptotic DNA fragmentation [J]. Exp Cell Res,2000,10:12-18.
    [42]帅学宏,胡庭俊,张霞,等.蕨麻多糖组分抑制过氧化氢诱导小鼠脾淋巴细胞凋亡的作用[J].药学学报,2009,44(9):987-993
    [43]陈月桥,王丽,武建华.细胞凋亡信号传导途径研究进展[J].中国实用医药,2007,2(33):186-189
    [44]刘文,黄文芳,卢贤瑜.死亡受体信号传导途径研究进展[J].检验医学与临床,2006,3(9):445-447
    [45]方敏,王晓东.细胞凋亡的线粒体通路[J].北京大学学报(医学版),2002,34(1):1-10
    [46]Kroemer G, Reed JC. Mitochondrial control of cell death [J].Nat Med,2000,6 (5):513-519.
    [47]Verma M, Kagan J, Sidransky D, et al. Proteomic analysis of cancer-cell mitochondria [J]. Nat Rev Cancer,2003,3 (10):789-795
    [48]张书霞,陈万芳,于勇,等.Bcl-2基因在成年和胚胎鸡免疫器官中的表达及其与细胞凋亡的关系[J].南京农业大学学报,1999,22(4):65-68
    [49]张书霞,鲍恩东.鸡免疫器官中半胱天冬酶-3、Bcl-2的表达与细胞凋亡的关系[J].畜牧兽医学报,2002,33(6):619-622
    [50]张晨晓.泥鳅多糖的免疫调节和抗肿瘤作用机理[D].华中科技大学,2005(06).
    [51]Fulda S. Betulinic acid for cancer treatment and prevention [J]. Int J Mol Sci,2008,9(6):1096-1107
    [52]Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo w ith a coneserved homolog. Bax, that.accelerates programmed cell death [J].Cell,1993,74:609-619
    [53]付永锋,樊廷俊.Bcl-2家族蛋白与细胞凋亡[J].生物化学与生物物理学报,2002,34(4)389-394
    [54]朱健,蔡文玮,陈朝婷.老年鼠外周血淋巴细胞凋亡及基因调控的研究[J].上海免疫学杂志,2000,20(1):38
    [55]刘玉涛.IL-2、IL-6对Dex诱导小鼠胸腺细胞凋亡的调节作用[J].中国免疫学杂志,1995,11(6):299
    [56]Quaglino D, Ronchetti IP. Cell death in the rat thymus:Aminireview [J]. Apoptosis,2001,6 (5): 389-401
    [57]王通,曾耀英,李校,等.Dex诱导小鼠胸腺细胞凋亡和ERK1/2 MAPK及钙离子浓度关系的研究[J].中国药科大学学报,2004,35(1):77-81
    [58]Voris BP, Young DA. Glucocorticoid-induced proteins in rat thymus cells [J]. J Biol Chem, 1981,256(21):11319-113291
    [59]Mconkey DJ, Nicotera P, Hartzell P, et al. Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration [J]. Arch Biochem Biophys, 1989,269 (1):365-370.
    [60]Cichewicz RH, Kouzi SA. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection [J]. Med Res Rev, 2004,24(1):90-114.
    [61]Alakurtti S, MakelaT, Koskimies S, et al. Pharmacological properties of the ubiquitous natural product betulin [J]. Eur J Pharm Sci,2006,29(1):1-13.
    [62]Green DR, Kroemer G. The pathophysiology of mitochondrial cell death [J]. Science,2004, 305,626-629.
    [63]Galluzzi L, Larochette N, Zamzami N, et al. Mitochondria as therapeutic targets for cancer chemotherapy [J]. Oncogene,2006,25(34):4812-4830.
    [64]Fulda S, Scaffid C, Susin SA, et al. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid [J]. J Biol Chem,1998,273(56):33942-33948
    [65]Fulda S, Debatin KM. Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors [J]. Med Pediatr Oncol,2000,35(6):616-618.
    [66]Zuco V, Supino R, Righetti SC, et al. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells[J]. Cancer Lett,2002,175,17-25.
    [67]Pisha E, Chai H, Lee IS, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis [J]. Nat Med,1995,1 (10):1046-1051
    [68]Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy [J]. Oncogene,2007,26(9):1324-1337.
    [69]Fulda S, Friesen C, Los M, et al. Betulinic acid triggers CD95 (APO-1/Fas)-and p53-independent apoptosis via activation of caspases in neuroectodermal tumors[J]. Cancer Res, 1997,57(21):4956-4964.
    [70]Fulda S, Susin SA, Kroemer G.et al. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells [J]. Cancer Res,1998,58(19):4453-4460.
    [71]Tan Y, Yu R, Pezzuto JM. Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation [J]. Clin Cancer Res.2003, 9(7):2866-2875
    [72]Selzer E,Thallinger C, Hoeller C,et al. Betulinic acid-induced Mcl-1 expression in human melanoma-mode of action and functional significance[J]. Mol Med,2002,8(12):877-884.
    [73]Hockenbery DM, Oltvai ZN, Xiaoming Y, et al. Bcl-2 function as an antioxidant pathway to prevent apoptosis [J]. Cell,1993,75(2):241-251.
    [74]Droge W. Free radicals in the physiological control of cell function [J]. Physiological Reviews, 2002,82:47-95
    [75]Simizu S, Takada M, Umezawa K, et al.Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs [J]. J Biol Chem,1998,273:26900-26907
    [76]Ricci JE, Gottlieb RA, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis[J].J Cell Biol,2003,160:65-75
    [77]朱琦,陈国强,沈志祥.活性氧和细胞凋亡[J].癌症,1999,18:119-121
    [78]Hochman A, Sternin H, Gorodin S, et al. Enhanced oxidative stress and altered antioxidants in brains of bcl-2 deficient mice [J]. J neurochem,1998,71 (2):741-748.
    [79]Kane DJ, Sarafian TA, Anton R, et al. Bcl-2 inhibition of neural death:decreased generation of ROS [J].Science,1993,262 (5137):1274-1277
    [80]Wick W, Grimmel C, Wagenknecht B,et al. Betulinic acid-induced apoptosis in glioma cells:A sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing [J]. J Pharmacol Exp Ther,1999,289,1306-1312.
    [81]Macho A, Hirsch T, Marzo I, et al. Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis [J]. J immunol,1997,158(10):4612-4619.
    [82]Shirlee T, Tutaka S, Yuanbin L, et al. The regulation of reactive oxygen species production during programmed cell death [J]. J cell Biol,1998,141 (6):1423-1432.
    [83]Rizzuto R, Pinton P, Ferrari D, et al. Calcium and apoptosis:Facts and hypotheses [J]. Oncogene,2003,22 (53):8619-8627
    [84]Maconkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis [J]. Biochem Biophys Res Commun,1997,239:357-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700